Прикладная теория графов

DOI 10.17223/20710410/12/9

УДК 519.6

2011

ОЦЕНКИ ЭКСПОНЕНТОВ ПРИМИТИВНЫХ ГРАФОВ

В. М. Фомичев

Институт проблем информатики РАН, г. Москва, Россия

E-mail: fomichev@nm.ru

Уточнены оценки экспонентов для *п*-вершинных примитивных орграфов (неотрицательных матриц порядка n), содержащих два простых контура, длины которых взаимно просты. Получены достижимые оценки порядка $O(\max\{l\lambda, f(l,\lambda,n)\})$, где l и λ — взаимно простые длины простых контуров в орграфе и $f(l,\lambda,n)$ линейный полином. Описан полностью класс примитивных орграфов, на которых достигается абсолютная оценка экспонента $n^2 - 2n + 2$ (H. Wielandt, 1950). Для экспонентов неориентированных n-вершинных примитивных графов доказаны уточняющие оценки. В частности, если l — длина длиннейшего простого цикла нечетной длины в графе Γ , то экспонент графа Γ не превышает 2n-l-1. Описан полностью класс примитивных неориентированных графов, на которых достигается абсолютная оценка экспонента 2n-2.

Ключевые слова: примитивные графы, экспонент графа.

Введение

Рассмотрим неотрицательную (положительную) матрицу $A = (a_{i,j})$ порядка n > 1над полем действительных чисел, т.е. $a_{i,j}\geqslant 0$ $(a_{i,j}>0)$ для всех $i,j\in\{1,\ldots,n\},$ свойство неотрицательности (положительности) матрицы A обозначим так: $A\geqslant 0$ (A>0). Неотрицательную матрицу A называют примитивной, если $A^t > 0$ при некотором натуральном t, а наименьшее натуральное γ , при котором $A^{\gamma} > 0$, называется экспонентом, или показателем примитивности матрицы A, и обозначается $\exp A$. Если такого t не существует, то $\exp A = \infty$.

Важной задачей, в частности для криптографических приложений, является определение экспонентов матриц из различных классов. При исследовании экспонентов матриц часто используется эпиморфизм φ мультипликативного моноида неотрицательных матриц порядка n на моноид n-вершинных орграфов, где умножение орграфов¹ определено как умножение бинарных отношений [1, с. 212]. При эпиморфизме φ матрице A соответствует орграф Γ с множеством вершин $\{1, \ldots, n\}$ и с множеством дуг U, где $(i,j) \in U \Leftrightarrow a_{i,j} > 0$, при этом матрица M смежности вершин графа Γ называется носителем матрицы A. Очевидно, $\varphi(M) = \Gamma$. Для ограничения эпиморфизма φ на подмоноид симметрических матриц (для них $a_{i,j}=a_{j,i}$ при всех допустимых i,j) областью значений является подмоноид n-вершинных графов. Для эпиморфизма φ выполнено: $A>0\Leftrightarrow$ орграф $\Gamma=\varphi(A)$ полный. Отсюда неотрицательная матрица A и орграф $\Gamma = \varphi(A)$ одновременно примитивны или не примитивны, в случае примитивности экспоненты их равны.

В данной работе используем преимущественно аппарат теории графов. Необходимым условием примитивности орграфа является его сильная связность. Критерий примитивности орграфа Г определяется длинами его простых контуров [2, с. 226] (контур простой, если проходит через любую вершину не более одного раза). Если C_1, \ldots, C_k

Nº2(12)

¹Неориентированные графы будем называть просто графами.

суть все простые контуры орграфа Γ длин соответственно l_1, \ldots, l_k , то сильносвязный орграф Γ примитивный, если и только если $HOД(l_1, \ldots, l_k) = 1$. Отсюда $\exp \Gamma = \exp \Gamma'$, если примитивные орграфы (графы) Γ и Γ' изоморфны.

Достижимая абсолютная оценка экспонента любого примитивного n-вершинного орграфа Γ получена Виландтом [3], n > 1:

$$\exp\Gamma \leqslant n^2 - 2n + 2.$$

Эта оценка для n-вершинного примитивного орграфа Γ допускает уточнение [2, с. 227] с использованием длины l кратчайшего простого контура в Γ :

$$\exp\Gamma \leqslant (n-2)l + n. \tag{1}$$

В частности, если орграф Γ имеет петлю, то он примитивен и $\exp \Gamma \leqslant 2n-2$.

Необходимым условием примитивности графа является его связность. Так как любое ребро графа можно рассматривать как цикл длины 2, то из критерия примитивности орграфа следует, что примитивность связного графа Γ равносильна наличию в Γ простого цикла нечетной длины. Следовательно, в соответствии с теоремой Кенига о двудольных графах связный граф примитивен, если и только если он не является двудольным. В [2, c. 409] приведена достижимая абсолютная оценка экспонентов примитивных n-вершинных графов:

$$\exp\Gamma \leqslant 2n - 2.$$

В данной работе уточнены оценки экспонентов для примитивных n-вершинных орграфов, имеющих два простых контура взаимно простых длин, n>3, и оценки экспонентов графов, n>2. Описаны все n-вершинные орграфы и графы, на которых достигаются абсолютные оценки $\exp \Gamma$.

1. Свойства экспонентов графов

Далее через C обозначим контур в орграфе и через C^* — мультимножество вершин контура C, в случае простого контура — множество вершин.

Множество $W(\Gamma)$ всех путей орграфа Γ образует частичный моноид относительно операции конкатенации (обозначим ее •), операция определена на паре путей (u,v), если и только если конечная вершина пути u совпадает с начальной вершиной пути v. Результат конкатенации пути u с начальной вершиной i и конечной вершиной a и пути v с начальной вершиной i есть путь $w = u \bullet v$ с начальной вершиной i и конечной вершиной i и конечной вершиной i и конечной вершиной i и конечной вершиной i. При этом $\operatorname{len}(w) = \operatorname{len}(u) + \operatorname{len}(v)$, где $\operatorname{len}(w) -$ длина пути $w \in W(\Gamma)$, измеряемая числом дуг (или ребер), составляющих путь w. Единицей частичного моноида $W(\Gamma)$ является пустой путь w_\varnothing , где $\operatorname{len}(w_\varnothing) = 0$.

При обходе контура C выделим его вершину a как начальную, контур C в этом случае обозначим C(a). Для целого неотрицательного q через $q \cdot C(a)$ обозначим контур, составленный из q-кратно пройденного контура C(a), где $0 \cdot C(a) = w_{\varnothing}$.

Обозначим при $i \neq j$, где $i, j \in \{1, \ldots, n\}$, через w(i, j) путь из i в j; [i, j]—кратчайший путь из i в j; [i, i]—кратчайший контур, проходящий через вершину i. Для $H, P \subseteq \{1, \ldots, n\}$ обозначим через $\mathrm{dist}(H, P)$ расстояние в графе Γ между множествами H и P:

$$\operatorname{dist}(H,P) = \left\{ \begin{array}{ll} \min_{(i,j) \in H \times P} \operatorname{len}[i,j], & H \cap P = \varnothing, \\ 0, & H \cap P \neq \varnothing. \end{array} \right.$$

Множество W путей из i в j (при i=j-контуров), где $i,j\in\{1,\ldots,n\}$, назовем (t,l)-множеством путей, t,l-натуральные, если в W имеется l путей (контуров), длины которых равны $t,t+1,\ldots,t+l-1$.

Для получения оценки экспонентов примитивных графов отметим ряд свойств. Из критерия примитивности орграфа следует достаточное условие.

Утверждение 1. Сильносвязный орграф примитивен, если содержит два простых контура, длины которых взаимно просты.

Пусть M — матрица смежности вершин графа Γ и $M^l = (m_{i,j}^{(l)}), l \geqslant 1$.

Утверждение 2 [4, следствие 1 теоремы 2, с. 114]. Число путей длины l из i в j в n-вершинном графе Γ равно элементу $m_{i,j}^{(l)}$ матрицы M^l , где $l\geqslant 1$.

Утверждение 3.

- а) Если $M^l > 0$ при натуральном l, то $M^t > 0$ при любом t > l.
- б) Если в n-вершинном сильносвязном орграфе Γ (связном графе Γ'), где n>1, имеются пути из i в j длины l>0 для любых $i,j\in\{1,\ldots,n\}$, то орграф Γ (граф Γ') примитивен и $\exp\Gamma\leqslant l$.
- в) Если для некоторых $i, j \in \{1, ..., n\}$ и для натурального τ в примитивном орграфе Γ (в графе Γ') не имеется путей из i в j длины τ , то $\exp \Gamma > \tau$.

Доказательство.

- а) Если $M^l>0$, то $m_{i,j}^{(l)}>0$ для всех $i,j\in\{1,\ldots,n\}$. Вместе с тем в матрице M каждая строка и каждый столбец ненулевые, иначе $M^l>0$ не выполнено, отсюда $m_{s(j),j}^{(1)}>0$ при любом $j=1,\ldots,n$ и некотором $s(j)\in\{1,\ldots,n\}$. Тогда из равенства $M^{l+1}=M^lM$ следует, что $m_{i,j}^{(l+1)}=\sum_{s=1}^n m_{i,s}^{(l)} m_{s,j}^{(1)}\geqslant m_{i,s(j)}^{(l)} m_{s(j),j}^{(1)}>0$ для всех $i,j\in\{1,\ldots,n\}$. Значит, $M^{l+1}>0$.
 - б) и в) следуют из утверждений 2 и 3,а. ■

Утверждение 4. Пусть в n-вершинном орграфе Γ при n>1 имеется контур C длины l и (t,l)-множество путей из i в j, каждый из которых проходит через некоторую вершину контура C, тогда в Γ имеются пути из i в j длины τ при любом $\tau \geqslant t$, где $i,j \in \{1,\ldots,n\}$.

Доказательство. Пусть путь $w^{(s)}$ из (t,l)-множества путей графа Γ есть путь из i в j длины t+s, проходящий через вершину a контура $C, s=0,1,\ldots,l-1$. Тогда при $a\notin\{i,j\}$ путь $w^{(s)}$ может быть представлен конкатенацией двух путей: $w^{(s)}=w(i,a)\bullet w(a,j),$ где $\mathrm{len}(w(i,a))+\mathrm{len}(w(a,j))=\mathrm{len}(w^{(s)})=t+s.$ Построим пути $u_q^{(s)}$ из i в j длины t+s+ql, где $q=0,1,\ldots$:

$$u_q^{(s)} = (q \cdot C(a)) \bullet w^{(s)}$$
, если $i = a$; $u_q^{(s)} = w^{(s)} \bullet (q \cdot C(a))$, если $j = a, i \neq j$; $u_q^{(s)} = w(i, a) \bullet (q \cdot C(a)) \bullet w(a, j)$ в остальных случая

 $u_q^{(s)} = w(i,a) \bullet (q \cdot C(a)) \bullet w(a,j)$ в остальных случаях. По построению $\operatorname{len}(u_q^{(s)}) = ql + t + s$, где $q = 0,1,\ldots,s = 0,1,\ldots,l-1$. Значит, в семействе путей $\{u_q^{(s)}\}$ имеется путь из i в j длины τ при любом $\tau \geqslant t$.

2. Оценки экспонентов орграфов

Пусть в орграфе Γ имеются простые контуры C и C' длины соответственно l и λ , где, не теряя общности, положим $1 < \lambda < l \leqslant n$. Обозначим $\theta = (l-1)(\lambda-1)$.

Для вершин i и j контура (цикла) C обозначим через $\rho(i,j)$ длину кратчайшего пути от i до j, составленного только из дуг контура (ребер цикла) C, и положим

 $\rho(i,i) = 0$. При $i \neq j$ имеем $\rho(i,j) \leqslant l-1$ для орграфа и $\rho(i,j) \leqslant \lfloor l/2 \rfloor$ для графа. Для вершины i и подмножества H вершин контура (цикла) C обозначим через $\rho(i,H)$ длину кратчайшего пути от i до ближайшей вершины множества H, составленного только из дуг контура (ребер цикла) C. Если |H| = h, то $\rho(i,H) \leqslant l-h$ для контура C орграфа. Аналогичные расстояния на контуре C' обозначим ρ' .

Теорема 1. Пусть $(l, \lambda) = 1, n > 2$, тогда:

- а) если $C^* \cap C'^* = \emptyset$, то $\exp \Gamma \leqslant l\lambda 2l 3\lambda + 3n$;
- б) если $C^* \cap C'^* = H$, где |H| = h > 0, то $\exp \Gamma \leqslant l\lambda l 3\lambda + h + 2n$.

Доказательство. В условиях теоремы граф Γ примитивен. Для получения оценки $\exp \Gamma$ построим (t, λ) -множество путей из i в j для любых $i, j \in \{1, \ldots, n\}$, каждый из которых проходит через некоторую вершину контура C'.

Множество чисел $\{ql \bmod \lambda: q=0,1,\ldots,\lambda-1\}$ в силу взаимной простоты чисел l и λ образует полную систему неотрицательных вычетов по модулю λ , при этом числа ql не превосходят $(\lambda-1)l$. Значит, для любого $q=0,1,\ldots,\lambda-1$ найдется неотрицательное целое число z(q), такое, что $\theta \leqslant ql+z(q)\lambda \leqslant (\lambda-1)l$, при этом

$$\{ql + z(q)\lambda : q = 0, 1, \dots, \lambda - 1\} = N(\theta, \lambda), \tag{2}$$

где $N(\theta, \lambda) = \{\theta, \theta + 1, \dots, \theta + \lambda - 1\}$; равенство (2) известно как лемма Шора.

а) Пусть $C^* \cap C'^* = \emptyset$, $a, b \in C^*$, $a', b' \in C'^*$, где $len[a, a'] = dist[C^*, C'^*]$, $len[b', b] = dist[C'^*, C^*]$ (рис. 1). Определим пути $u_q(i, j)$ и $v_q(i, j)$ из i в j, проходящие через вершины контура C', $q = 0, 1, \ldots, \lambda - 1$:

$$u_q(i,j) = q \cdot C(a) \bullet [a,a'] \bullet z(q) \cdot C'(a'), \ \text{если} \ i = a,j = a';$$
 $u_q(i,j) = q \cdot C(a) \bullet [a,a'] \bullet z(q) \cdot C'(a') \bullet [a',j], \ \text{если} \ i = a,j \neq a';$
 $u_q(i,j) = [i,a] \bullet q \cdot C(a) \bullet [a,a'] \bullet z(q) \cdot C'(a'), \ \text{если} \ i \neq a,j = a';$
 $u_q(i,j) = [i,a] \bullet q \cdot C(a) \bullet [a,a'] \bullet z(q) \cdot C'(a') \bullet [a',j], \ \text{если} \ i \neq a,j \neq a';$
 $v_q(i,j) = z(q) \cdot C'(b') \bullet [b',b] \bullet q \cdot C(b), \ \text{если} \ i = b',j = b;$
 $v_q(i,j) = z(q) \cdot C'(b') \bullet [b',b] \bullet q \cdot C(b) \bullet [b,j], \ \text{если} \ i = b',j \neq b;$
 $v_q(i,j) = [i,b'] \bullet z(q) \cdot C'(b') \bullet [b',b] \bullet q \cdot C(b), \ \text{если} \ i \neq b',j = b;$
 $v_q(i,j) = [i,b'] \bullet z(q) \cdot C'(b') \bullet [b',b] \bullet q \cdot C(b) \bullet [b,j], \ \text{если} \ i \neq b',j \neq b.$

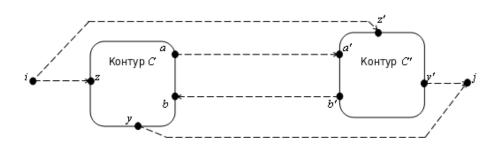


Рис. 1. Непересекающиеся контуры C и C' в орграфе

Длины путей $u_q(i,j)$ и $v_q(i,j)$ соответственно равны:

$$len(u_q(i,j)) = ql + z(q)\lambda + len[a,a'], ecли i = a, j = a';$$
 (3)

$$len(u_q(i,j)) = ql + z(q)\lambda + len[a,a'] + len[a',j],$$
 если $i = a, j \neq a';$ (4)

$$len(u_q(i,j)) = ql + z(q)\lambda + len[i,a] + len[a,a'],$$
если $i \neq a, j = a';$ (5)

$$len(u_q(i,j)) = ql + z(q)\lambda + len[i,a] + len[a,a'] + len[a',j],$$
 если $i \neq a, j \neq a';$ (6)

$$\operatorname{len}(v_a(i,j)) = ql + z(q)\lambda + \operatorname{len}[b',b], \text{ если } i = b', j = b;$$
(7)

$$len(v_a(i,j)) = ql + z(q)\lambda + len[b',b] + len[b,j], если i = b', j \neq b;$$
 (8)

$$len(v_a(i,j)) = ql + z(q)\lambda + len[i,b'] + len[b',b], если i \neq b', j = b;$$
 (9)

$$len(v_a(i,j)) = ql + z(q)\lambda + len[i,b'] + len[b',b] + len[b,j], если $i \neq b', j \neq b.$ (10)$$

Из формул (3)–(6) следует, что в соответствии с леммой Шора для любых $i,j\in\{1,\ldots,n\}$ множество путей $\{u_q(i,j):q=0,1,\ldots,\lambda-1\}$ есть $(\theta+t_0(i,j),\lambda)$ -множество путей из i в j, где

$$t_0(i,j) = \text{len}[a,a'], \text{ если } i = a, j = a';$$
 (11)

$$t_0(i,j) = \text{len}[a,a'] + \text{len}[a',j], \text{ если } i = a, j \neq a';$$
 (12)

$$t_0(i,j) = \text{len}[i,a] + \text{len}[a,a'], \text{ если } i \neq a, j = a';$$
 (13)

$$t_0(i,j) = \text{len}[i,a] + \text{len}[a,a'] + \text{len}[a',j], \text{ если } i \neq a, j \neq a'.$$
 (14)

Аналогично из формул (7)–(10) следует, что в соответствии с леммой Шора для любых $i,j\in\{1,\ldots,n\}$ множество $\{v_q(i,j):q=0,1,\ldots,\lambda-1\}$ есть $(\theta+t_1(i,j),\lambda)$ -множество путей из i в j, где

$$t_1(i,j) = \text{len}[b',b], \text{ если } i = b', j = b;$$
 (15)

$$t_1(i,j) = \text{len}[b',b] + \text{len}[b,j], \text{ если } i = b', j \neq b;$$
 (16)

$$t_1(i,j) = \text{len}[i,b'] + \text{len}[b',b], \text{ если } i \neq b', j = b;$$
 (17)

$$t_1(i,j) = \text{len}[i,b'] + \text{len}[b',b] + \text{len}[b,j],$$
если $i \neq b', j \neq b.$ (18)

Следовательно, в соответствии с утверждениями 3,6 и 4

$$\exp \Gamma \leqslant \theta + \max_{(i,j)} \{ \min\{ t_0(i,j), t_1(i,j) \} \}.$$
 (19)

Оценим величины $t_0(i,j)$ и $t_1(i,j)$. Пусть w_i — кратчайший путь от i до ближайшей вершины контура C (z — конечная вершина) при $i \notin C^*$, не проходящий через вершины контура C'; u_i — кратчайший путь от i до ближайшей вершины контура C' (z' — конечная вершина) при $i \notin C'^*$, не проходящий через вершины контура C. В $W(\Gamma)$ содержится хотя бы один из путей w_i и u_i при любом $i \notin C^* \cup C'^*$. Тогда верны следующие оценки:

$$\operatorname{len}[i, a] \leq \operatorname{len}(w_i) + \rho(z, a), \text{ если } w_i \in W(\Gamma) \text{ и } i \notin C^*;$$
 (20)

$$\operatorname{len}[i, a] \leqslant \rho(i, a), \text{ если } i \in C^*;$$
 (21)

$$len[i, b'] \leq len(u_i) + \rho'(z', b'), ecли u_i \in W(\Gamma) u i \notin C'^*;$$
(22)

$$len[i, b'] \leqslant \rho'(i, b'), \text{ если } i \notin C'^*;$$
(23)

$$\operatorname{len}[a'j,] \leqslant n - 1, \text{ если } j \notin C'^*; \tag{24}$$

$$\operatorname{len}[a',j] \leqslant \rho'(a',j), \text{ если } j \in C'^*; \tag{25}$$

$$len[b,j] \leqslant n-1, если j \notin C^*;$$
(26)

$$len[b,j] \leqslant \rho(b,j), \text{ если } j \in C^*. \tag{27}$$

В соответствии с (20) и (21) наибольшее значение оценка len[i,a] принимает при $i \notin C^*$, и в соответствии с (22) и (23) наибольшее значение оценка len[i,b'] принимает при $i \notin C'^*$. Значит, при $i \notin C^* \cup C'^*$ независимо от того, какой из путей w_i , u_i содержится в $W(\Gamma)$,

$$\min\{\text{len}[i, a], \text{len}[i, b']\} \leq \max\{\text{len}(w_i), \text{len}(u_i)\} + \max\{\rho(z, a), \rho'(z', b')\};$$

при $i \in C^* \cup C'^*$ оценка $\min\{\operatorname{len}[i,a],\operatorname{len}[i,b']\}$ ниже этой. При любом $i \notin C^* \cup C'^*$ в соответствии с определением путей w_i, u_i верна оценка

$$\max\{\operatorname{len}(w_i), \operatorname{len}(u_i)\} \leq n - l - \lambda,$$

отсюда, учитывая, что $\rho(z,a)\leqslant l-1$ и $\rho'(z',b')\leqslant \lambda-1$, получаем для любого $i\in\{1,\ldots,n\}$

$$\min\{\operatorname{len}[i, a], \operatorname{len}[i, b']\} \leqslant n - \lambda - 1. \tag{28}$$

Кратчайший путь из a в a' (из b' в b) по определению не содержит вершин контуров C и C', исключая начальную и конечную вершины, поэтому

$$\max\{\text{len}[a, a'], \text{len}[b, b']\} \leqslant n - l - \lambda + 1. \tag{29}$$

Для $\operatorname{len}[a',j]$ и $\operatorname{len}[b,j]$ в соответствии с (24)–(27) при любом $j\in\{1,\dots,n\}$ верна оценка

$$\max\{\text{len}[a', j], \text{len}[b, j]\} \le n - 1.$$
 (30)

Из формул (11)–(14) и (15)–(18) следует, что для любых $i, j \in \{1, \dots n\}$

$$t_0(i, j) \leq \text{len}[i, a] + \text{len}[a, a'] + \text{len}[a', j],$$

 $t_1(i, j) \leq \text{len}[i, ba'] + \text{len}[b', b] + \text{len}[b, j],$

где первая оценка достигается при $i \neq a, j \neq a'$, а вторая — при $i \neq b', j \neq b$ (см. рис. 1). В остальных случаях оценка $t_0(i,j)$ ниже этой. Следовательно,

$$\max_{(i,j)} \{ \min\{t_0(i,j), t_1(i,j)\} \} \leqslant$$

 $\leqslant \min\{\operatorname{len}[i,a],\operatorname{len}[i,b']\} + \max\{\operatorname{len}[a,a'],\operatorname{len}[b',b]\} + \max\{\operatorname{len}[a',j],\operatorname{len}[b,j]\},$

отсюда в соответствии с (28)–(30) получаем

$$\max_{(i,j)} \{ \min\{t_0(i,j), t_1(i,j)\} \} \le 3n - l - 2\lambda - 1.$$

Из этой оценки и из (19) получаем оценку теоремы 1,a.

б) Пусть $H = C^* \cap C'^*$ и $a \in H$ (рис. 2). Определим пути $w_q(i,j)$ из i в j, проходящие через вершину a контура C', где $q = 0, 1, \ldots, \lambda - 1$:

$$w_q(i,j) = q \cdot C(a) \bullet z(q) \cdot C'(a), \ \text{если} \ i = j = a;$$
 $w_q(i,j) = q \cdot C(a) \bullet z(q) \cdot C'(a) \bullet [a,j], \ \text{если} \ i = a, j \neq a;$ $w_q(i,j) = [i,a] \bullet q \cdot C(a) \bullet z(q) \cdot C'(a), \ \text{если} \ i \neq a, j = a;$ $w_q(i,j) = [i,a] \bullet q \cdot C(a) \bullet z(q) \cdot C'(a) \bullet [a,j], \ \text{если} \ i \neq a, j \neq a.$

Длины путей $w_q(i,j)$ соответственно равны

$$len(w_q(i,j)) = ql + z(q)\lambda, ecли i = j = a;$$
(31)

$$len(w_q(i,j)) = ql + z(q)\lambda + len[a,j],$$
если $i = a, j \neq a;$ (32)

$$\operatorname{len}(w_q(i,j)) = ql + z(q)\lambda + \operatorname{len}[i,a], \text{ если } i \neq a, j = a;$$
(33)

$$\operatorname{len}(w_q(i,j)) = ql + z(q) \cdot \lambda + \operatorname{len}[i,a] + \operatorname{len}[a,j], \text{ если } i \neq a, j \neq a.$$
 (34)

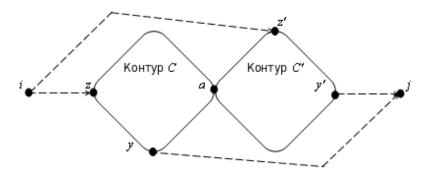


Рис. 2. Пересекающиеся контуры C и C' в орграфе

Из формул (31)–(34) следует, что в соответствии с (2) для любых $i,j\in\{1,\ldots,n\}$ множество путей $\{w_q(i,j):q=0,1,\ldots,\lambda-1\}$ есть $(\theta+t_2(i,j),\lambda)$ -множество путей из i в j, где

$$t_2(i,j) = 0$$
, если $i = j = a$; (35)

$$t_2(i,j) = \text{len}[a,j], \text{ если } i = a, j \neq a;$$
 (36)

$$t_2(i,j) = \text{len}[i,a], \text{ если } i \neq a, j = a;$$
 (37)

$$t_2(i,j) = \text{len}[i,a] + \text{len}[a,j], \text{ если } i \neq a, j \neq a.$$
 (38)

Следовательно, в соответствии с утверждениями 3,6 и 4

$$\exp\Gamma \leqslant \theta + \max_{(i,j)} t_2(i,j). \tag{39}$$

В случае δ путь w_i при $i \notin C^*$ и путь u_i при $i \notin C'^*$ определим так же, как в случае a, за исключением того, что конечные вершины путей могут, в частности, принадлежать H. В $W(\Gamma)$ для $i \notin C^* \cup C'^*$ содержится хотя бы один из путей w_i и u_i . В соответствии с (20)–(23) при $i \notin C^* \cup C'^*$

$$\operatorname{dist}(i, H) \leqslant \min\{\operatorname{len}(w_i), \operatorname{len}(u_i)\} + \max\{\rho(z, H), \rho'(z', H)\},\$$

при $i \in C^* \cup C'^*$ оценка $\mathrm{dist}(i,H)$ ниже этой. При любом $i \notin C^* \cup C'^*$ по определению путей w_i и u_i

$$\min\{\operatorname{len}(w_i), \operatorname{len}(u_i)\} \leq n - l - \lambda + h,$$

 $\rho(z,H) \leqslant l-h, \ \rho'(z',b') \leqslant \lambda-h.$ Тогда независимо от того, какие из путей $w_i,\ u_i$ содержатся в $W(\Gamma)$, для любого $i \in \{1,\ldots,n\}$ верна оценка

$$\operatorname{dist}(i, H) \leqslant n - \lambda. \tag{40}$$

Пусть w_j^* — кратчайший путь от контура C до j (y — начальная вершина) при $j \notin C^* \cup C'^*$, не проходящий через вершины из C'^* , за исключением, быть может, начальной вершины, и u_j^* — кратчайший путь от контура C' до j (y' — начальная вершина), не проходящий через вершины контура C, за исключением, быть может, начальной вершины. В $W(\Gamma)$ содержится хотя бы один из путей w_j^* и u_j^* . Значит, для $j \notin C^* \cup C'^*$ и для любого $a \in H$ выполнено

$$\operatorname{len}[a,j] \leq \max\{\rho(a,y) + \operatorname{len}(w_i^*), \rho'(a,y') + \operatorname{len}(u_i^*)\}$$

(при $j \in C^* \cup C'^*$ и любом $a \in H$ оценка len[a,j] ниже этой), где по определению путей w_i^* и u_i^*

$$\operatorname{len}(w_j^*) \leqslant n - l - \lambda + h, \operatorname{len}(u_j^*) \leqslant n - l - \lambda + h,$$

и $\rho(a,y) \leqslant l-1$, $\rho'(a,y') \leqslant \lambda-1$. Отсюда, независимо от того, какие из путей w_j^*, u_j^* содержатся в $W(\Gamma)$, получаем для любого $j \in \{1, \ldots, n\}$ и любого $a \in H$

$$\operatorname{len}[a,j] \leqslant n - \lambda + h - 1. \tag{41}$$

Из формул (35)–(38) следует, что для любых $i, j \in \{1, \dots, n\}$

$$t_2(i,j) \leqslant \operatorname{dist}(i,H) + \max_{a \in H} \{\operatorname{len}[a,j]\},$$

где наибольшее значение оценки достигается при $i,j \notin H$ (см. рис. 2). В остальных случаях оценка $t_2(i,j)$ ниже этой. Следовательно, используя оценки (40) и (41), получаем

$$\max_{(i,j)} t_2(i,j) \leqslant 2n - 2\lambda + h - 1.$$

Из этой оценки и из (39) получаем оценку теоремы 1, б. ■

Следствие 1. Для любого примитивного n-вершинного орграфа Γ при n>2 верно:

а) если циклы C и C' не имеют общих вершин, то

$$\exp\Gamma \leqslant \left\lfloor \frac{n+1}{2} \right\rfloor \left\lceil \frac{n+1}{2} \right\rceil \leqslant n^2/4 + n/2 + 1/4;$$

б) если циклы C и C' имеют h общих вершин, где $1\leqslant h\leqslant \lambda$, то

$$\exp\Gamma \leqslant \left\lfloor \frac{n+h+2}{2} \right\rfloor \left\lceil \frac{n+h+2}{2} \right\rceil - 2h - n \leqslant n^2 - 2n + 2.$$

Доказательство.

а) По теореме 1,a $\exp\Gamma\leqslant\psi(n,l,\lambda),$ где $\psi(n,l,\lambda)=l\lambda-2l-3\lambda+3n.$ Заметим, что $\psi(n,l,\lambda)-\psi(n,l,\lambda-1)>0$ при любых допустимых n,l. Так как $\lambda\leqslant n-l,$ то

$$\exp \Gamma \le \psi(n, l, n - l) = (n + 1 - l)l$$

где произведение (n-l+1)l принимает наибольшее значение при $l=\left\lceil \frac{n+1}{2} \right\rceil$.

б) По теореме $2, \delta \exp \Gamma \leqslant \varphi(n, l, \lambda, h)$, где $\varphi(n, l, \lambda, h) = l\lambda - l - 3\lambda + h + 2n$. Заметим, что функция $\varphi(n, l, \lambda, h)$ монотонно возрастает по переменной λ при любых допустимых n, l, h. Так как $\lambda \leqslant n - l + h$, то

$$\exp\Gamma \leqslant \varphi(n, l, n - l + h, h) = (n + h + 2 - l)l - 2h - n,$$

где выражение (n+h+2-l)l-2h-n принимает наибольшее значение при $l=\left\lceil \frac{n+h+2}{2}\right\rceil$.

Заметим, что функция $\varphi(n,l,n-l+h,h)$ монотонно возрастает по переменной h при любых допустимых n,l и возрастает по переменной l при любых допустимых n,h. Отсюда следует абсолютная оценка Виландта для примитивных n-вершинных орграфов $\exp\Gamma\leqslant \varphi(n,n,n-1,n-1)=n^2-2n+2$.

При n > 2 (при n = 2) n-вершинным графом Виландта назовем орграф, состоящий из гамильтонова контура C, к которому добавлена дуга (i,j), где $\rho(i,j) = 2$ (петля (i,i)), $i \in \{1,\ldots,n\}$. Множество n-вершинных графов Виландта обозначим $\Gamma_{\mathbf{W}}(n)$.

Теорема 2. При любом n > 1 множество $\Gamma_{\rm W}(n)$ состоит из n! изоморфных графов; абсолютная оценка Виландта достигается на графах Виландта, и только на них. Для остальных примитивных n-вершинных орграфов Γ верна оценка, достижимая при $l = n, \ \lambda = n - 2$, где n > 3 и нечетное:

$$\exp\Gamma \leqslant n^2 - 3n + 4.$$

Доказательство. В силу определения множество $\Gamma_{\rm W}(n)$ инвариантно относительно любой перенумерации вершин, следовательно, $\Gamma_{\rm W}(n)$ состоит из n! изоморфных графов, экспоненты которых одинаковы.

Пусть граф Γ состоит из гамильтонова контура $C=(1,2,\ldots,n)$ и к дугам контура C добавлена дуга (n-1,1). Тогда граф Γ есть объединение контура C длины n и простого контура $C'=(1,2,\ldots,n-1)$ длины n-1. Следовательно, по теореме $1, \delta$ граф Γ примитивен и $\exp\Gamma$ оценивается сверху величиной $\varphi(n,n,n-1,n-1)=n^2-2n+2$. Покажем, что $\exp\Gamma=n^2-2n+2$.

В Γ всякий путь w из n в n состоит из p-кратно пройденного контура C и q-кратно пройденного контура C', где p — натуральное, q — целое неотрицательное. Тогда в Γ не имеется пути из n в n длины $(n-1)^2$ в силу неразрешимости относительно p и q уравнения $pn+q(n-1)=(n-1)^2$. Следовательно, по утверждению $3, 6 \exp \Gamma > (n-1)^2$, т. е. $\exp \Gamma = (n-1)^2 + 1 = n^2 - 2n + 2$.

Покажем, что $\exp \Gamma' < n^2 - 2n + 2$ для любого n-вершинного примитивного орграфа $\Gamma' \notin \Gamma_{\mathrm{W}}(n)$. В самом деле, в Γ' длина l кратчайшего простого контура не превышает n-2. Поэтому в соответствии с (1) получаем при $l \leqslant n-2$ оценку теоремы 2.

Замечание 1. Известно, что имеются натуральные числа, меньшие $n^2 - 2n + 2$ и не являющиеся значениями экспонента какого-либо n-вершинного орграфа. Эти числа образуют так называемые «лакуны», т. е. пропуски в натуральном ряду чисел. Например, первыми были обнаружены (авторами A. L. Dulmage, N. S. Mendelsohn) «лакуны» вида $[n^2 - 3n + 5, (n-1)^2]$ и $[n^2 - 4n + 7, n^2 - 3n + 2]$. В дальнейшем эти результаты были обобщены.

3. Оценки экспонентов неориентированных графов

Для неориентированного цикла C длины l>2 и для $i,j\in C^*$ обозначим через c(i,j) кратчайший путь от i до j, составленный только из ребер цикла C, где $c(i,i)=w_\varnothing$, и через y(i,j)—путь от i до j, дополняющий путь c(i,j) до полного цикла C. При нечетном l длины путей c(i,j) и y(i,j), равные соответственно $\rho(i,j)$ и $l-\rho(i,j)$, имеют различную четность, при этом $\rho(i,j) < l-\rho(i,j)$.

Для цикла C' длины 2 с начальной вершиной a обозначим: $q \cdot \mathbf{2}(a) = q \cdot C'(a), q$ целое неотрицательное.

Утверждение 5. Пусть l нечетное, $q=(l-1-2\rho(i,j))/2$ и $z(i,j)=c(i,j)\bullet q\cdot {\bf 2}(j),$ где $i,j\in C^*,$ тогда

$$\operatorname{len}(y(i,j)) - \operatorname{len}(z(i,j)) = 1.$$

Доказательство. По определению $q \cdot \mathbf{2}(j)$ — цикл длины 2q с начальной вершиной j, где по условию q — целое неотрицательное. Тогда $c(i,j) \bullet q \cdot \mathbf{2}(j)$ есть путь от i до j длины $\rho(i,j) + 2q$, т.е.

$$len(z(i,j)) = \rho(i,j) + 2q = l - 1 - \rho(i,j).$$

Вместе с тем по определению $len(y(i,j)) = l - \rho(i,j) = len(z(i,j)) + 1$.

Обозначим через e(C) эксцентриситет цикла C в неориентированном графе Γ' , т. е.

$$e(C) = \max_{i \notin C} \mathrm{dist}[i, C] = \max_{i \notin C} \{ \min_{j \in C} \mathrm{len}[i, j] \}.$$

Теорема 3.

а) Пусть $n>1,\ l$ —длина длиннейшего простого цикла C нечетной длины в примитивном n-вершинном графе $\Gamma',\ 1\leqslant l\leqslant n.$ Тогда

$$\exp \Gamma' \leqslant 2e(C) + l - 1 \leqslant 2n - l - 1.$$

б) Если простые циклы нечетных длин покрывают множество вершин графа Γ' , то

$$\exp \Gamma' \leqslant n - 1.$$

Доказательство.

а) Каждая вершина графа Γ' принадлежит хотя бы одному циклу длины 2, поэтому в соответствии с утверждением 4 для получения оценки $\exp \Gamma \leqslant t$ достаточно для любых $i,j \in \{1,\ldots,n\}$ построить (t,2)-множество путей из i в j.

При n>2 обозначим: C — простой цикл нечетной длины l'>2 в графе Γ' (рис. 3); a и b — конечные вершины кратчайших путей от цикла C соответственно до i и до j, где $i,j\notin C^*$, $a,b\in C^*$. Определим пути u(i,j) и v(i,j) из i в j:

$$u(i,j) = z(i,j), v(i,j) = y(i,j), \text{ если } i,j \in C^*;$$

$$u(i,j) = [i,a] \bullet z(a,j), v(i,j) = [i,a] \bullet y(a,j), \text{ если } i \notin C^*, j \in C^*;$$

$$u(i,j) = z(i,b) \bullet [b,j], v(i,j) = y(i,b) \bullet [b,j], \text{ если } i \in C^*, j \notin C^*;$$

$$u(i,j) = [i,a] \bullet z(a,b) \bullet [b,j], v(i,j) = [i,a] \bullet y(a,b) \bullet [b,j], \text{ если } i,j \notin C^*.$$

Тогда пара путей (u(i,j),v(i,j)) в соответствии с утверждением 5 образует (t(i,j),2)множество путей из i в j при любых $i,j \in \{1,\ldots,n\}$, где

$$t(i,j) = l' - \rho(i,j) - 1, \text{ если } i,j \in C^*;$$

$$t(i,j) = \text{len}[i,a] + l' - \rho(a,j) - 1, \text{ если } i \notin C^*, j \in C^*;$$

$$t(i,j) = l' - \rho(i,b) - 1 + \text{len}[b,j], \text{ если } i \in C^*, j \notin C^*;$$

$$t(i,j) = \text{len}[i,a] + l' - \rho(a,b) - 1 + \text{len}[b,j], \text{ если } i,j \notin C^*.$$

В соответствии с определением $\max\{\operatorname{len}[i,a],\operatorname{len}[b,j]\}\leqslant e(C)\leqslant n-l'$ при всех $i,j\notin C^*$ и $\rho(a,b)\geqslant 0$ при всех $a,b\in C^*$. Значит, $t(i,j)\leqslant 2e(C)+l'-1\leqslant 2n-l'-1$ при

любых $i, j \in \{1, ..., n\}$, т. е. $\exp \Gamma' \leq 2e(C) + l' - 1 \leq 2n - l' - 1$. Так как рассмотрен произвольный простой цикл нечетной длины l' > 2, то получаем оценку теоремы 3, a.

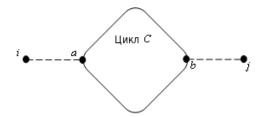


Рис. 3. Цикл C в неориентированном графе

Если n>1 и l=1, т.е. в Γ' имеется петля в вершине a и не имеется циклов нечетной длины l'>2, то пути u(i,j) и v(i,j) из i в j определим так:

$$u(a,a) = 2 \cdot (a,a), v(i,j) = (a,a);$$

$$u(i,a) = [i,a] \bullet (a,a), v(i,a) = [i,a], \text{ если } i \neq a;$$

$$u(a,j) = (a,a) \bullet [a,j], v(a,j) = [a,j], \text{ если } j \neq a;$$

$$u(i,j) = [i,a] \bullet (a,a) \bullet [a,j], v(i,j) = [i,a] \bullet [a,j], \text{ если } i \neq a, j \neq a.$$

Пара путей (u(i,j),v(i,j)) в соответствии с утверждением 5 образует (t(i,j),2)-множество путей из i в j при любых $i,j\in\{1,\ldots,n\}$, где t(a,a)=1, $\max\{t(i,a),t(a,j)\}\leqslant n-1$ при $i\neq a,\ j\neq a$ и $t(i,j)\leqslant 2n-2$ при $i\neq a,\ j\neq a$. Следовательно, $t(i,j)\leqslant 2n-2$ при любых $i,j\in\{1,\ldots,n\}$, т.е. $\exp\Gamma'\leqslant 2n-2$ при n>1. Эта оценка совпадает с оценкой 2n-l-1 теоремы 3,a при l=1.

б) При условиях теоремы $3, 6 \ i \in C_i^*$, где C_i —простой цикл нечетной длины l_i и C_i^* —блок покрытия множества вершин, $i \in \{1, \ldots, n\}$. Пусть b—концевая вершина кратчайшего пути от цикла C_i до j, где $b \in C_i^*$. Тогда (t(i,j),2)-множество путей из i в j при любых $i,j \in \{1,\ldots,n\}$ образовано путями u(i,j) и v(i,j) из i в j, где при n>2

$$u(i,j)=z(i,j),v(i,j)=y(i,j), \text{ если } j\in C_i^*;$$

$$u(i,j)=z(i,b)\bullet[b,j],v(i,j)=y(i,b)\bullet[b,j],\text{если } j\notin C_i^*.$$

Отсюда, обозначая через ρ_i расстояния на цикле $C_i, i \in \{1, \dots, n\}$, получаем

$$t(i,j) = l_i - \rho_i(i,j) - 1$$
, если $j \in C_i^*$; $t(i,j) = l_i - \rho_i(i,b) - 1 + \operatorname{len}[b,j]$, если $j \notin C_i^*$.

В соответствии с определением $\text{len}[b,j] \leqslant n-l_i$ при всех $j \notin C^*$ и $\rho_i(i,b) \geqslant 0$ при всех $b \in C^*$. Отсюда $t(i,j) \leqslant n-1$ при любых $i,j \in \{1,\ldots,n\}$, т. е. $\exp \Gamma' \leqslant n-1$ при n>2. Теорема доказана.

Если n=2, то при условиях теоремы 3, δ граф Γ' полный, следовательно, $\exp\Gamma'=1$. При l=1 из теоремы 3,a получаем известную оценку для связных графов с петлей.

Следствие 2. Для любого примитивного n-вершинного графа Γ' имеет место $\exp \Gamma' \leqslant 2n-2$.

Обозначим через $\Gamma_P(n)$ множество примитивных n-вершинных графов, состоящих из гамильтонова пути w и петли, инцидентной одной из концевых вершин.

Теорема 4. При любом n > 1 множество $\Gamma_P(n)$ состоит из n! изоморфных графов; абсолютная оценка 2n - 2 достигается на графах из $\Gamma_P(n)$, и только на них.

Доказательство. Из определения множества $\Gamma_P(n)$ следует, что оно инвариантно относительно любой перенумерации вершин, следовательно, $\Gamma_P(n)$ состоит из n! изоморфных графов. По следствию теоремы $3 \exp \Gamma' \leq 2n-2$ для любого графа $\Gamma' \in \Gamma_P(n)$.

Пусть граф Γ' состоит из гамильтонова пути $P=(1,2,\ldots,n)$ и петли (n,n). Тогда пути из 1 в 1 нечетной длины 2n-3 не существует. Значит, в соответствии с утверждением $3, e \exp \Gamma' = 2n-2$.

Покажем, что на связном графе Γ , не принадлежащем $\Gamma_P(n)$, оценка 2n-2 не достигается. В силу теоремы 3,a абсолютная оценка 2n-2 достижима только на связном графе Γ с петлей, не имеющем циклов нечетной длины l>1.

Пусть Γ — гамильтонов цикл $(1,2,\ldots,n)$ с петлей в вершине i, где $i\in\{1,\ldots,n\}$, или гамильтонов путь с петлей в вершине i, где 1< i< n, тогда $e(i)\leqslant n-2$.

Пусть Γ не есть гамильтонов путь или цикл, т. е. содержит, кроме петли в вершине i, где $i \in \{1,\ldots,n\}$, вершину r степени выше 2. Кратчайший путь [i,j] при $i \neq j$ либо проходит, либо не проходит через вершину r. Тогда в первом случае $\mathrm{len}[i,j] \leqslant \mathrm{len}[i,r]+$ $+\mathrm{len}[r,j] \leqslant n-2$, так как кратчайшие пути [i,r] и [r,j] не содержат общих вершин, кроме r (иначе кратчайший путь [i,j] не проходит через r), и содержат не более двух вершин, смежных с r. Во втором случае $\mathrm{len}[i,j] \leqslant n-2$, так как путь [i,j] не содержит вершину r. Следовательно, $e(i) \leqslant n-2$, если $\Gamma \notin \Gamma_P(n)$, и по теореме $3,a \exp \Gamma \leqslant 2n-4$. Теорема доказана. \blacksquare

ЛИТЕРАТУРА

- 1. Биркгоф Г. Теория решёток. М.: Наука, 1984.
- 2. Сачков В. Н., Тараканов В. Е. Комбинаторика неотрицательных матриц. М.: ТВП, 2000.
- 3. Wielandt H. Unzerlegbare nicht negative Matrizen // Math. Zeitschr. 1950. No. 52. P. 642–648.
- 4. Берж К. Теория графов и её применение. М.: ИЛ, 1962.