ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ В ДИСКРЕТНОЙ МАТЕМАТИКЕ

DOI 10.17223/20710410/13/9

УДК 519.6

О РЕАЛИЗАЦИИ МЕТОДА СОГЛАСОВАНИЯ В КРИПТОАНАЛИЗЕ С ПОМОЩЬЮ ПАРАЛЛЕЛЬНЫХ ВЫЧИСЛЕНИЙ $^{\scriptscriptstyle 1}$

В. М. Фомичев

Институт проблем информатики РАН, г. Москва, Россия

E-mail: fomichev@nm.ru

Оценено время реализации метода согласования применительно к анализу итеративных симметричных блочных шифров с использованием кластерных и распределенных вычислений. Показано, что по сравнению с однопроцессорной системой коэффициент сокращения времени может достигать числа используемых процессоров.

Ключевые слова: метод согласования, кластер, распределенные вычисления.

Введение

Метод согласования [1], или атака «встреча посередине» (meet-in-the-middle attack) [2–5], применяется для определения ключа шифра, как правило, по известным открытому и шифрованному текстам. Он менее трудоемок по сравнению с полным опробованием ключей, если функция шифрования E(q,x) открытого текста x по ключу $q \in V_n = \{0,1\}^n$ допускает декомпозицию на две функции как E(q,x) = g(q,g'(q,x)), где для множеств существенных ключевых переменных K и K' соответственно функций g и g' выполнено $K \setminus K' \neq \emptyset$ и $K' \setminus K \neq \emptyset$. Наибольший эффект от применения метода достигается, если множества K и K' равномощны и $K \cap K' = \emptyset$. При этом опробование ключа выполняется как независимое опробование переменных из множеств K и K' и ключ q определяется с вычислительной сложностью порядка $O(2^{n/2})$ операций типа зашифрования-расшифрования при использовании памяти, достаточной для хранения порядка $O(2^{n/2})$ ключей.

Параллельные вычисления с использованием N процессоров позволяют сократить в N раз время решения некоторых задач, например полного опробования ключей. Вместе с тем применение параллельных вычислений для решения других задач не столь эффективно. Оценим эффективность различных моделей параллельных вычислений для реализации метода согласования в решении следующей задачи.

Для r-раундового симметричного блочного шифра требуется вычислить n-битовый ключ q по известным t-битовым блокам x и y открытого и шифрованного текстов, где $t \geqslant n$ и ключ q по блокам x и y определяется однозначно, при следующих предположениях:

 $^{^{1}}$ Работа выполнена в рамках мероприятия 1.2.1 ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009—2013 гг. по направлению «Распределенные вычислительные сметом и

- 1) ключ q есть конкатенация независимых ключей: $q = v \cdot w$, где $v \in V_m$, $w \in V_{n-m}$ и $m \leq n/2$;
- 2) функции шифрования первых l < r раундов и остальных r l раундов шифрования суть подстановки соответственно g_v и z_w , определяемые бинарными ключами v и w.

Тогда зашифрование блока x в блок y с помощью подстановки E_q имеет вид

$$y = E_q(x) = g_v z_w(x) = z_w(g_v(x)).$$
 (1)

Корректность предложенных ниже алгоритмов следует из (1).

Модель вычислительной системы предполагает использование N идентичных вычислителей с неограниченной памятью (размер памяти далее уточняется), где у вычислителей одинаковы производительность вычислений, скорости чтения/записи данных и др. Различаются два случая: кластерные вычисления (КВ) и распределенные вычисления (РВ). Преимущество модели КВ заключается в возможности достаточно активного обмена данными между вычислителями. Преимущество модели РВ, где координатор распределяет задания между процессорами — участниками вычислений и объединяет результаты вычислений, в том, что число участников РВ может заметно превышать число процессоров в кластере. При этом участник обменивается данными только с координатором.

1. Кластерные вычисления

Пусть кластерная система имеет 2^k вычислителей, снабженных блоками памяти, $k \leqslant m$. Каждый вычислитель имеет номер, являющийся его адресом (число от 0 до 2^k-1 , или в двоичной записи — вектор из V_k). Между блоками памяти вычислителей может выполняться интенсивный обмен данными. Для реализации алгоритма каждый вычислитель использует адресную память размера 2^{t-k} ячеек, в ячейке могут быть записаны несколько вариантов ключей, то есть элементов V_n . Адреса ячеек суть элементы V_{t-k} , являющиеся значениями некоторой хеш-функции: $V_t \to V_{t-k}$. Хеш-функция может быть весьма простой, например выделение первых t-k битов двоичного t-битового вектора.

Для любого двоичного вектора $(\alpha_1, \alpha_2, \ldots)$ размерности больше k обозначим

$$\delta(\alpha_1, \alpha_2, \ldots) = (\alpha_1, \ldots, \alpha_k), \quad \bar{\delta}(\alpha_1, \alpha_2, \ldots) = (\alpha_{k+1}, \alpha_{k+2}, \ldots).$$

Для вектора $\alpha = (\alpha_1, \dots, \alpha_k) \in V_k$ и пространства векторов V_s , где $s \geqslant k$, обозначим

$$V_s(\alpha) = \{ \xi \in V_s : \delta(\xi) = \alpha \}.$$

Алгоритм состоит из предварительного и оперативного этапов.

Предварительный этап (заполнение блоков памяти вычислителей)

Вычислитель с номером $\alpha \in V_k$ последовательно опробует ключи v из $V_m(\alpha)$ и вычисляет $g_v(x)$ для блока x. Затем пара $(v, g_v(x))$ направляется вычислителю с номером $\delta(g_v(x))$, который записывает ключ v в свою память по адресу $\bar{\delta}(g_v(x))$.

По завершении этапа множество ключей из V_m распределено по ячейкам памяти всех вычислителей. Обозначим через $Q(\alpha,\beta)$ множество ключей из V_m , записанных в памяти вычислителя с номером α по адресу β .

Оперативный этап (определение ключа)

1) Вычислитель с номером $\alpha \in V_k$ последовательно опробует ключи w из $V_{n-m}(\alpha)$ и вычисляет $(z_w)^{-1}(y)$ для блока y, затем пара $(w,(z_w^{-1})(y))$ направляется вычислителю с номером $\delta((z_w^{-1})(y))$.

2) Вычислитель с номером $\delta((z_w^{-1})(y))$ обращается в свою память по адресу $\bar{\delta}((z_w^{-1})(y))$. Конкатенация $v\cdot w$ для каждого ключа v из множества $Q=Q(\delta((z_w^{-1})(y)),\bar{\delta}((z_w^{-1})(y)))$ есть кандидат на значение искомого ключа $q=v\cdot w$. Если $Q\neq\varnothing$, то выполняется отбраковка всех ключей вида $v\cdot w$ (например, по критерию соответствия известным парам открытого и шифрованного текстов).

Характеристики метода

Оценим (в предположении, что ключ q выбирается случайно равновероятно из множества V_n) среднее время T(m) описанной реализации метода согласования через время реализации операций зашифрования, расшифрования, пересылки и обращения в память, обозначаемых соответственно τ_3 , τ_p , τ_n , τ_o . Положим, что работа алгоритма происходит в дискретные моменты времени (такты) и в каждый такт на первом этапе в любую ячейку памяти записывается не более одного варианта ключа v, на втором этапе из любой ячейки памяти извлекается не более одного варианта ключа v, т. е. замедления «из-за очередей» в работе вычислителей не происходит.

На первом этапе для ключа v из $V_m(\alpha)$ реализуется однократное зашифрование, пересылка и запись в память, отсюда среднее время $T_1(m)$ работы вычислителя равно $2^{m-k}(\tau_3+\tau_n+\tau_o)$. На втором этапе для ключа w из $V_{n-m}(\alpha)$ реализуется однократное расшифрование, пересылка и обращение в память. Следовательно, среднее время $T_2(m)$ выполнения вычислителем второго этапа равно $2^{n-m-k}(\tau_p+\tau_n+\tau_o)+T_{6p}$, где T_{6p} —среднее время отбраковки кандидатов на значение ключа.

Оценим величину T_{6p} . В каждой ячейке памяти записано в среднем 2^{m-t} вариантов ключа v. Среднее число обращений в любую ячейку памяти на втором этапе равно 2^{n-m-t} . Отсюда каждым вычислителем отбраковывается в среднем 2^{n-t-k} кандидатов на значение ключа. Значит, $T_{6p} = 2^{n-t-k}\tau_3$, и отбраковка кандидатов на значение ключа вносит несущественный вклад в общую трудоемкость. Следовательно,

$$T(m) = T_1(m) + T_2(m) \approx 2^{m-k}(\tau_3 + \tau_{\pi} + \tau_{o}) + 2^{n-m-k}(\tau_{p} + \tau_{\pi} + \tau_{o}).$$

Отсюда, если $\tau_3 \approx \tau_p$, то минимум трудоёмкости T(m) достигается при $m = \lfloor n/2 \rfloor$:

$$T = T(\lfloor n/2 \rfloor) \approx 2^{n/2-k+1} (\tau_3 + \tau_n + \tau_o).$$
 (2)

Следовательно, среднее время T оценивается величиной порядка $O(\tau 2^{n/2-k})$, где $\tau = \max\{\tau_3, \tau_{\Pi}, \tau_0\}$.

Надёжность метода равна 1. В связи с минимизацией по m трудоемкости T(m) уточним размер требуемой памяти: вычислителю достаточно иметь $2^{n/2-k}$ ячеек, в которые записываются элементы $V_{n/2}$. Адресами ячеек являются элементы $V_{n/2-k}$.

При выборе оптимального (по времени реализации алгоритма) размера памяти следует учесть, что реализация алгоритма может замедляться «из-за очередей», когда в одну ячейку одновременно поступает несколько запросов в связи с необходимостью записи или извлечения информации. Это замедление тем несущественней, чем меньше соотношение $\tau_{\rm o}/\tau_{\rm 3}$.

Таким образом, время определения ключа блочного шифра методом согласования с использованием кластерных вычислений с числом процессоров 2^k может быть сокращено до 2^k раз по сравнению с однопроцессорной вычислительной системой, если время пересылки данных между вычислителями не слишком велико. Важно также, что совокупный объем требуемой памяти $2^{n/2}$ ячеек также распределяется между 2^k процессорами.

2. Распределенные вычисления

В системе РВ с 2^p участниками (вычислителями), $p \leqslant m$, каждый участник имеет номер, являющийся его адресом (число от 0 до 2^{p-1} , или в двоичной записи — вектор из V_p). Алгоритм использует 2^t ячеек адресной памяти координатора (адрес ячейки есть элемент V_t), в каждую из них могут быть записаны несколько вариантов ключей — элементов V_n . Участники могут отправлять данные координатору, но не могут обращаться к его памяти.

Алгоритм состоит из предварительного и оперативного этапов.

Предварительный этап (заполнение памяти координатора)

Вычислитель с номером $\alpha \in V_p$ последовательно при каждом ключе v из $V_m(\alpha)$ вычисляет $g_v(x)$ для блока x и направляет пару $(v,g_v(x))$ координатору, где ключ v записывается в память координатора по адресу $g_v(x)$. По завершении этапа множество ключей из V_m распределено по ячейкам памяти координатора. Обозначим через $Q(\beta)$ множество ключей из V_m , записанных в памяти координатора по адресу β .

Оперативный этап (определение ключа)

- 1) Вычислитель с номером $\alpha \in V_p$ последовательно при каждом ключе w из $V_{n-m}(\alpha)$ вычисляет $(z_w^{-1})(y)$ для блока y и направляет пару $(w,(z_w^{-1})(y))$ координатору.
- 2) Координатор обращается в память по адресу $(z_w^{-1})(y)$. Конкатенация каждого ключа v из $Q((z_w^{-1})(y))$ с ключом w есть кандидат на значение искомого ключа $q = v \cdot w$. Если $Q((z_w^{-1})(y)) \neq \varnothing$, то координатор подвергает отбраковке все ключи вида $v \cdot w$ (например, по критерию соответствия известным парам открытого и шифрованного текстов).

Характеристики метода

Оценим (ключ q выбирается случайно равновероятно из V_n) среднее время T(m) описанной реализации метода согласования через время реализации операций зашифрования, расшифрования, пересылки и обращения в память. Положим, что в каждый такт на первом этапе в любую ячейку памяти записывается не более одного варианта ключа v, на втором этапе из любой ячейки памяти извлекается не более одного варианта ключа v, т. е. замедления «из-за очередей» в работе вычислителей не происходит.

Среднее время $T_{1_y}(m)$ выполнения первого этапа участниками равно $2^{m-p}(\tau_3 + \tau_n)$, так как для каждого ключа v из $V_m(\alpha)$ реализуется по одной операции зашифрования и пересылки. Среднее время $T_{1_k}(m)$ выполнения первого этапа координатором (записи в память) равно $2^m \tau_0$.

Следовательно, среднее время $T_1(m)$ выполнения первого этапа равно

$$T_1(m) = T_{1_y}(m) + T_{1_k}(m) = 2^{m-p}(\tau_3 + \tau_{\Pi} + 2^p \tau_{o}).$$

Для ключа w из $V_{n-m}(\alpha)$ участником реализуется по одной операции расшифрования и пересылки. Следовательно, среднее время $T_{2_{\rm v}}(m)$ выполнения второго этапа каждым участником равно $2^{n-m-p}(\tau_{\rm p}+\tau_{\rm n})$. Среднее время $T_{2_{\rm k}}(m)$ выполнения второго этапа координатором (записи в память и отбраковки) равно $2^{n-m}\tau_{\rm o}+T_{\rm 6p}$, где $T_{\rm 6p}$ среднее время отбраковки кандидатов на значение ключа. Отсюда среднее время $T_2(m)$ выполнения второго этапа равно $2^{n-m-p}(\tau_{\rm p}+\tau_{\rm n}+2^p\tau_{\rm o})+T_{\rm 6p}$.

Оценим величину $T_{\rm 6p}$. В каждой ячейке памяти записано в среднем 2^{m-t} вариантов ключа v. Среднее число обращений в память на втором этапе равно 2^{n-m} . Отсюда координатором отбраковывается в среднем 2^{n-t} кандидатов на значение ключа. Значит, $T_{\rm 6p} = 2^{n-t}\tau_3$, и отбраковка кандидатов в ключи вносит несущественный вклад в общую трудоемкость. Следовательно,

$$T(m) = T_1(m) + T_2(m) \approx 2^{m-p}(\tau_3 + \tau_{\pi} + 2^p \tau_{\text{o}}) + 2^{n-m-p}(\tau_{\text{p}} + \tau_{\pi} + 2^p \tau_{\text{o}}).$$

Отсюда, если $\tau_3 \approx \tau_{\rm p}$, то минимум среднего времени T(m) достигается при $m=\lfloor n/2 \rfloor$:

$$T = T(|n/2|) \approx 2^{n/2-p} (\tau_3 + \tau_{\Pi} + 2^p \tau_{\Omega}). \tag{3}$$

В связи с минимизацией T(m) по m уточним размер требуемой памяти: координатору достаточно иметь $2^{n/2}$ ячеек, в которые записываются элементы $V_{n/2}$. Адресами ячеек являются элементы $V_{n/2}$. Следовательно, среднее время работы алгоритма согласования по сравнению с полным опробованием ключей сокращается не более чем в 2^p раз, и сокращение зависит от соотношения величин τ_0 и $\max\{\tau_3,\tau_n\}$. Надёжность метода равна 1.

3. Комбинирование кластерных и распределенных вычислений

В данной модели РВ система использует 2^p участников, $p \leqslant m$. Каждый участник имеет номер, являющийся его адресом (число от 0 до 2^{p-1} , или в двоичной записи — вектор из V_p). Координатор располагает кластерной подсистемой 2^k вычислителей, $k \leqslant p$, каждый вычислитель кластерной системы имеет номер, являющийся его адресом (число от 0 до 2^k-1 , или в двоичной записи — вектор из V_k), и имеет блок памяти размера 2^{t-k} ячеек (адрес ячейки есть элемент V_{t-k}). В каждую ячейку могут быть записаны несколько вариантов ключей — элементов V_n . Участники РВ могут отправлять данные кластерным вычислителям, но не могут обращаться в память кластерных вычислителей.

Предварительный этап (заполнение памяти координатора)

Участник с номером $\alpha \in V_p$ последовательно при каждом ключе v из $V_m(\alpha)$ вычисляет $g_v(x)$ для блока x и направляет пару $(v,g_v(x))$ кластерному вычислителю с номером $\delta(g_v(x))$, который записывает в память ключ v по адресу $\bar{\delta}(g_v(x))$. По завершении этапа множество ключей из V_m распределено по блокам памяти кластерных вычислителей координатора. Обозначим через $Q(\alpha,\beta)$ множество ключей из V_m , записанных в блоке памяти вычислителя с номером α по адресу β .

Оперативный этап (определение ключа)

- 1) Вычислитель с номером $\alpha \in V_p$ последовательно при каждом ключе w из $V_{n-m}(\alpha)$ вычисляет $(z_w^{-1})(y)$ для блока y и направляет пару $(w,(z_w^{-1})(y))$ кластерному вычислителю с номером $\delta((z_w^{-1})(y))$.
- 2) Кластерный вычислитель с номером $\delta((z_w^{-1})(y))$ вычисляет адрес $\bar{\delta}((z_w^{-1})(y))$ и обращается к своему блоку памяти по этому адресу. Конкатенация вида $v \cdot w$ для каждого ключа v из множества $Q = Q(\delta((z_w^{-1})(y)), \bar{\delta}((z_w^{-1})(y))$ есть кандидат на значение ключа. Если $Q \neq \varnothing$, то вычислитель с номером $\delta((z_w^{-1})(y))$ все ключи вида $v \cdot w$ подвергает отбраковке (например, по критерию соответствия известным парам открытого и шифрованного текстов).

Характеристики метода

Оценим (ключ q выбирается случайно равновероятно из V_n) среднее время T(m) описанной реализации метода согласования через время реализации операций зашифрования, расшифрования, пересылки и обращения в память.

Среднее время $T_{1_y}(m)$ выполнения первого этапа участником равно $2^{m-p}(\tau_3 + \tau_n)$, так как для каждого ключа v из $V_m(\alpha)$ реализуется по одной операции зашифрования и пересылки. Среднее время $T_{1_\kappa}(m)$ выполнения первого этапа кластерным вычислителем оценивается величиной $2^{m-k}\tau_0$, так как запись в память 2^m ключей v выполняется

 2^k вычислителями. Отсюда среднее время выполнения первого этапа алгоритма определяется величиной $\max\{2^{m-p}(\tau_3+\tau_{\mathrm{n}}),2^{m-k}\tau_{\mathrm{o}}\}.$

Для ключа w из $V_{n-m}(\alpha)$ участником реализуется одно расшифрование и пересылка. Следовательно, среднее время $T_{2_y}(m)$ выполнения второго этапа участником равно $2^{n-m-p}(\tau_p+\tau_n)$. Среднее время $T_{2_k}(m)$ выполнения второго этапа кластерным вычислителем оценивается величиной $2^{n-m-k}\tau_0+T_{6p}$, так как запись в память 2^{n-m} ключей w выполняется 2^k вычислителями. Среднее время T_{6p} отбраковки кандидатов на значение искомого ключа вносит несущественный вклад в общую трудоемкость. Отсюда среднее время выполнения второго этапа определяется величиной $\max\{2^{n-m-p}(\tau_p+\tau_n),2^{n-m-k}\tau_o\}$. Следовательно, время T(m) определяется величиной порядка

$$\max\{2^{m-p}(\tau_3 + \tau_{\Pi}), 2^{n-m-p}(\tau_p + \tau_{\Pi}), 2^{m-k}\tau_{O}, 2^{n-m-k}\tau_{O}\}.$$
(4)

Тогда минимум T(m) достигается при $m=\lfloor n/2 \rfloor$ и при $au_{\rm 3}= au_{\rm p}$ верны оценки

$$O((\tau_3 + \tau_{\Pi})2^{n/2-p}) \leqslant \min T(m) \leqslant O(\tau_0 2^{n/2-k}).$$

Следовательно, $\min T(m)$ может быть сокращен в несколько раз по сравнению с KB и PB (ср. с формулами (2), (3)). Коэффициент сокращения определяется соотношением скоростей шифрования, пересылки данных и обращения к памяти. Надёжность метода равна 1.

Уточним размер требуемой памяти: кластерному вычислителю достаточно иметь $2^{n/2-k}$ ячеек, в которые записываются элементы $V_{n/2}$. Адресами ячеек являются элементы $V_{n/2-k}$.

Выводы

Время определения ключа блочного шифра методом согласования может быть существенно сокращено по сравнению с однопроцессорной вычислительной системой:

- 1) при использовании KB с числом процессоров 2^k примерно в 2^k раз;
- 2) при использовании PB с 2^p участниками до 2^p раз, сокращение определяется соотношением скоростей шифрования, пересылки данных и обращения к памяти координатора;
- 3) при использовании PB с 2^p участниками и подсистемы KB координатора с числом процессоров 2^k , где $k\leqslant p$ —от 2^k до 2^p раз, сокращение определяется соотношением скоростей шифрования, пересылки данных и обращения к памяти кластерных вычислителей.

При использовании КВ память распределяется по вычислителям кластерной системы.

ЛИТЕРАТУРА

- 1. Φ омичёв В. М. Методы дискретной математики в криптологии. М.: ДИАЛОГ-МИФИ, 2010.
- 2. *Шнайер Б.* Прикладная криптография. Протоколы, алгоритмы, исходные тексты на языке Си. М.: ТРИУМФ, 2002.
- 3. Словарь криптографических терминов / под ред. Б. А. Погорелова и В. Н. Сачкова. М.: МЦНМО, 2006. 94 с.
- 4. Брассар Ж. Современная криптология: пер. с англ. М.: Полимед, 1999. 173 с.
- 5. *Грушо А. А., Тимонина Е. Е., Применко Э. А.* Анализ и синтез криптоалгоритмов. Курс лекций. Йошкар-Ола: МФ МОСУ, 2000.