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Известно, что оценка максимального энергопотребления логической схемы поз-
воляет обеспечить её надёжность. Получение этой оценки облегчается предва-
рительным нахождением такого режима работы схемы, при котором её энерго-
потребление оказывается максимальным. Предлагается метод нахождения этого
режима для случая, когда рассматриваемая схема реализует конечный автомат.
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Введение
При проектировании логической схемы важно оценивать максимальную затрату

энергии при её функционировании, поскольку чрезмерные затраты энергии могут при-
водить к выходу схемы из строя. В основном эта энергия тратится при смене входных
наборов — комбинаций значений входных булевых переменных схемы. Затраты энер-
гии для каждой пары входных наборов (предшествующего и последующего) можно
находить экспериментально или оценивать числом переключаемых транзисторов [1, 2].

Оценивание энергопотребления логической схемы может проводиться более успеш-
но при учёте назначения схемы и способа её проектирования. Это позволяет значи-
тельно сократить число рассматриваемых входных наборов и переходов между ними,
облегчая тем самым решение данной задачи. Ещё больший эффект достигается при
предварительном нахождении режима максимального энергопотребления— соответ-
ствующей последовательности наборов значений входных переменных схемы.

Ниже эта задача решается для случая, когда схема синхронна и реализует ко-
нечный автомат. Тогда она представляет собой комбинационную схему с однотактной
обратной связью, обеспечиваемой регистром. Значения переменных на отмеченных
жирными линиями выходных полюсах в текущий момент времени становятся значе-
ниями соответствующих входных переменных в следующий такт. Пример такой схемы
показан на рис. 1.
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Рис. 1. Схемная реализация конечного автомата

Положим, что комбинационная схема имеет n входных переменных и они делятся
на две части: u свободных переменных, принимающих произвольные наборы значений,
и v связанных переменных, наборы значений которых представляют коды возможных
состояний автомата (u + v = n). В примере на рис. 1 свободными являются перемен-
ные a, b, а связанными— переменные p, q, r.

Число w входных наборов схемы в целом равно s2u, где s—число состояний ав-
томата. Эти наборы представляются соответствующими значениями n-компонентного
булева вектора x = (u,v). Вектор u представляет набор значений свободных перемен-
ных и содержит u компонент. Вектором v представляется набор значений связанных
компонент. Его длина v определяется числом состояний автомата и способом их коди-
рования.

Предлагаемый в работе метод нахождения режима максимального энергопотребле-
ния логической схемы основан на предположении, что чем больше переменных меняют
свои значения при очередной смене значения вектора x, тем больше тратится энергии
на эту смену.

1. Пример конечного автомата
Рассмотрим в качестве примера автомат с шестью состояниями S0, S1, S2, S3, S4,

S5 и двумя свободными переменными a и b. Возможные переходы между состояниями
отобразим ориентированным графом переходов G (рис. 2).
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Рис. 2. Граф переходов G

Условия переходов между состояниями Si и Sk представим соответствующими эле-
ментами таблицы. Например, автомат переходит из состояния S1 в состояние S0 только
при одном наборе значений свободных переменных— когда ab = 1, а в состояние S5
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в трёх случаях — когда a∨ b = 1. Заметим, что пустые элементы таблицы соответству-
ют невозможным переходам.

Условия переходов в автомате

S0 S1 S2 S3 S4 S5

S0 a a

S1 ab a ∨ b
S2 ab ab a

S3 ab b ab

S4 b b

S5 ab a ∨ b

Проектирование логической схемы, реализующей конечный автомат, начинается
с кодирования его состояний наборами значений булевых переменных. Практически
эффективные алгоритмы решения этой задачи рассмотрены в [3]. В работе [4] данная
задача решается путём такого отображения графа переходов в булев граф, при кото-
ром как можно больше рёбер графа переходов отображается на рёбра булева графа.
В результате существенно уменьшается число переменных, меняющих свои значения
на переходах, и тем самым снижается энергопотребление схемы, реализующей авто-
мат. Состояния автомата кодируются булевыми векторами, соответствующими тем
вершинам булева графа, на которые они отобразились.

Так, в данном примере находятся коды состояний автомата, компонентами кото-
рых служат соответствующие значения трёх булевых переменных p, q, r. Эти коды
представлены столбцами следующей матрицы:

S0 S1 S2 S3 S4 S5

p 1 0 1 0 1 0
q 0 0 1 1 1 0
r 0 0 0 1 1 1

.

В полученном результате при большинстве переходов в данном автомате меняет-
ся значение лишь одной из кодирующих переменных p, q или r— соответствующие
рёбра отмечены на рис. 3 одиночными линиями. При остальных переходах меняются
значения двух либо трёх переменных— рёбра представлены двойными либо тройными
линиями.
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Рис. 3. Граф переходов с отмеченными рёбрами

Вместе с двумя входными переменными кодирующие переменные образуют пяти-
компонентный входной булев вектор x = (a, b, p, q, r) комбинационной схемы, реализу-
ющей заданный автомат.
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В данном примере автомата с шестью состояниями число возможных входных на-
боров схемы w = 6 · 22 = 24, что несколько меньше числа всех наборов 25 = 32.
Значительно сильнее сокращается число переходов между наборами: из 1024 различ-
ных переходов оказываются возможными лишь 16 · 14 = 224. Действительно, число
переходов в автомате равно 14 и при каждом из них значения переменных p, q, r
меняются однозначно. Что же касается входных переменных a и b, то они могут при-
нимать произвольные наборы значений в предшествующий и последующий такты.

2. Нахождение режима максимального энергопотребления схемы
Предлагаемый метод заключается в поиске такой циклической последовательно-

сти переходов, которая допустима в рамках используемой формальной модели (хотя
и может быть маловероятной), может многократно повторяться и является наибо-
лее энергоёмкой, приводя к максимальным энергозатратам. При решении этой задачи
можно ограничиться рассмотрением простых (не самопересекающихся) циклов, по-
скольку любой цикл разлагается на простые и его энергоёмкость не может превысить
максимальной энергоёмкости элементов разложения.

Например, простым является цикл из трёх переходов 0 → 4, 4 → 2 и 2 → 0
(см. рис. 3), который проходит через вершины 0, 4, 2 и обозначается 042. Для нашего
примера простых циклов 15: 4, 01, 015, 01532, 015342, 042, 04231, 042315, 0425, 153,
042531, 23, 234, 253, 2534.

Для входящих в простые циклы переходов подсчитываются их веса — числа ко-
дирующих переменных, меняющих свои значения. Среднее значение такого числа на
переход (обозначим это среднее через mean_code) определяет энергоёмкость цикла.
Выбирается цикл, в котором оно максимально. Например, в цикле 042 на переходах
0→ 4, 4→ 2 и 2→ 0 меняют свои значения соответственно две, одна и одна перемен-
ная; следовательно, mean_code = (2 + 1 + 1)/3 = 4/3.

Максимальное значение mean_code, равное 2, достигается в циклах 2504, 23 и 325.
Заметим, что эти циклы, содержащие переходы с большими весами, можно выявить
визуально (см. рис. 3), используя эвристический метод, иллюстрируемый следующим
примером.

Берется переход 25 с максимальным весом (3), к нему подсоединяется соседний
переход 50 с весом 2, затем переход 04, также с весом 2. В результате получается
композиция трёх переходов, последовательно проходящих через вершины 2, 5, 0, 4. Её
можно замкнуть переходом 42 с весом 1, получив таким образом цикл 2504. Анало-
гично находится цикл 325: в этом случае к переходу 25 подсоединяется соседний слева
переход 32, затем цикл замыкается переходом 53.

Для каждого перехода в выбранном цикле находятся допустимые наборы значений
свободных переменных, т. е. такие наборы, которые обеспечивают выполнение перехо-
да. Например, для переходов 2 → 5, 5 → 0, 0 → 4 и 4 → 2 цикла 2504 такие наборы
переменных a, b образуют соответственно множества {00, 01}, {10}, {00, 01} и {01, 11}.
Последовательность этих множеств представим выражением

free = 00, 01/10/00, 01/01, 11.

Из допустимых наборов выбираются такие, при которых по возможности максими-
зируется число переменных, меняющих свои значения на переходе. В данном примере
такие наборы образуют следующую последовательность значений вектора u: 01, 10,
01, 11. Объединяя полученные наборы свободных переменных с соответствующими
наборами кодирующих переменных— последовательными значениями вектора v: 110,
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001, 100, 111, находим искомую циклическую последовательность наборов всех вход-
ных переменных схемы— последовательность соответствующих значений вектора x:
01110, 10001, 01100, 11111.

В заключение подсчитываются числа входных переменных комбинационной схемы,
меняющих свои значения на переходах, и находится их среднее значение:

mean_input = (5 + 4 + 3 + 2)/4 = 3,5.

Аналогично подсчитываются энергозатраты при двух других выбранных циклах:

23 : free = 10/00, 10;

u : 10, 00; v : 110, 011; x : 10110, 00011;

mean_input = (3 + 3)/2 = 3;

325 : free = 00, 10/00, 01/00, 01, 11;

u : 00, 01, 11; v : 011, 110, 001; x : 00011, 01110, 11001;

mean_input = (3 + 4 + 3)/3 = 3,33 . . .

Как видно, максимальной энергоёмкостью обладает цикл 2504. Следовательно, ре-
жим максимального энергопотребления рассматриваемой схемы заключается в пери-
одическом повторении простого цикла 2504, который инициируется повторяющейся
четвёркой (01, 10, 01, 11) наборов значений свободных переменных a и b.

Заключение
Задача определения максимального энергопотребления спроектированной логиче-

ской схемы упрощается, когда известно назначение схемы— например, когда она реа-
лизует конечный автомат. Известные методы её решения, основанные на подсчёте чис-
ла переключаемых логических элементов, довольно трудоёмки, будучи связаны с рас-
смотрением многочисленных вариантов последовательной смены значений входного
вектора. Объём вычислений, производимый при решении этой задачи, значительно
сокращается предлагаемым в данной работе методом нахождения режима максималь-
ного энергопотребления— соответствующей циклической последовательности значе-
ний входного вектора.
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