Вычислительные методы в дискретной математике

2013 DOI 10.17223/20710410/19/11

УДК 511

О ВЕРХНЕЙ ГРАНИЦЕ ПЛОТНОСТИ ИНЪЕКТИВНЫХ ВЕКТОРОВ

Д. М. Мурин

Ярославский государственный университет им. П. Г. Демидова, г. Ярославль, Россия

E-mail: nirum87@mail.ru

Рассматривается последовательность Штерна $b_1 = 1, b_2 = 1, b_3 = 2, b_4 = 3, b_5 = 6,$ $b_6=11,\ b_7=20,\ b_8=40\dots$ Устанавливаются верхние и нижние границы для значений элементов b_i последовательности Штерна. В предположении, что вектор (a_1, \ldots, a_r) , элементы которого строятся по правилу $a_1 = b_r$, $a_2 = b_r + b_{r-1}$, ..., $a_r = \sum_{i=1}^r b_i$, является инъективным вектором с наименьшим возможным среди инъективных векторов размера r максимальным элементом, устанавливается верхняя граница плотности инъективных векторов для $r \geqslant 4$.

Ключевые слова: плотность интективных векторов, последовательность Штерна.

Введение

Напомним некоторые определения.

Определение 1. Вектор $A = (a_1, \dots, a_r)$ называется возрастающим, если и только если условие $a_i > a_{i-1}$ выполняется для всех $j, 2 \le j \le r$.

Определение 2. Вектор $A = (a_1, \dots, a_r)$ называется *инъективным*, если для любых различных подмножеств $A^*, A^{**} \subseteq \{a_1, \dots, a_r\}$ суммы их элементов различны.

Определение 3. Плотностью вектора $A = (a_1, \ldots, a_r)$ называется число

$$d = \frac{r}{\log_2 \max_{1 \leqslant i \leqslant r} a_i}.$$

В работе [1] рассмотрен вопрос о порядке роста числа инъективных векторов с ростом максимального элемента вектора. Среди всех инъективных векторов заданного размера r можно выделить векторы, обладающие наименьшим максимальным элементом, то есть векторы, обладающие таким максимальным элементом, что инъективных векторов с меньшим максимальным элементом не существует. В силу определения 3 эти векторы обладают наибольшей плотностью среди всех инъективных векторов размера r. В данной работе устанавливается верхняя граница для плотности инъективных векторов в предположении, что один из инъективных векторов (a_1, \ldots, a_r) , обладающий наименьшим максимальным элементом среди всех таких векторов, может быть построен по правилу $a_1 = b_r$, $a_2 = b_r + b_{r-1}$, ..., $a_r = \sum_{i=1}^r b_i$, где b_1, \ldots, b_r —суть первые r элементов последовательности Штерна.

1. О последовательности Штерна и результатах экспериментов

В ходе вычислительных экспериментов по подсчёту числа возрастающих инъективных и сверхрастущих векторов получена информация о векторах, обладающих наименьшим среди всех векторов фиксированного размера r максимальным элементом. Во втором столбце таблицы приведены все возрастающие инъективные векторы,

Nº1(19)

обладающие наименьшим среди всех таких векторов максимальным элементом, для $1 \leqslant r \leqslant 9$.

Рассмотрим для каждого возрастающего инъективного вектора (a_1, a_2, \ldots, a_r) , обладающего наименьшим среди всех векторов размера r максимальным элементом, разностный вектор

$$(a_2-a_1,\ldots,a_{r-1}-a_{r-2},a_r-a_{r-1})$$

размера r-1 (третий столбец таблицы). Для каждого $2\leqslant r\leqslant 9$ среди разностных векторов встречается вектор, образованный первыми r-1 элементами последовательности $b_1=1,\ b_2=1,\ b_3=2,\ b_4=3,\ b_5=6,\ b_6=11,\ b_7=20,\ b_8=40,\ldots$, кроме того, элементы вектора (a_1,a_2,\ldots,a_r) , соответствующего этому разностному вектору, построены по правилу $a_1=b_r,\ a_2=b_r+b_{r-1},\ldots,\ a_r=\sum\limits_{i=1}^r b_i.$

Инъективные векторы с наименьшим максимальным элементом
и их разностные векторы

Размер	Инъективные векторы с наименьшим	Разностный
вектора r	максимальным элементом	вектор
1	(1)	
2	(1, 2)	(1)
3	(1, 2, 4)	(1, 2)
	(2,3,4)	(1,1)
4	(3, 5, 6, 7)	(2, 1, 1)
5	(3, 6, 11, 12, 13)	(3, 5, 1, 1)
	(6,9,11,12,13)	(3,2,1,1)
6	(11, 17, 20, 22, 23, 24)	(6, 3, 2, 1, 1)
7	(20, 31, 37, 40, 42, 43, 44)	(11, 6, 3, 2, 1, 1)
	(20, 40, 71, 77, 80, 82, 83, 84)	(20, 31, 6, 3, 2, 1, 1)
8	(39, 59, 70, 77, 78, 79, 81, 84)	(20, 11, 7, 1, 1, 2, 3)
	(40,60,71,77,80,82,83,84)	(20,11,6,3,2,1,1)
9	(77, 117, 137, 148, 154, 157, 159, 160, 161)	(40, 20, 11, 6, 3, 2, 1, 1)

Последовательность чисел $b_1 = 1$, $b_2 = 1$, $b_3 = 2$, $b_4 = 3$, $b_5 = 6$, $b_6 = 11$, $b_7 = 20$, $b_8 = 40$, . . . образована по следующему правилу: первый элемент последовательности равен 1, второй — предыдущему элементу, следующие два — сумме двух предыдущих элементов, следующие три — сумме трех предыдущих элементов и так далее:

$$b_1 = 1; \qquad b_2 = b_1; \\ b_3 = b_2 + b_1; \qquad b_4 = b_3 + b_2; \\ b_5 = b_4 + b_3 + b_2; \qquad b_6 = b_5 + b_4 + b_3; \qquad b_7 = b_6 + b_5 + b_4; \\ b_8 = b_7 + b_6 + b_5 + b_4; \ b_9 = b_8 + b_7 + b_6 + b_5; \ b_{10} = b_9 + b_8 + b_7 + b_6; \ b_{11} = b_{10} + b_9 + b_8 + b_7; \\ b_8 = b_7 + b_6 + b_5 + b_4; \ b_9 = b_8 + b_7 + b_6 + b_5; \ b_{10} = b_9 + b_8 + b_7 + b_6; \ b_{11} = b_{10} + b_9 + b_8 + b_7; \\ b_{11} = b_{11} + b_{12} + b_{13} + b_{14} + b_{14} + b_{15} + b_{$$

Известно [2, с. 73 и 535], что в рекуррентном виде i-й член последовательности Штерна b_1, b_2, \ldots при $i \ge 2$ может быть записан следующим образом:

$$b_i = \sum_{j=1}^{\left[\sqrt{2(i-2)+1/4}+1/2\right]} b_{i-j},$$

где через [x] обозначена целая часть числа $x \in \mathbb{R}$.

Последовательности такого типа впервые в 1838 г. рассмотрел М. А. Штерн в работе [3]; последовательность b_1, b_2, \ldots также носит его имя [4], хотя в рассмотренной Штерном последовательности сумма каждого числа слагаемых берётся только 2 раза.

Последовательность Штерна широко применяется при изучении процедур взвешенного голосования [5], а также в штрафной логике [6]. Более того, в работе [6] есть указание на то, что в 1983 г. А. Родригез [7] доказал, что не существует «свободных от коллизий» (что в нашей терминологии можно понимать как инъективных) векторов размера r, максимальный элемент которых меньше $\sum_{i=1}^{r} b_i$, однако в работе [5], полностью основанной на работе [7], таких указаний нет. Тем не менее в обеих работах [5, 6] говорится о том, что А. Родригез [7] показал, что вектор (a_1, a_2, \ldots, a_r) , элементы которого построены по правилу $a_1 = b_r$, $a_2 = b_r + b_{r-1}$, ..., $a_r = \sum_{i=1}^{r} b_i$, является инъективным (и, более того, «сохраняющим большинство», то есть при k < h любая сумма k его элементов меньше, чем любая сумма h его элементов, что важно для взвешенного голосования, но, вообще говоря, является дополнительным к инъективности условием).

Основываясь на результатах экспериментов, полагаем, что является справедливой следующая гипотеза, необходимая для обоснования основного результата.

Гипотеза 1. Не существует инъективного вектора размера r, максимальный элемент которого строго меньше величины $\sum_{i=1}^{r} b_i$, где b_1, \ldots, b_r — суть первые r элементов последовательности Штерна.

2. О плотности инъективных векторов

Прежде чем перейти к доказательству основного результата, получим верхние и нижние оценки для значений элементов последовательности Штерна. Теорема 1 показывает, что каждый следующий элемент последовательности Штерна не превосходит удвоенного предыдущего элемента.

Теорема 1. Пусть b_1, b_2, \ldots последовательность Штерна, тогда $2b_i \geqslant b_{i+1}$ для всех $i \in \mathbb{N}$.

Доказательство. Утверждение теоремы сводится к неравенству

$$\sum_{j=1}^{\left[\sqrt{2(i-2)+1/4}+1/2\right]} b_{i-j} \geqslant \sum_{j=1}^{\left[\sqrt{2(i-1)+1/4}+1/2\right]-1} b_{i-j},$$

поскольку

$$b_{i+1} = b_i + \sum_{j=2}^{\left[\sqrt{2(i-1)+1/4}+1/2\right]} b_{i+1-j} = b_i + \sum_{j=1}^{\left[\sqrt{2(i-1)+1/4}+1/2\right]-1} b_{i-j}.$$

Покажем, что $\left[\sqrt{2(x-1)+1/4}+1/2\right]-\left[\sqrt{2x+1/4}+1/2\right]+1\geqslant 0$ для всех $x\in\mathbb{N}.$ Сначала заметим, что для всех $x\in\mathbb{N}$

$$\begin{split} \sqrt{2x+1/4} &> \sqrt{2(x-1)+1/4} \geqslant \sqrt{2x+1/4}-1. \\ \Pi\text{оэтому } 0 &> \sqrt{2(x-1)+1/4}+1/2-\sqrt{2x+1/4}-1/2 \geqslant -1 \text{ и} \\ 0 &> \left[\sqrt{2(x-1)+1/4}+1/2\right]+\left\{\sqrt{2(x-1)+1/4}+1/2\right\}-\\ &-\left[\sqrt{2x+1/4}+1/2\right]-\left\{\sqrt{2x+1/4}+1/2\right\} \geqslant -1, \end{split}$$

где через $\{x\}$ обозначена дробная часть числа $x \in \mathbb{R}$.

Ho
$$1 > \left\{\sqrt{2x + 1/4} + 1/2\right\} - \left\{\sqrt{2(x - 1) + 1/4} + 1/2\right\} > -1$$
, следовательно,

$$1 > \left\lceil \sqrt{2(x-1) + 1/4} + 1/2 \right\rceil - \left\lceil \sqrt{2x + 1/4} + 1/2 \right\rceil > -2,$$

и так как $\left\lceil \sqrt{2(x-1)+1/4}+1/2 \right\rceil - \left\lceil \sqrt{2x+1/4}+1/2 \right\rceil + 1$ – целое число, то

$$1 \geqslant \left[\sqrt{2(x-1) + 1/4} + 1/2\right] - \left[\sqrt{2x + 1/4} + 1/2\right] + 1 \geqslant 0,$$

что завершает доказательство теоремы.

Первое следствие теоремы 1 определяет случаи, в которых следующий элемент последовательности Штерна в точности равен удвоенному предыдущему элементу.

Следствие 1. Пусть b_1, b_2, \ldots последовательность Штерна, тогда $2b_i = b_{i+1}$ при i = n(n-1)/2 + 1 и n > 1.

Доказательство. Достаточно показать, что при i=n(n-1)/2+1 и n>1

$$\left[\sqrt{2(i-2)+1/4}+1/2\right] = \left[\sqrt{2(i-1)+1/4}+1/2\right] - 1.$$

С одной стороны, если i = n(n-1)/2 + 1, то

$$\left[\sqrt{2(i-1)+1/4}+1/2\right]-1=\left[\sqrt{(n-1/2)^2}+1/2\right]-1=n-1.$$

Так как $(1-A)^2 = 1 - 2A + A^2 > 1 - 2A$ для $A \in \mathbb{R}$, то

$$1 - \frac{2}{(n-1/2)^2} < \left(1 - \frac{1}{(n-1/2)^2}\right)^2,$$

и при n > 1 выполнены неравенства

$$n-1 \leqslant \sqrt{(n-1/2)^2 - 2} + 1/2 < n - \frac{1}{n-1/2} < n.$$

Следовательно, с другой стороны, если i = n(n-1)/2 + 1 и n > 1, то

$$\left[\sqrt{2(i-2)+1/4}+1/2\right] = \left[\sqrt{(n-1/2)^2-2}+1/2\right] = n-1.$$

Следствие доказано. ■

Второе следствие из теоремы 1 дает верхнюю оценку величины i-го элемента последовательности Штерна.

Следствие 2. Пусть b_1, b_2, \ldots — последовательность Штерна, тогда $2^{i-2} \geqslant b_i$ при $i \geqslant 2$.

Доказательство. Поскольку $2b_i \geqslant b_{i+1}$ для всех $i \in \mathbb{N}$, то для всех $i \geqslant 2$ выполняется $2^{i-2} = 2^{i-2}b_2 \geqslant 2^{i-3}b_3 \geqslant \ldots \geqslant b_i$. ■

Следующие леммы необходимы для получения нижней оценки величины i-го элемента последовательности Штерна. Первые две из них связаны с нижними оценками биномиальных коэффициентов вида C_{2n}^n . Третья напоминает о некоторых особенностях средних величин.

Лемма 1. Для всех $n \in \mathbb{N}$ имеет место $C_{2n}^n \geqslant 2^{2n-1-2^{-1}\log_2 n}$.

Доказательство. Для n=1 выполняется равенство $C_2^1=2^{2-1-2^{-1}\log_2 1}=2.$ Рассмотрим случай $n\geqslant 2.$ По формуле Стирлинга [8]

$$n! = (2\pi n)^{1/2} n^n e^{-n} e^{\theta_n/(12n)}$$

для некоторого $0 < \theta_n < 1$, поэтому

$$C_{2n}^{n} = \frac{(2n)!}{n!n!} = \frac{((2\pi(2n))^{1/2}(2n)^{2n}e^{-(2n)}e^{\theta_{1n}/(24n)}}{(2\pi n)n^{2n}e^{-2n}e^{\theta_{2n}/(6n)}} = \frac{2^{2n-C_n/n}}{(\pi n)^{1/2}} = 2^{2n-2^{-1}\log_2(\pi n)-C_n/n},$$

где
$$0 < \theta_{1n} < 1; \ 0 < \theta_{2n} < 1; \ C_n = \log_2 e^{\frac{4\theta_{2n} - \theta_{1n}}{24}}$$

Теперь, поскольку $\frac{|C_n|}{n} < \frac{1}{6}$ для всех $n \geqslant 2$ и $\frac{\log_2 \pi}{2} = 0.82574...,$

$$C_{2n}^n > 2^{2n-1-2^{-1}\log_2 n}$$

для всех $n \geqslant 2$.

Лемма 2. Для всех $n \in \mathbb{N}$

$$\prod_{j=1}^{n} (2 - j^{-1}) \geqslant 2^{n - 1 - 2^{-1} \log_2 n}.$$

Доказательство.

$$\prod_{i=1}^{n} (2-j^{-1}) = \frac{(2n-1)!!}{n!} = \frac{(2n)!}{2^n (n!)^2} = \frac{C_{2n}^n}{2^n} \geqslant \frac{2^{2n-1-2^{-1}\log_2 n}}{2^n} = 2^{n-1-2^{-1}\log_2 n}. \blacksquare$$

Лемма 3. Пусть $A = (a_1, a_2, \dots, a_r)$ — возрастающий вектор, тогда

$$s \frac{\sum\limits_{i=1}^r a_i}{r} \geqslant \sum\limits_{i=1}^s a_i$$
 для всех $1 \leqslant s \leqslant r$.

Доказательство. Для s=r, очевидно, выполняется равенство.

Для $1 \leqslant s \leqslant r - 1$

$$s \frac{\sum_{i=s+1}^{r} a_i}{r-s} \geqslant s a_{s+1} \geqslant \sum_{i=1}^{s} a_i,$$

поэтому
$$s\sum_{i=s+1}^r a_i\geqslant r\sum_{i=1}^s a_i-s\sum_{i=1}^s a_i,$$
 откуда $\sum_{i=1}^r a_i\geqslant r\sum_{i=1}^s a_i.$ \blacksquare

Теорема 2 даёт нижнюю оценку i-го элемента последовательности Штерна.

Теорема 2. Пусть b_1, b_2, \ldots последовательность Штерна, тогда для любого натурального $l \geqslant 3$

$$b_l \geqslant 2^{l-4-2^{-1}\log_2([\sqrt{2(l-2)+1/4}-1/2])}$$
.

Доказательство. Пусть t=n(n-1)/2+1 и k=n-1, тогда, согласно следствию 1 из теоремы 1, $b_{t+1}=2b_t$. Рассмотрим возрастающий вектор

$$\left(b_{t-(n-1)},\ldots,b_{t-1}\right) = \left(b_{\frac{(n-1)(n-2)}{2}+1+1},\ldots,b_{\frac{(n-1)(n-2)}{2}+1+n-1}\right)$$

размера r=n-1. По лемме 3 для всех $1\leqslant s\leqslant n-1$ получим

$$\sum_{j=1}^{s} b_{\frac{(n-1)(n-2)}{2}+1+j} \leqslant \frac{s}{n-1} \sum_{i=1}^{n-1} b_{t-i}$$

и, так как $\sum_{i=1}^{n-1} b_{t-i} = b_t$, то для всех $1 \leqslant s \leqslant n-1$

$$b_t - \sum_{j=1}^s b_{\frac{(n-1)(n-2)}{2}+1+j} \geqslant \frac{n-1-s}{n-1} b_t,$$

поэтому

$$b_{t+2} = b_{t+1} + b_t + \dots + b_{\frac{(n-1)(n-2)}{2}+3} = 3b_t + \left(b_t - b_{\frac{(n-1)(n-2)}{2}+2}\right) \geqslant 3b_t + \frac{k-1}{k}b_t,$$

$$b_{t+3} \geqslant b_{t+2} + b_{t+1} + b_t + \frac{k-2}{k}b_t \geqslant 6b_t + \frac{k-1}{k}b_t + \frac{k-2}{k}b_t,$$

$$b_{t+4} \geqslant 12b_t + 2\frac{k-1}{k}b_t + \frac{k-2}{k}b_t + \frac{k-3}{k}b_t,$$

В случае $2\leqslant i\leqslant n$ получаем

$$b_{t+i} \geqslant \left(3 \cdot 2^{i-2} + 2^{i-3} \frac{k-1}{k} + 2^{i-4} \frac{k-2}{k} + \dots + 2 \frac{k-(i-3)}{k} + \frac{k-(i-2)}{k} + \frac{k-(i-1)}{k}\right) b_t =$$

$$= \left(2^i + 2^{i-3} \frac{-1}{k} + 2^{i-4} \frac{-2}{k} + \dots + 2 \frac{-(i-3)}{k} + \frac{-(i-2)}{k} + \frac{-(i-1)}{k}\right) b_t =$$

$$= \left(2^i - 2^{i-3} \frac{1}{k} \left(\sum_{j=1}^{i-2} \frac{j}{2^{j-1}} + \frac{(i-1)}{2^{i-3}}\right)\right) b_t \geqslant \left(2^i - 2^{i-3} \frac{1}{k} \left(\sum_{j=1}^{i-1} \frac{j}{2^{j-1}} + \frac{(i-1)}{2^{i-2}}\right)\right) b_t \geqslant$$

$$\geqslant \left(2^i - 2^{i-3} \frac{1}{k} \sum_{j=1}^{\infty} \frac{j}{2^{j-1}}\right) b_t = \left(2^i - 2^{i-1} k^{-1}\right) b_t = 2^{i-1} \left(2 - k^{-1}\right) b_t,$$

так как

$$S = \sum_{j=1}^{\infty} \frac{j}{2^{j-1}} = \sum_{j=1}^{\infty} \frac{1}{2^{j-1}} + \sum_{l=1}^{\infty} \frac{l-1}{2^{l-1}} = 2 + 2^{-1} \sum_{j=1}^{\infty} \frac{j}{2^{j-1}} = 2 + 2^{-1} S.$$

Таким образом, $b_{t+1}=2b_t$ для t=n(n-1)/2+1 и $b_{t+i}\geqslant 2^{i-1}(2-(n-1)^{-1})b_t$ для $2\leqslant i\leqslant n$. Из этого следует, что

$$b_{t+1} = 2b_t \geqslant 2 \cdot 2^{n-2} \left(2 - (n-2)^{-1} \right) b_{t-(n-1)} \geqslant 2 \prod_{j=1}^{n-2} \left(2^j \left(2 - j^{-1} \right) \right) b_2,$$

и по лемме 2

$$2\prod_{j=1}^{n-2} \left(2^{j} \left(2-j^{-1}\right)\right) b_2 = 2^{(n-2)(n-1)/2+1} \cdot 2^{n-3-2^{-1} \log_2(n-2)} \geqslant 2^{t+1-4-2^{-1} \log_2(n-2)}.$$

При $2 \leqslant i \leqslant n$

$$b_{t+i} \geqslant 2^{i-1} \left(2 - (n-1)^{-1} \right) b_t \geqslant 2^{i-1} \left(2 - (n-1)^{-1} \right) 2^{n-2} \left(2 - (n-2)^{-1} \right) b_{t-(n-1)} \geqslant 2^{i-1} \prod_{j=1}^{n-1} \left(2^j \left(2 - j^{-1} \right) \right) b_2 = 2^{i-1} 2^{(n-2)(n-1)/2} \prod_{j=1}^{n-1} \left(2 - j^{-1} \right),$$

и по лемме 2

$$2^{i-1}2^{(n-2)(n-1)/2}\prod_{j=1}^{n-1} (2-j^{-1}) = 2^{t+i-4-2^{-1}\log_2(n-1)}.$$

Пусть l=t+i, где $1\leqslant i\leqslant n$, тогда при $l\geqslant 2$

$$n = \max\left\{j \in \mathbb{N} : \frac{j(j-1)}{2} + 2 \leqslant l\right\} = \max\left\{j \in \mathbb{N} : (j-1/2)^2 \leqslant 2(l-2) + 1/4\right\} = \max\left\{j \in \mathbb{N} : j \leqslant \sqrt{2(l-2) + 1/4} + 1/2\right\} = \left\lceil\sqrt{2(l-2) + 1/4} + 1/2\right\rceil.$$

Следовательно, при $l \geqslant 3$

$$b_{l} = b_{t+i} \geqslant 2^{t+i-4-2^{-1}\log_{2}(n-1)} = 2^{l-4-2^{-1}\log_{2}([\sqrt{2(l-2)+1/4}+1/2]-1)} = 2^{l-4-2^{-1}\log_{2}([\sqrt{2(l-2)+1/4}-1/2])}.$$

Теорема доказана. ■

Наконец, теорема 3 устанавливает верхнюю границу для плотности инъективных векторов.

Теорема 3. При условии, что гипотеза 1 является верной, плотность инъективных векторов размера $r\geqslant 4$ удовлетворяет неравенству

$$d_{in} \leqslant \frac{r}{r - 3 - 2^{-1} \log_2([\sqrt{2(r-2) + 1/4} - 1/2])}.$$

Доказательство. Для возрастающих инъективных векторов размера r при условии, что гипотеза 1 верна, выполнено

$$a_r = \sum_{i=1}^r b_i \geqslant 2 + \sum_{i=3}^r 2^{i-4-2^{-1}\log_2([\sqrt{2(i-2)+1/4}-1/2])} \geqslant 2 + 2^{-4-2^{-1}\log_2([\sqrt{2(r-2)+1/4}-1/2])} \sum_{i=3}^r 2^i = 2 + 2^{-1-2^{-1}\log_2([\sqrt{2(r-2)+1/4}-1/2])} (2^{r-2}-1) \geqslant 2^{r-3-2^{-1}\log_2([\sqrt{2(r-2)+1/4}-1/2])}.$$

Обратим внимание на то, что в данном случае

$$\log_2 a_r \geqslant r - 3 - 2^{-1} \log_2([\sqrt{2(r-2) + 1/4} - 1/2]),$$

но для вычисления верхней границы плотности необходимо потребовать, чтобы выполнялось неравенство

$$r-3-2^{-1}\log_2([\sqrt{2(r-2)+1/4}-1/2])>0,$$

поскольку $d_{in} > 0$. Это условие выполнено при $r \geqslant 4$.

Из этого следует, что при $r\geqslant 4$

$$d_{in} = \frac{r}{\max_{1 \le i \le r} \log_2 a_i} = \frac{r}{\log_2 a_r} \le \frac{r}{r - 3 - 2^{-1} \log_2(\left[\sqrt{2(r-2) + 1/4} - 1/2\right])}.$$

Теорема доказана. ■

Заключение

Возможно, кому-то покажется более интересной следующая граница, легко получаемая из теоремы 3.

Следствие 3. При условии, что гипотеза 1 является верной, плотность инъективных векторов размера $r \geqslant 4$ удовлетворяет неравенству

$$d_{in} \leqslant \frac{r}{r - 3,25 - 2^{-2} \log_2(r - 2)}.$$

Заметим, что границы, приведенные в теореме 2 и следствии 3, на наш взгляд, улучшают встречающуюся, например в [9], границу $r/(r-\log_2 r)$, поскольку при $r\geqslant 20$ справедливо неравенство

$$\frac{r}{r-3,25-2^{-2}\log_2(r-2)}<\frac{r}{r-\log_2 r}.$$

ЛИТЕРАТУРА

- 1. *Мурин Д. М.* О порядке роста числа инъективных и сверхрастущих рюкзачных векторов // Моделирование и анализ информационных систем. 2012. Т. 19. № 3. С. 103—115.
- 2. Кнут Д. Искусство программирования. Т. 1. М.: Издательский дом «Вильямс», 2008.
- 3. Stern M. A. Aufgaben // J. Reine Angew. Math. 1838. No. 18. P. 100.
- 4. Sloane N. J. A. and Plouffe S. The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995.
- 5. Kreweras G. Sur quelques problemes relatifs au vote pondere [Some problems of weighted voting] // Math. Sci. Humaines. 1983. No. 84. P. 45–63.
- 6. Chetcuti-Sperandio N. and Lagrue S. How to choose weightings to avoid collisions in a restricted penalty logic // Principles of Knowledge Representation and Reasoning: Proc. 11-th International Conf. Sydney: AAAI Press, 2008. P. 340–347.
- 7. Rodriguez A. Étude des propriétés d'une suite numérique liée à un problème de vote pondéré // Thèse de docteur-ingénieur, Université Pierre et Marie Curie. 1983.
- 8. *Фихтенгольц Г. М.* Курс дифференциального и интегрального исчисления. Т. 2. М.: Физматлит, 2001.
- 9. *Николенко С.* Криптография и решетки. http://logic.pdmi.ras.ru/~sergey/teaching/cscryp09/05-lattices.pdf. 2009.