Т. 62, № 4 ФИЗИКА 2019

МАТЕМАТИЧЕСКАЯ ОБРАБОТКА ДАННЫХ ФИЗИЧЕСКОГО ЭКСПЕРИМЕНТА

УДК 519.233 DOI: 10.17223/00213411/62/4/72

В.А. СИМАХИН, О.С. ЧЕРЕПАНОВ

ПОЛУПАРАМЕТРИЧЕСКИЕ И ПОЛУНЕПАРАМЕТРИЧЕСКИЕ ОЦЕНКИ ДОВЕРИТЕЛЬНЫХ ИНТЕРВАЛОВ ДЛЯ КВАНТИЛЕЙ РАСПРЕДЕЛЕНИЯ ФИЗИЧЕСКИХ ВЕЛИЧИН

На основе взвешенного метода максимального правдоподобия синтезированы новые адаптивные робастные оценки (АО) и доверительные интервалы для квантиля распределения физических величин. Методом статистических испытаний найдены значения относительной эффективности АО с рядом классических и робастных оценок на классах локальных и глобальных супермоделей Тьюки. Показано, что адаптивные оценки и доверительные интервалы для квантиля распределения по эффективности значительно превосходят классические параметрические и непараметрические и робастные оценки.

Ключевые слова: оценки квантиля, робастные оценки, робастные доверительные интервалы, адаптивные оценки, взвешенный метод максимального правдоподобия.

Ввеление

В различных областях приложений статистических методов обработки физических величин [1–7] возникают задачи построения точечных и интервальных оценок для квантилей функции распределения случайных величин. Оценки и доверительные интервалы квантиля для параметрических и непараметрических задач давно привлекают внимание исследователей и широко применяются в практике [1–4]. Данная задача решена для некоторых классов параметрических распределений, а для непараметрического класса распределений построены непараметрические доверительные интервалы на основе порядковых статистик [1, 3, 4]. В настоящее время наиболее актуальны полупараметрические и полунепараметрические задачи, которые представляют значительный интерес для статистической обработки физических величин [1, 5–7]. В работе рассматриваются робастные адаптивные оценки и доверительные интервалы для квантиля на классах полупараметрических и полунепараметрических задач на основе взвешенного метода максимального правдоподобия [6, 8–13]. Численное моделирование показало, что адаптивные оценки, синтезированные с учетом априорной информации об исходном распределении по эффективности, значительно превосходят классические на классах полупараметрических и полунепараметрических задач.

1. Постановка задачи

Пусть X — случайная величина с функцией распределения (ф.р.) $F(x, \mathbf{\theta}) \subset \Omega$, где Ω — класс распределений Тьюки $F(x, \mathbf{\theta}) = (1 - \varepsilon)G(x, \mathbf{\theta}) + \varepsilon H(x)$; $G(x, \mathbf{\theta})$ — априорное распределение; H(x) и ε — распределение и доля выбросов; $f(x, \mathbf{\theta}), g(x, \mathbf{\theta}), h(x)$ — соответствующие плотности распределений; $\mathbf{\theta} = (\theta_1, ..., \theta_k)^T$ — вектор неизвестных параметров распределения. Обозначим через X_p единственный квантиль распределения уровня p (0 < p < 1), т.е. уравнение $F(X_p, \mathbf{\theta}) = p$ имеет единственное решение. Требуется по выборке $X_N = (x_1, ..., x_N)$ объема N независимых и одинаково распределенных случайных величин (н.о.р.) из $F(x, \mathbf{\theta}) \subset \Omega$ построить оценку X_{pN} и доверительный интервал $\left(X_{pN}^-, X_{pN}^+\right)$ для квантиля X_p . Задачи и методы нахождения оптимальных оценок и доверительных интервалов определяются априорной информацией о виде ф.р. $F(x, \mathbf{\theta}) \subset \Omega$. Выделим основные задачи.

Уважаемые читатели!

Доступ к полнотекстовой версии журнала «Известия высших учебных заведений. Физика» осуществляется на платформе Научной электронной библиотеки eLIBRARY.RU на платной основе:

https://elibrary.ru/contents.asp?titleid=7725