УДК 539.199:541.64

DOI: 10.17223/00213411/62/6/129

 Π .С. САНДИТОВ 1,2 , М.В. ДАРМАЕВ 1

ЭНЕРГИИ ДЕЛОКАЛИЗАЦИИ АТОМА И ТЕПЛОВОГО ДВИЖЕНИЯ В ОБЛАСТИ СТЕКЛОВАНИЯ*

Между эмпирическим параметром D уравнения Енкеля для вязкости и температурой стеклования T_g неорганических стекол установлена линейная корреляция, которая обсуждается в рамках модели делокализованных атомов. Из анализа данной корреляции следует определенная информация о стекловании и вязком течении стеклообразующих жидкостей. Величина D является однозначной функцией энергии делокализации атома.

Ключевые слова: вязкое течение, стеклование, модель, делокализация атома, флуктуационный объем, уравнение состояния, аморфные вещества.

Введение

Для своеобразной температурной зависимости вязкого течения стеклообразующих жидкостей предложена серия эмпирических соотношений [Vogel–Fulcher–Tamman (1921–1925), Waterton (1932), Jenkel (1939), Bradbury (1951), Шишкин (1956), Cornelissen (1957) и др. [1–7]]. Меерлендер [4] в результате сравнения наиболее распространенных пяти уравнений вязкости с опытными данными приходит к заключению, что уравнение Енкеля [5]

$$\eta = A \exp\left[\frac{B}{T} + \frac{C}{T} \exp\left(\frac{D}{T}\right)\right] \tag{1}$$

наилучшим образом описывает вязкое течение стеклообразующих жидкостей в широком интервале температур. Обоснованию этого соотношения были посвящены публикации [2, 6, 7].

В настоящем сообщении более детально обсуждается природа постоянной этого уравнения D в рамках модели делокализованных атомов [8, 9].

Эмпирический параметр уравнения Енкеля и температура стеклования

Вывод уравнения Енкеля (1) с привлечением развиваемой модели позволяет однозначно связать эмпирический параметр D с энергией делокализации атома $\Delta \varepsilon_e$ (k – постоянная Больцмана) [6, 7]:

$$\Delta \varepsilon_{\rho} = kD. \tag{2}$$

Энергия $\Delta \varepsilon_e$ тесно связана с температурой стеклования T_g и долей флуктуационного объема f_g , замороженной в области температуры $T = T_g$ [8, 9]:

$$\Delta \varepsilon_e = kT_g \ln(1/f_g). \tag{3}$$

Величина f_g определяется по данным о вязкости и сравнительно слабо зависит от природы стеклообразных систем, у аморфных веществ одного класса она практически постоянна [8, 9]:

$$f_g = \left(\frac{\Delta V_e}{V}\right)_{T=T_g} \approx \text{const}.$$

Флуктуационный объем ΔV_e обусловлен тепловыми смещениями атомов: $\Delta V_e = N_e \Delta v_e$, где N_e – число делокализованных атомов; Δv_e – элементарный флуктуационный объем, необходимый для делокализации атома – его предельного смещения из равновесного положения. Здесь и далее под «равновесным положением» подразумевается временное равновесное положение, которое равновесно лишь локально.

Расчет $\Delta \varepsilon_e$ по формуле (2) из данных о величине $D=2500~{\rm K}$ [4] для силикатного стекла (R- газовая постоянная) (таблица)

^{*} Работа выполнена при финансовой поддержке Министерства образования и науки РФ (грант № 3.5406.2017/8.9).

Уважаемые читатели!

Доступ к полнотекстовой версии журнала «Известия высших учебных заведений. Физика» осуществляется на платформе Научной электронной библиотеки eLIBRARY.RU на платной основе:

https://elibrary.ru/contents.asp?titleid=7725