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The problem of parameter estimation and change point detection of process AR(p)/ARCH(q) is considered. Sequential 

estimators with bounded standard deviation are proposed and their asymptotic properties are studied. The obtained 

estimators are used in a sequential change-point detection algorithm; due to usage of the estimators the false alarm and 

delay probabilities are bounded from above. The results of simulation are presented. 
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The problem of change point detection arises often in different applications connected with time series 

analysis, financial mathematics, image processing etc. Two types of algorithms are used to detect the change 

point: a posteriori methods, when the estimation of the change point is conducted in a sample of a fixed size, 

and sequential methods, when the decision on change point can be taken after obtaining a next observation. 

Sequential methods include a special stopping rule that determines a stopping time. At this instant a decision 

on change point can be made. There are two types of errors typical for sequential change point detection pro-

cedures: false alarm, when one makes a decision that change is occurred before a change point (type 1 error), 

and delay, when one makes a decision that change is not occurred after a change point (type 2 error). The 

properties of the sequential procedures are connected with these errors and include probabilities of the errors, 

mean delay time and mean time between false alarms. 

Last decades, autoregressive type processes and autoregressive conditional heteroscedasticity processes 

are widely used in various applications, such as forecasting of financial indexes, geographic information sys-

tems, medical data analysis, etc. For example in paper [1], autoregressive models are used for description of 

financial data. In the references therein, one can find examples of applications in other fields, including busi-

ness, economics, finance and quality control. Processes with non-constant parameters also can be used for such 

purposes. In [2] a piecewise constant model is set off against usual GARCH model for volatility modelling.  

A two-sample test for a change in variability is proposed, which works well even in case of skewed distribu-

tions. Paper [3] describes a usage of mixtures of structured autoregressive models for the analysis of electro-

encephalogram. On-line posterior estimation of the model parameters and related quantities is achieved using 

a sequential Monte Carlo algorithm.  

One of recent papers [4] is devoted to change point detection in casual time series such as AR(∞), 

ARCH(∞), etc. The procedure is based on a discrepancy between the historical parameter estimator and the 

updated parameter estimator, where both these estimators are quasi-likelihood estimators. To construct these 

estimators historical observations supposed to be available. It is proven that if the change occurs then it is 

asymptotically detected with the probability one. Asymptotic behavior of the test statistic can be described 

using the standard Brownian motion. The power of the test is estimated by simulation. In paper [5], change-

point detection is applied to analysis of financial data. A fractionally integrated process is considered and 
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changes in the fractional integration parameter supposed to be detected. The authors use AR(p) model, for 

some large enough p, to approximate the process under consideration. The application of the tests to World 

inflation rates detected the presence of changes in persistence for most countries. In [6], some historic data set 

which is stationary and does not contain a change is used to construct an estimator for the initial set of param-

eters. Then new incoming observations are monitored for a change. It is shown that the algorithm can be 

applied to mean change model and to non-linear first-order autoregressive time series. 

Theoretical properties of the described procedures are studied asymptotically when the number of ob-

servations before a change point tends to infinity. For small samples, usually simulation study is conducted. In 

this paper, we develop an alternative approach in the frame of guaranteed sequential methods. Due to a special 

stopping rule, we construct statistics with variances bounded from above by a known constant. Consequently, 

we can estimate the probabilities of false alarm and delay non-asymptotically, but we also investigate asymp-

totic properties of the statistics. 

 

1. Model AR/ARCH 

 

We consider scalar autoregressive process AR(p)/ARCH(q) specified by the equation 

 2 2

1 1 0 1 1k k p k p k q k q kx x x x x                 (1) 

Here 
1{ }k k  – is a sequence of independent identically distributed random variables with zero mean and unit 

variance. The density distribution function  f x  of 
1{ }k k  is strictly positive for any value of x . Parameters 

Λ = [λ1,…, λp] and Α = [α0,…, αq] are supposed to be unknown.  

 

2. Sequential parameter estimator for AR(p)/ARCH(q) 

 

For parameter estimation of the process (1) we use the approach proposed in [7] for classification of 

autoregressive processes with unknown noise variance bounded from above. At the first stage, we construct a 

special factor to compensate the influence of the noise variance. Then, we estimate autoregressive parameters 

by using this factor.  

Since the noise variance of the observed process is unbounded from above, we transform the model by 

introducing the following notation 

 skkk xxm   ,,,1max 11  , 

where s = max{p,q}. Dividing equation (1) by 
1km 
, we obtain  

 kkkk XZy  ,  (2) 

where  
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It is obvious, that the noise variance of the process (3) is bounded from above by the unknown value  

α0 + … + αq. We can construct the compensating factor by first n observations in the following form 
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where n observations are taken at the interval where all the values |xk| are sufficiently large. In [8], we use a 

similar approach to compensate the noise variance of AR(p) process with unknown noise variance; it was 

proven that the compensating factor satisfies condition analogous to  

 
 qn

E



 10

11
  (4) 

This proof can be generalized for our case with minimum changes so we omit it. 
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We construct the estimator of the parameter vector   in the form 

      1

1 1

,T T
k k k k k k

k n s k n s

H C v y Z C t v Z Z
 



     

 
    

 
  , (5) 

where τ is the random stopping time defined as follows  

     HtsntH  min:1min ,  (6) 

 tmin  is the minimum eigenvalue of the matrix C(t), H is a certain positive parameter. Then we define  

the weights vk. Let m  be the minimum value of t  for which the matrix  C n t  is not degenerate. The weights 

on the interval  1n s n m     are defined as 

    
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1 1if is linearly independent  with

0 elsewhere

T
n k k k n s k

k

Z Z Z Z … Z
v



  


    
 

  

  (7) 

The weights on the interval  1n m    are defined from the equations  
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The last weight v  is found from condition 
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Theorem 1. The stopping time  H  is finite with probability one and the mean-square accuracy of the 

estimator  H  is bounded from above  

  
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Proof. According to [9], the stopping time  H  is finite with probability one if 
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The equation for kv  (14) can be rewritten in the form 
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It implies that for any vector : 1x x   

           
2 2

min1 1 1T T
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hence, 
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For a certain vector : 1k kb b   the inequality turns into the equality and the weight kv  is a root of the quad-

ratic equation. As     min1 1 0k kb C k b k      , then the equation has two roots: non-positive and non-

negative. It gives us the equation for the weight 
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min
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Consequently, vk tends to zero if and only if Zkbk tends to zero and at the same time bk tends to the eigenvector 

corresponding to the minimum eigenvalue of the matrix C(k–1) as k tends to infinity. As the first component 

of the vector Zk depends on ξk (1) which can take any value then vk does not tend to zero with non-zero proba-

bility and the instant  is finite with the probability one. 
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For the mean-square accuracy of  H  (5), by using (2), Cauchy–Schwarz–Bunyakovskii inequality, 

inequality min( ) ( )C t t    and (4), we obtain 

2 2
2 2 11

1 12
1 1
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For the second multiplier, 
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Consider a truncated stopping instant ( ) min{ }N N   . Consider the sum differing from the first summand 

only in the upper limit. Let 1( )k kF …      be the -algebra generated by 1{ }k…   , then  defined by (6) 

is a Markovian instant with respect to{ }kF . Hence, 
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As (N) while N, and taking into account (7)(9) we obtain  
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Similarly, we can show that the second summand in (11) is equal to zero. The obtained results together 

with (4) imply (10). 

 

3. Asymptotic properties of the estimator 

 

We establish properties of estimator (5) for sufficiently large values of .H  In paper [10], we have proven 

a martingale central limit theorem for the vector case, using the stochastic exponent method.  

Theorem 2. Let  
0

n
k

k
F


 be a non-decreasing sequence of σ-algebras,  0 ,nF    , 1

n n
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0  k < n. Let 
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  , where n n   is a Markovian instant with respect to  n
kF . Suppose for all n  1 

the sequence  ,n n n
k kF    is a martingale-difference sequence, 

2
n
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where  is a symmetric positive definite matrix with E < . Then 
dnY Y  where Y is a random vector 

with the characteristic function  

 
1

exp exp
2

T TE i Y E
 

     
 

. 

The theorem allows establishing asymptotic properties of estimator (7). Lemma 1 proven in [11] allows 

us to obtain more precise results than in [8] and [10]. 

Lemma 1. Let 1, ..., n be independent identically distributed standard Gaussian variables. Then, for 

any 1, …, n, i  0, 1 + … + n = 1 and for sufficiently large C 

   2 2 2
1 1 1... n nP C P C          . 

Theorem 3. If for noise variables k  in (1), 4

kE   , and process (1) is ergodic, then the mean-squared 

deviation of estimator (7) is bounded from above 
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,  (12) 

where ( )   is the standard Gauss distribution function. 

Proof. For estimator (7).  
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Introduce a truncated stopping instant min{ }N N    and the following notation: 
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As 
2

kZ p , condition (A) of Theorem 2 holds true for H→∞. To check condition (B), consider matrix 
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Taking into account (7)–(9), one obtains that the trace of the matrix is bounded from above  

 
22

1

1 1
tr

N

N k k
nk n s

H p
v Z

H H



  

 
  


 .  (14) 

Then,  ,t i j  is a Cauchy sequence with respect to the convergence in probability. For any t > m 
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Inequality (14) imply the convergence in probability of the last sum as t, m → ∞. This and (13) provide 

condition (B). Letting N go to infinity, one obtains the vector Y from Theorem 2 
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Using the result of Theorem 2 and Fubini’s theorem to change the order of integration one obtains 
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The matrix Σ is symmetric and positive definite; hence, an orthogonal transformation T, resulting in the matrix 

Σ to diagonal form  , exists. Using the change of variables S = Y Σ −1/2TT  one obtains 

  2
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2 2
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1 1
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where i  are the eigenvalues of the matrix  , and si are the independent components of the Gaussian vector 

S. As the sum of i is equal to Σ, (14) and Lemma 1 imply (12). 

 
4. Change-point detection 

 
Describe now the change point detection problem for process (1). Suppose that after a certain instant θ, 

parameter vectors (Λ, Α) change their values from (Λ0, Α0) to (Λ1, Α1), and ||Λ0− Λ1||2 ≥ Δ. We construct a 

series of sequential estimation plans  ˆ,i i  , where {τi} is the increasing sequence of the stopping instances 

(τ0 = −1), and ˆ i  is the guaranteed parameter estimator (5) on the interval [τi−1 + 1, τi]. Then we choose an 

integer l > 1 and associate the statistic Ji with the i-th interval for all i > l 

    ˆ ˆ ˆ ˆ
T

i i i l i i lJ         . (15) 

This statistic is the squared deviation of the estimators with numbers i and i − l. Due to using estimators (5) 

with properties (10) and (12) the proposed statistics change their expectation after a change point. 

Theorem 4. The expectation of statistic Ji (15) satisfies the following inequality: 

 
   

12

14 1
, 4i i i i l i

H pH p
E J E J

HH
 

   
                  .  (16) 

Proof is based on property (10); it is very similar to one described in [7].  

Hence, the Theorem allows us to construct the following change-point detection algorithm. The Ji values 

are compared with a certain threshold δ, where 

   
2

14 1
4

H pH p

HH

   
     . 

The change point is considered to be detected when the value of the statistic exceeds δ. 

The probabilities of false alarm and delay in the change-point detection in any observation cycle are 

important characteristics of any change point detection procedure. Due to the application of the guaranteed 

parameter estimators in the statistics, we can obtain the upper bounds for these probabilities. 

Theorem 5. The probability of false alarm P0 and the probability of delay P1 in any observation cycle 

[τi−1 + 1, τi] are bounded from above 

      
2

2 2
0 14 1 , 4 1 .P H p H P H p H           (17) 

Proof is based on property (15), Cauchy–Schwarz–Bunyakovskii inequality and the following equalities 

   0 1 1,i i i i l iP P J P P J                . 

Asymptotic properties of the estimators let us establish the following asymptotic upper bounds of the 

error probabilities. 

Theorem 6. For ergodic process (1) in the conditions of Theorem 3, for sufficiently large H 

          0 14 1 2 1 , 4 1 2 1P H H p P H H p              .  (18) 

where Φ(x) is the standard normal distribution function. 
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5. Simulation results and their discussion 

 

We conducted numerical simulation of the proposed estimation and change point detection algorithms 

for AR(p)/ARCH(q) process. For every set of the parameters, 100 replications of the experiment were  

performed. First, we considered the parameter estimation problem for the AR(2)/ARCH(2) process rewritten 

in a special form (2). The noise variation of the process is bounded from above by the value  

0 + 1 + 2 = 0,6 + 0,1 + 0,3 = 1. The number n was chosen as the integral part of H1/2. Table 1 presents the 

results. Here H is the parameter of the procedure, 1̂  and 2̂  are the estimators of the parameters λ1 = 0,5 and 

λ2 = 0,1, T is the mean interval of the estimation, n is the compensating factor (3), 2 is the sample standard 

deviation, D is the upper bound for the standard deviation of the estimator given by inequality (10). 

T a b l e  1  

Parameter estimation for the AR(2)/ARCH(2) process 

H 1̂  2̂  T 2 n D 

50 0,4996 0,0976 748 0,0067 1,99 0,0204 

75 0,4996 0,1008 1 073 0,0044 1,89 0,0135 

100 0,4989 0,0986 1 355 0,0036 1,79 0,0101 

125 0,4994 0,1016 1 661 0,003 1,74 0,0081 

150 0,5011 0,0996 1 961 0,0026 1,71 0,0067 

 

One can see that the mean number of the observations increases linearly by H. This property is important 

for sequential estimators [12]. The sample mean square error of the estimation is about three times less than 

the theoretical one. It is connected with rather complicated structure of the AR/ARCH process. It has un-

bounded noise variation so we rewrite the equation in a special form by dividing the equation by the value not 

less than 1. As a result, the minimum eigenvalue of matrix C in (5) grows rather slowly and that implies the 

increase of the estimation interval. 

Further we conducted simulations of the proposed change-point detection algorithm. Simulations were 

conducted for the AR(2)/ARCH(2) process specified by the equation in the special form (2) with parameters 

given in Table 2. 
T a b l e  2  

 Parameters the AR(2)/ARCH(2) process 

H λ1 λ2 0 1 2 

Before the change point 0,5 0,1 0,6 0,1 0,3 

After the change point 0,1 0,3 0,6 0,3 0,1 

 

In this process the noise variance is bounded from above by 1 both before and after the change point. 

The change point θ = 10 000 and Δ = 0,2. Table 3 presents the results of the simulation. Here H and δ 

are the parameters of the procedure, T1 is the mean delay in the change-point detection, 0p̂  and 1p̂  are the 

sample probabilities of the false alarm and of the delay, respectively, P0 and P1 are the asymptotic upper bounds 

for the probabilities expressed by formulas (18). False alarms were registered only in one case. 

T a b l e  3  

 Change-point detection for the AR(2)/ARCH(2) process 

H δ T1 0p̂  1p̂  P0 P1 

150 0,03 1 595 0,0 0,0 0,581 0,189 

175 0,03 2 093 0,0 0,0 0,506 0,141 

200 0,03 3 290 0,0 0,0 0,439 0,107 

150 0,05 1 819 0,0 0,0 0,345 0,345 

175 0,05 2 366 0,0 0,0 0,281 0,281 

200 0,05 4 048 0,0 0,0 0,229 0,229 

150 0,07 1 891 0,0 0,0 0,213 0,53 

175 0,07 2 413 0,0 0,054 0,162 0,457 

200 0,03 4 347 0,0 0,0 0,121 0,395 
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In the example above, the difference between the parameters before and after change point is not 

significant (Δ = 0,2) so we considered the second example of process with parameters given in Table 4. 

T a b l e  4  

 Parameters the AR(2)/ARCH(2) process 

H λ1 λ2 0 1 2 

Before the change point 0,5 0,1 0,6 0,1 0,3 

After the change point 0,1 0,8 0,6 0,3 0,1 

 

Here Δ = 0,85, so it is possible to choose the parameter H less than in the first case. The results of the 

simulation are presented in Table 5. 
T a b l e  5  

 Change-point detection for the AR(2)/ARCH(2) process 

H δ T1 
0p̂  1p̂  P0 P1 

50 0,1 601 0,002 0,118 0,537 0,0679 

100 0,1 1 237 0,0 0,11 0,231 0,0052 

150 0,1 1 663 0,0 0,102 0,107 0,0004 

50 0,2125 804 0,0 0,135 0,213 0,213 

100 0,2125 1 320 0,0 0,07 0,044 0,044 

150 0,2125 1 841 0,0 0,0 0,001 0,001 

50 0,3 897 0,0 0,11 0,11 0,38 

100 0,3 1 400 0,0 0,0 0,013 0,125 

150 0,3 2 035 0,0 0,07 0,002 0,045 
 

One can see that when the difference between the parameters is sufficiently large then the sample error 

probabilities are many fewer than their theoretical upper bounds. Moreover, generally no false alarms and 

skipping the change point were registered.  

 

Conclusion 

 

The change point detection algorithm for the AR(p)/ARCH(q) process with unknown parameters before 

and after the change point has been constructed. The algorithm is based on the weighted least square method. 

The guaranteed sequential estimators of unknown parameters are used. The choice of weights and stopping 

rule guarantees the prescribed accuracy of the estimation and hence the prescribed error probabilities in every 

observation interval. The results of numerical simulation prove the possibility to use the suggested algorithm 

used for change point detection of recurrent processes with unknown noise variance. However, the algorithms 

should be improved through more accurate compensation of the noise variance. 
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Рассматриваются задачи оценивания параметров и обнаружения разладок процесса AR(p)/ARCH(q) с неизвестными па-

раметрами. Строится последовательная оценка по взвешенному методу наименьших квадратов. Использование специального 

момента остановки и весов позволяет ограничить среднеквадратическое отклонение оценки заранее заданной величиной. 

Предложенные оценки применяются в алгоритме обнаружения изменения параметров и позволяют ограничить сверху веро-

ятности ложной тревоги и запаздывания в обнаружении разладки. Исследованы неасимптотические и асимптотические свой-

ства алгоритмов. 
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