- 6. $\mathit{Kyuehko}\ A.\ B.$ Спектр расстояний Хэмминга между самодуальными бент-функциями из класса Мэйорана МакФарланда // Дискретный анализ и исследование операций. 2018. Т. 25. № 1. С. 98–119.
- 7. Danielsen L. E., Parker M. G., and Solé P. The Rayleigh quotient of bent functions // LNCS. 2009. V. 5921. P. 418–432.
- 8. *Марков А. А.* О преобразованиях, не распространяющих искажения // Избранные труды. Т. II. Теория алгорифмов и конструктивная математика, математическая логика, информатика и смежные вопросы. М.: МЦНМО, 2003. С. 70–93.
- 9. Tokareva N. N. The group of automorphisms of the set of bent functions // Discr. Math. Appl. 2010. No. 20 (5). P. 655–664.

УДК 519.7

 $DOI\ 10.17223/2226308X/12/17$

О КЛАССАХ БУЛЕВЫХ ФУНКЦИЙ ОГРАНИЧЕННОЙ СЛОЖНОСТИ¹

А. И. Метальникова, И. А. Панкратова

Рассматриваются классы булевых функций от n переменных, имеющих короткое (по сравнению с 2^n) представление. Подсчитаны мощности этих классов, приведены тесты на принадлежность функции классам и алгоритм доопределения частично заданной булевой функции до функции ограниченной степени.

Ключевые слова: существенная зависимость функции от переменной, степень булевой функции, алгебраическая нормальная форма.

Во многих шифрсистемах используются булевы функции. Если функция является ключом, как, например, в [1, 2], то она должна зависеть от большого числа переменных. Поскольку длина вектора значений булевой функции от n переменных равна 2^n и формула (в любом базисе) произвольной функции имеет ту же длину (порядка 2^n), представляют интерес классы функций, которые зависят от большого числа переменных, но имеют короткое задание. В связи с этим возникают следующие задачи: подсчёт количества функций в классе; разработка теста на принадлежность функции классу; разработка алгоритма доопределения частичной функции до функции из заданного класса.

Обозначим $P_2(n)$ множество всех булевых функций от n переменных; будем рассматривать следующие классы функций в $P_2(n)$ и называть их классами ограниченной сложности:

- $C_{n,k}$ с заданным (равным k) числом существенных переменных;
- $C_{n,\leqslant k} {
 m c}$ ограниченным (не больше k) числом существенных переменных;
- $D_{n,k}$ заданной степени (deg f = k);
- $D_{n, \leq k}$ ограниченной степени (deg $f \leq k$);
- $L_{n,k}$ с заданной (равной k) длиной алгебраической нормальной формы (АНФ);
- $L_{n, \leq k}$ с ограниченной (не больше k) длиной АНФ;
- NR_n имеющие бесповторную АНФ (каждая переменная входит в АНФ не более одного раза).

В таблице приведены мощности этих классов, здесь \mathbb{S}_k — количество функций от k переменных, существенно зависящих от всех своих переменных (последовательность A000371 из [3]), $\mathbb{S}_k = \sum\limits_{i=0}^k (-1)^i \binom{k}{i} 2^{2^{k-i}}; \; \mathbb{B}_k$ — число Белла, или количество всех

 $^{^{1}}$ Работа поддержана грантом РФФИ, проект № 17-01-00354.

неупорядоченных разбиений k-элементного множества (последовательность A000110 из [3]), задаваемое рекуррентной формулой $\mathbb{B}_0 = 1$, $\mathbb{B}_{k+1} = \sum_{i=0}^k \binom{k}{i} \mathbb{B}_i$.

Класс	Мощность
$C_{n,k}$	$\binom{n}{k}\mathbb{S}_k$
$C_{n,\leqslant k}$	$\sum_{i=0}^{k} C_{n,i} = \sum_{i=0}^{k} {n \choose i} \mathbb{S}_{i}$ $\sum_{i=0}^{k} {n \choose i} - \sum_{i=0}^{k-1} {n \choose i}$
$D_{n,k}$	$2^{\sum\limits_{i=0}^{k}\binom{n}{i}-\sum\limits_{i=0}^{k-1}\binom{n}{i}}$
$D_{n,\leqslant k}$	$2^{\sum\limits_{i=0}^{k}\binom{n}{i}}$
$L_{n,k}$	$\binom{2^n}{k}$
$L_{n,\leqslant k}$	$\sum_{i=0}^{k} \binom{2^n}{i}$
NR_n	$2\mathbb{B}_{n+1}$

Принадлежность функции f классу ограниченной сложности определяется свойствами её $AH\Phi$, например, $\deg f$ равна длине самого длинного слагаемого в $AH\Phi$; количество существенных переменных — количеству переменных, входящих в $AH\Phi$. $AH\Phi$, в свою очередь, строится с помощью преобразования Мёбиуса $\mu: P_2(n) \to P_2(n)$ [4]:

$$f(x) = \bigoplus_{a \in \mathbb{Z}_2^n} g(a) x^a, \quad g = \mu(f),$$
$$g(a) = \bigoplus_{x \leq a} f(x). \tag{1}$$

Для $g = \mu(f)$ обозначим $\{a_1, \ldots, a_r\}$ множество всех векторов, на которых $g(a_i) = 1$, $i = 1, \ldots, r$; единичным компонентам в a_i соответствуют переменные, входящие в i-е слагаемое АНФ функции f. Через $\mathbf{w}(x)$ ($\mathbf{w}(f)$) обозначим вес булева вектора x (функции f). Тогда $t = \mathbf{w}\left(\bigvee_{i=1}^k a_i\right)$ — количество существенных переменных функции f; $d = \max_{i=1,\ldots,r} \mathbf{w}(a_i)$ — её степень. Получаем следующие тесты принадлежности функции f классам ограниченной сложности:

- если t = k, то $f \in C_{n,k}$; если $t \leqslant k$, то $f \in C_{n,\leqslant k}$;
- если d=k, то $f\in D_{n,k}$; если $d\leqslant k$, то $f\in D_{n,\leqslant k}$;
- если w(g) = k, то $f \in L_{n,k}$; если $w(g) \leqslant k$, то $f \in L_{n,\leqslant k}$.

Чуть сложнее проверяется принадлежность функции классу NR_n . Составим матрицу A размера $r \times n$, строками которой являются векторы a_i , $i = 1, \ldots, r$. Тогда $f \in NR_n$, если и только если веса всех столбцов матрицы A не больше 1; другими словами, $f \notin NR_n$, если и только если какой-либо столбец матрицы A содержит хотя бы две единицы. Соответствующая проверка выполняется в алгоритме 1.

Задача доопределения функции до функции из заданного класса $\mathcal{C} \subseteq P_2(n)$ ставится так: частично определённая функция $f \in P_2(n)$ задана множествами $M_0 = \{x \in \mathbb{Z}_2^n : f(x) = 0\}$ и $M_1 = \{x \in \mathbb{Z}_2^n : f(x) = 1\}$, $M_0 \cap M_1 = \emptyset$; найти все такие функции $g \in \mathcal{C}$, что g(x) = f(x) для всех $x \in M_0 \cup M_1$. Рассмотрим случай $\mathcal{C} = D_{n, \leqslant k}$.

АНФ функции $f \in D_{n, \leq k}$ обладает следующим свойством: g(x) = 0 для всех x, таких, что w(x) > k, где $g = \mu(f)$. Обозначим вектор значений функции f как $\mathbf{b} = 0$

Алгоритм 1. Тест на принадлежность функции f классу NR_n

Вход: Функция $f \in P_2(n)$; матрица A со строками $\{a_1, \ldots, a_r\}$.

- 1: $x := a_1$.
- 2: Для i = 2, ..., r
- 3: $y := x \oplus a_i$.
- 4: Если $x\&\bar{y} = \mathbf{0}$, то выход, ответ: $f \notin NR_n$.
- 5: x := y.
- 6: Otbet: $f \in NR_n$.

 $=(b_0b_1...b_{2^n-1}), b_i=f(i)$ (здесь мы не различаем число в диапазоне от 0 до 2^n-1 и его представление в виде булева вектора длины n).

В самом общем виде (если $M_0 = M_1 = \emptyset$) решение задачи состоит в следующем: для каждого x, такого, что $\mathbf{w}(x) > k$, в соответствии с формулой (1) составляем уравнение $\bigoplus_{i \leq x} b_i = 0$. Обозначим матрицу полученной системы линейных однородных уравнений (СЛОУ) $B_{n,k}$. Все решения получившейся СЛОУ

$$B_{n,k}\mathbf{b} = \mathbf{0} \tag{2}$$

являются векторами значений функций из $D_{n,\leqslant k}$.

Для поиска доопределений частично заданной функции (если $M_0 \neq \emptyset$ или $M_1 \neq \emptyset$) решаем ту же систему относительно переменных множества $\{b_i : i \notin M_0 \cup M_1\}$, объявив константами 0 и 1 переменные b_i с номерами из множеств M_0 и M_1 соответственно. Таким образом, СЛОУ (2) преобразуется к системе уже не обязательно однородных уравнений.

ЛИТЕРАТУРА

- 1. Agibalov G. P. Substitution block ciphers with functional keys // Прикладная дискретная математика. 2017. № 38. С. 57–65.
- 2. *Агибалов Г. П.* SIBCiphers симметричные итеративные блочные шифры из булевых функций с ключевыми аргументами // Прикладная дискретная математика. Приложение. 2014. № 7. С. 43–48.
- 3. Sloan N. J. A. The On-line Encyclopedia of Integer Sequences. https://oeis.org/
- 4. *Логачев О. А.*, *Сальников А. А.*, *Ященко В. В.* Булевы функции в теории кодирования и криптологии. М.: МЦНМО, 2004.

УДК 519.7

DOI 10.17223/2226308X/12/18

О СВЯЗИ НЕЛИНЕЙНЫХ И ДИФФЕРЕНЦИАЛЬНЫХ СВОЙСТВ ВЕКТОРНЫХ БУЛЕВЫХ ФУНКЦИЙ¹

А. В. Милосердов

Исследуются связи таблиц линейного приближения (LAT) и распределения разностей (DDT) векторных булевых функции. Доказано, что наличие совпадающих строк в DDT и LAT является инвариантом относительно аффинной эквивалентности, а также относительно EA-эквивалентности для нормированных DDT- и

 $^{^{1}}$ Работа поддержана грантами РФФИ, проекты № 18-07-01394 и 18-31-00374.