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A METHOD FOR CONSTRUCTING PERMUTATIONS, INVOLUTIONS
AND ORTHOMORPHISMS WITH STRONG CRYPTOGRAPHIC

PROPERTIES

R.A. de la Cruz Jiménez

S-Boxes are crucial components in the design of many symmetric ciphers. To construct
permutations having strong cryptographic properties is not a trivial task. In this work,
we propose a new scheme based on the well-known Lai-Massey structure for generating
permutations of dimension n = 2k, k > 2. The main cores of our constructions are: the
inversion in GF(2k), an arbitrary k-bit non-bijective function (which has no pre-image
for 0) and any k-bit permutation. Combining these components with the finite field
multiplication, we provide new 8-bit permutations without fixed points possessing a
very good combination for nonlinearity, differential uniformity and minimum degree —
(104; 6; 7) which can be described by a system of polynomial equations with degree 3.
Also, we show that our approach can be used for constructing involutions and
orthomorphisms with strong cryptographic properties.
Keywords: S-Box, permutation, Boolean functions.

Let Vn be n-dimensional vector space over the field GF(2), by S(Vn) we denote the
symmetric group on set of 2n elements. The finite field of size 2n is denoted by GF(2n),
where GF(2n) = GF(2)[ξ]/g(ξ), for some irreducible polynomial g(ξ) of degree n. We use
the notation Z/2n for the ring of the integers modulo 2n. There are bijective mappings
between Z/2n, Vn, and GF(2n) defined by the correspondences:[

an−1 · 2n−1 + . . .+ a0

]
↔ (an−1, . . . , a0) ↔

[
an−1 · ξn−1 + . . .+ a0

]
.

Using these mapping in what follows, we make no difference between vectors of Vn and
the corresponding elements in Z/2n and GF(2n).

Throughout the article, we shall use the following operations and notations:

a‖b — concatenation of the vectors a, b of Vl, i.e. a vector from V2l;
0 — the null vector of Vl;
⊕ —bitwise eXclusive-OR— addition in GF(2l);
〈a, b〉 — the scalar product of vectors a = (al−1, . . . , a0), b = (bl−1, . . . , b0) of Vl,

〈a, b〉 = al−1bl−1 ⊕ . . .⊕ a0b0;
wH(a) — the Hamming weight of a binary vector a ∈ Vl;
⊗ —finite field multiplication;
Λ ◦Ψ — a composition of mappings, where Ψ is the first to operate;
Ψ−1 — the inverse transformation to some bijective mapping Ψ.

Now, we introduce some basic concepts needed to describe and analyze S-Boxes with
respect to linear, differential, and algebraic attacks. For this purpose, we consider an n-bit
S-Box Φ as a vector of Boolean functions:

Φ = (fn−1, . . . , f0), fi : Vn → V1, i = 0, 1, . . . n− 1.
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For some fixed i ∈ {0, 1, . . . , n − 1}, every Boolean function fi can be written as a sum
over V1 of distinct t-order products of its arguments, 0 6 t 6 n − 1; this is called the
algebraic normal form of fi. Functions fi are called coordinate Boolean functions of the
S-Box Φ and it is well known that most of the desirable cryptographic properties of Φ
can be defined in terms of their linear combinations (also-called S-Box component Boolean
functions).

Definition 1. For a, b ∈ Vn the Walsh transform WΦ(a, b) of an n-bit S-Box Φ is
defined as

WΦ(a, b) =
∑
x∈Vn

(−1)〈b,Φ(x)〉⊕〈a,x〉.

Definition 2. The nonlinearity of an n-bit S-Box Φ, denoted by NL(Φ), is defined as

NL(Φ) = min
a∈Vn\{0}

{NL(an−1fn−1 ⊕ . . .⊕ a0f0)},

where NL(an−1fn−1 ⊕ . . .⊕ a0f0) is the nonlinearity of the component Boolean function.

The nonlinearity NL(Φ) of an arbitrary n-bit S-Box Φ can be calculated as follows

NL(Φ) = 2n−1 − 1

2
max

a6=0,b∈Vn
|WΦ(a, b)|.

Definition 3. The differential uniformity of an n-bit S-Box Φ, denoted by δΦ, is
defined as

δ(Φ) = max
a6=0,b∈Vn

δΦ(a, b),

where δΦ(a, b) = |{x ∈ Vn : Φ(x⊕ a)⊕ Φ(x) = b}|.

Definition 4. The minimum degree of an S-Box Φ, denoted by deg(Φ), is defined as

deg(Φ) = min
a∈Vn\{0}

{deg(an−1fn−1 ⊕ . . .⊕ a0f0)}.

Definition 5. Let U be a non-empty subset of V2n, then the annihilating set of U is
defined as {p ∈ GF(2)[z1, . . . , z2n] : p(U) = 0}.

Definition 6. The algebraic immunity of U is defined as

AI(U) = min{deg p : 0 6= p ∈ GF(2)[z1, . . . , z2n], p(U) = 0}.

Definition 7. The graph algebraic immunity of n-bit S-Box Φ, denoted by AIgr(Φ),
is defined as

AIgr(Φ) = min{deg p : 0 6= p ∈ GF(2)[z1, . . . , z2n], p(gr(Φ)) = 0},

where gr(Φ) = {(x,Φ(x)) : x ∈ Vn} ⊆ V2n.

Thus, we focus on the graph algebraic immunity of S-Box Φ and also on the parameter
r

(AIgr(Φ))
Φ referred to as the number of all the independent equations in input and output
values of the S-Box Φ, i.e., equations of the form p(x,Φ(x)) = 0, x ∈ Vn.

Definition 8. An element a ∈ Vn is called a fixed point of an n-bit S-Box Φ if Φ(a) = a.

Definition 9. Two n-bit S-Boxes Φ1 and Φ2 are affine/linear equivalent if there exist
a pair of invertible affine/linear permutation A1(x) and A2(x) such that Φ1(x) = A2 ◦Φ2 ◦
◦ A1(x).
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1. Constructing permutations from smaller ones and finite field multiplication
In this section, we present a special algorithmic-algebraic scheme which utilize the Lai-

Massey structure for constructing 2k-bits permutations from smaller ones and finite field
multiplication. Our goal is to construct permutations with good cryptographic properties
that were enumerated above.

Let n = 2k be a natural number, where k > 2. Choosing
— the permutation polynomial I = P2k−2(x);
— non-bijective k-bit function ψ which has no pre-image for 0;
— arbitrary permutation h ∈ S(Vk),
we construct the following 2k-bit vectorial Boolean function G from V2k to V2k as follows
(Fig. 1).

Construction of G
For the input value (l‖r) ∈ V2k, we
define the corresponding output
value G(l‖r) = (l1‖r1), where

l1 = I(l)⊗ ψ(l ⊗ r);
r1 = h(r ⊗ ψ(l ⊗ r)).

l r

I ψ

h

l1 r1
Fig. 1. High level structure of G

The construction of G share similarities with 1-round of Lai-Massey structure replacing
in the latter the XORs by finite field multiplications. The non-bijective k-bit function ψ
(which has no pre-image for 0) is chosen in such a way to make invertible the structure
of G. Moreover, from the following construction

G−1(l1‖r1) = l‖r,
l = h−1(l1)⊗ I

(
ψ(h−1(l1)⊗ I(r1))

)
,

r = I
(
r1 ⊗ I

(
ψ(h−1(l1)⊗ I(r1))

))
we can easy derive the bijectivity of G which is a necessary design criterion for SPN ciphers
and quite useful for Feistel and Lai-Massey ciphers.

When n = 8, in correspondence with the suggested construction of G, we need to
construct the 4-bit non-bijective function ψ, the 4-bit permutation h ∈ S(V4) and the
inversion function I over the finite field GF(24) = GF(2)[ξ]/g(ξ), constructing the latter
with the irreducible polynomial g(ξ) = ξ4 + ξ + 1 ∈ GF(2)[ξ].

The main advantage offered by construction of G is that its allows to perform a search
based on random generation of 4-bit non-bijective function ψ and 4-bit permutation h
for finding 8-bit S-Boxes with actual cryptographic parameters. We have implemented the
above construction in SAGE [1] obtaining as a result a lot of affine nonequivalent 8-bit
permutations without fixed points with the following parameters:
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— minimum degree — 7;

— graph algebraic immunity — 3 (with
441 equations);

— 6 and 8 — uniform;

— nonlinearity in range of 100 up to a
value of 104.

1.1. C o n s t r u c t i n g i n v o l u t i o n s
In this section, we study how to build involutive S-Boxes with strong cryptographic

properties using constructions presented in the previous section. Involutions, i.e.
permutations with the property Φ ◦ Φ(x) = x, have an particular interest in cryptography
because in the case of lightweight block ciphers, these components are used to decrease the
cost of the implementation of decryption process.

Exploring the construction of G, we have found 8-bit involutions having few fixed points
with the following properties:

— minimum degree — 7;

— graph algebraic immunity — 3 (with
441 equations);

— 6 and 8 — uniform;

— nonlinearity in range of 100 up to a
value of 104.

Also, we have tried to design directly involutions without fixed points using our scheme.
To achieve the fulfilment of condition Φ ◦ Φ(x) = x, our strategy was to combine our
constructions into two rounds. Choosing two arbitrary k-bit involutions h1 , h2 , the following
constructions are able to produce 2k-bit involutions with strong cryptographic properties
(Fig. 2).

Construction of G invol

For the input value (l‖r) ∈ V2k, we
define the corresponding output value

G invol(l‖r) =
(
G∗

2
◦ G∗

1

)
(l‖r) = l1‖r1, where

G∗1(l‖r) = h1(l ⊗ I(ψ(l ⊗ r)))
∥∥∥h2(l ⊗ ψ(l ⊗ r));

G∗
2
(l‖r) =

(
l ⊗ ψ(l ⊗ r)

)∥∥∥(l ⊗ I(ψ(l ⊗ r))
)
.

l r

ψ

I

h1 h2

ψ

I

l1 r1

Fig. 2. Structure of Ginvol

As we can see from Fig. 2, the construction of G invol represents a composition of two
functions G∗

2
and G∗

1
, each of which has similarities with 1-round of Lai-Massey scheme.

The function G∗
2
is chosen in such a way to make the whole structure an involution. In fact,

by direct computations, it is not difficult to show that G invol ◦ G invol(x) = x for all x ∈ V2k.
Implementing the construction of G invol in SAGE [1], we have obtained affine non-

equivalent 8-bit involutions without fixed points (in contrast to the construction of G)
with the following parameters:
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— minimum degree — 7;

— graph algebraic immunity — 3 (with
441 equations);

— 8 — uniform;

— nonlinearity in range of 100 up to a
value of 102.

The possibility of having no fixed points in those involutions constructed under the G invol

scheme has some significances. In fact, the cryptographic properties related to linear and
differential cryptanalysis of involutions based on G-construction are stronger in comparison
with those generated by G invol.

1.2. S e a r c h i n g o f h i g h l y - n o n l i n e a r o r t h o m o r p h i s m s
In this section, we study the possibility of using ours methods to find permutations Φ

such that Φ(x) ⊕ x are permutations too. In the public literature, these permutations
are called orthomorphisms. Orthomorphisms are pertinent to the construction of mutually
orthogonal Latin squares and can be used to design check digit systems. In cryptography,
applications of orthomorphisms of the group (Vn, ⊕) are found in the construction of block
ciphers, stream ciphers and hash functions (in the Lai — Massey scheme most famously
in well-known FOX [2] family of block ciphers, Chinese stream cipher LOISS [3] and hash
function EDON-R [4]). More recently, orthomorphisms have been used to strengthen the
Even-Mansour block cipher against a cryptographic attack which makes the use of the
nonuniformity of Φ(x)⊕ x when Φ is a random permutation [5].

Exploring and exploiting the construction of G, we have found highly-nonlinear
orthomorphisms with the following parameters:

— minimum degree — 7;

— graph algebraic immunity — 3 (with
441 equations);

— 8 — uniform;

— nonlinearity in range of 100 up to a
value of 102.

1.3. S o m e e x a m p l e s
We include in Table some permutations generated by our method, one ordinary

permutation with the best founded cryptographic parameters, two involutions and one
orthomophism.

Some constructed 8-bit S-Boxes

S-Box G1
NL(G1) = 104, δ(G1) = 6, deg(G1) = 7, AIgr(G1) = 3, r(3)G1 = 441

6e e8 5f a8 32 24 a7 0e 1d 64 87 14 c3 6f 95 92
fb 4c 82 99 3d 19 ac 45 9f fe de 15 b9 f9 e2 8a
ec f5 0d ea 3a 77 47 12 11 01 97 c5 13 10 81 9d
ed 75 88 68 fa a4 c0 ca ba b2 3b 61 ae 0a 6c 65
d5 42 5d dc f2 85 9b a6 67 50 63 91 c7 34 80 d7
96 1b 8e 5e 94 2f b1 ad a0 93 2c 52 d0 29 07 c8
8d 7f 49 6b 36 2e d9 e0 37 cd 83 af 6d 57 ce b3
5c c6 60 d8 3f e4 4f ab 56 a1 72 e7 69 f1 dd 9c
84 90 25 4b 76 5a 6a da f0 e5 53 5b 7e 2a 2b d3
35 a3 1c a2 28 9e 30 a9 b4 06 0b ef aa 43 e9 7d
e1 3e 31 44 54 db 79 c9 41 fc f7 66 7a b7 51 38
df 62 40 bb 26 09 f3 cf d2 1a 20 0c 04 16 33 22
4e a5 58 9a d6 02 e6 cb be eb 86 7b bd d1 03 f6
ee 8f 0f 55 8b 4a 7c 23 2d b6 1f c2 17 bf 73 08
cc 70 1e 59 46 e3 27 ff 78 b8 18 21 d4 bc 98 f4
c1 c4 74 39 89 f8 fd 48 71 4d b0 3c 00 8c b5 05
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Involution G2
NL(G2) = 104, δ(G2) = 6, deg(G2) = 7, AIgr(G2) = 3, r(3)G2 = 441

00 10 90 e0 d0 b0 70 60 f0 20 c0 50 a0 40 30 80
01 11 19 85 2f 2c 8b f5 2e 12 fa 9a 8c 98 fb 93
09 2d 4e 3c 47 d5 36 dc 3b 29 db 46 15 21 18 14
0e b3 b8 64 b4 81 26 3f 86 6b 89 28 23 65 3e 3
0d 87 8a 63 6c 9c 2b 24 66 4f 96 9b 83 4d 22 49
0b ad 62 be 61 5c b7 a8 69 b2 a3 5b 55 ed e1 e9
07 54 52 43 33 3d 48 67 c2 58 6e 39 44 cc 6a cb
06 bd bf 7c aa e2 76 df a5 b9 dd e4 73 ee de a9
0f 35 c6 4c c3 13 38 41 c8 3a 42 16 1c 8e 8d 8f
02 94 92 1f 91 d7 4a e7 1d d3 1b 4b 45 d6 ea e5
0c c1 c9 5a cd 78 ab f9 57 7f 74 a6 ac 51 fd ff
05 c4 59 31 34 b5 cf 56 32 79 bb ba ce 71 53 72
0a a1 68 84 b1 c7 82 c5 88 a2 ca 6f 6d a4 bc b6
04 f6 d8 99 d4 25 9d 95 d2 fc fe 2a 27 7a 7e 77
03 5e 75 e3 7b 9f e8 97 e6 5f 9e f1 f2 5d 7d f7
08 eb ec f4 f3 17 d1 ef f8 a7 1a 1e d9 ae da af

Involution Ginvol
3

NL(Ginvol
3 ) = 100, δ(Ginvol

3 ) = 8, deg(Ginvol
3 ) = 7, AIgr(Ginvol

3 ) = 3, r(3)Ginvol
3

= 441

a0 af 61 7b 5e 2f 12 27 be 38 b6 6a 76 33 71 36
80 67 06 a4 e4 59 17 16 9d 6e d5 51 de ec a7 93
40 37 78 9e d9 fa ff 07 58 3e 9c b1 b2 3f d6 05
90 6c e9 0d a1 75 0f 21 09 74 b7 69 ea bc 29 2d
20 a3 f1 ed b3 db c4 fc df 8e bf e7 c2 8f a5 8d
70 1b 62 cf bd f4 89 cc 28 15 87 f8 f3 63 04 b8
d0 02 52 5d 86 ce 77 11 83 3b 0b aa 31 a8 19 cb
50 0e 96 7c 39 35 0c 66 22 88 9f 03 73 da 8c d7
10 e2 c6 68 fd cd 64 5a 79 56 eb f5 7e 4f 49 4d
30 c7 ca 1f c5 a9 72 9b f2 f6 ad 97 2a 18 23 7a
00 34 c9 41 13 4e e6 1e 6d 95 6b e8 e3 9a c3 01
e0 2b 2c 44 c1 d4 0a 3a 5f c8 d2 d8 3d 54 08 4a
f0 b4 4c ae 46 94 82 91 b9 a2 92 6f 57 85 65 53
60 d3 ba d1 b5 1a 2e 7f bb 24 7d 45 e1 e5 1c 48
b0 dc 81 ac 14 dd a6 4b ab 32 3c 8a 1d 43 fe f7
c0 42 98 5c 55 8b 99 ef 5b fb 25 f9 47 84 ee 26

Orthomorphism G4
NL(G4) = 102, δ(G4) = 8, deg(G4) = 7, AIgr(G4) = 3, r(3)G4 = 441

a1 f9 70 7e a7 c2 12 d2 88 ed 62 d5 2a 2e 08 79
c6 fc b0 90 ba de cc 66 58 c1 5b 00 15 e0 64 25
37 f8 9e 28 83 4e 17 7d 16 a2 67 2b 7a 29 57 a9
31 f7 e2 b6 21 98 6a d1 92 71 74 97 85 8d 0a e3
18 f4 be a0 1b 32 39 27 80 db 6e 0e d4 d6 5e 61
65 f5 ce a6 6d 50 5c 6c 4b 36 19 0b 02 eb c4 8b
33 f2 82 e1 ec ab 13 c7 9a 73 b7 8a a3 9d 89 45
72 fb b8 35 3b c8 d9 1e 48 d0 68 e4 30 c3 1a 24
8e f1 46 9c 2c 01 07 cd b5 3d 03 54 ac bb 43 8c
51 f3 6b 40 26 bd e8 b2 05 76 0d 4c 11 e6 b3 86
c5 f6 b4 94 dc 60 55 56 44 47 cb 69 53 7c 38 84
52 fa e7 81 2d 42 1d dd ea 96 ee 87 ad 0c 20 93
3a fe 3c 78 77 ca 23 da a4 22 b9 e9 91 ae 5a a8
d8 f0 9b 5d 14 c9 aa 3e 49 10 d7 09 34 7b 59 1c
6f ff 8f 2f 3f 0f cf 5f ef 1f 4f 9f df af bf 7f
4a fd 06 95 d3 b1 63 99 c0 75 4d bc a5 e5 41 04
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2. Conclusion and Future Work
In this work, we have presented a new algorithmic-algebraic scheme based in the Lai —

Massey structure for constructing permutations of dimension n = 2k, k > 2. For the
common case k = 8, we have obtained new cryptographically strong 8-bit permutations
having better resistance to algebraic attacks in comparison with the inversion function in
GF(28) which so far has the best-known values for nonlinearity and differential uniformity.
Compared to the best nonlinearity (108, for k = 4) offered by the construction presented
in [6] and later generalized in [7], the nonlinearity for the permutations obtained by our
scheme slightly decrease up to 104, but to the best of our knowledge the schemes presented
in [6, 7] can not produce involutions and orthomorphisms with strong cryptographic
properties, so we can conclude that the new structure presented in this work is more powerful
and attractive due to the diversity of permutations that can be constructed. Interestingly,
the involutions and orthomorphisms founded in this work have comparable classical
cryptographic properties like those constructed by using spectral-linear and spectral-
difference methods [8]. The main advantage of our 8-bit permutations is that they can be
constructed using smaller 4-bit components which could be useful for the implementation
of the S-Box in hardware or using a bit-sliced approach. We only presented a new scheme
that can help to find permutations, involutions and orthomophisms with rather good
cryptographic properties. There are several questions (theoretical results, hardware and
bit-sliced implementations, efficient methods of masking) about the construction suggested
in this work which are left as future work.
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SOME PROPERTIES OF THE OUTPUT SEQUENCES
OF COMBINED GENERATOR OVER FINITE FIELDS

Aulet R. Rodriguez

The sequences are an important part of the cryptography and analysis of their
properties is of great interest. In this paper, the following characteristics of combined


