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COMMUTATIVE FEEBLY INVO-CLEAN GROUP RINGS

A commutative ring R  is called feebly invo-clean if any its element is of the form
v e f+ − , where v  is an involution and e f,  are idempotents. For every com-
mutative unital ring R  and every abelian group G  we find a necessary and suffi-
cient condition only in terms of R , G  and their sections when the group ring

[ ]R G  is feebly invo-clean. Our result improves two recent own achievements
about commutative invo-clean and weakly invo-clean group rings, published in
Univ. J. Math. & Math. Sci. (2018) and Ural Math. J. (2019), respectively.
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1. Introduction and Conventions

Throughout the current paper, we will assume that all groups G  are multiplicative
abelian and all rings R  with Jacobson radical ( )J R  are associative, containing the
identity element 1  which differs from the zero element 0 . The standard terminology
and notation are mainly in agreement with [9 and 10], whereas the specific notion and
notation shall be explained explicitly below. As usual, both objects R  and G  form the
group ring [ ]R G  of G  over R .

The next concepts appeared in [1, 2, and 3], respectively.
Definition 1.1. A ring R  is said to be invo-clean if, for each r R∈ , there exist an

involution v  and an idempotent e  such that r v e= + . If r v e= +  or r v e= − , the ring
is called weakly invo-clean.

The next necessary and sufficient condition for a commutative ring R  to be invo-
clean was established in [1, 2], namely: A ring R  is invo-clean if, and only if,

1 2R R R≅ × , where 1R  is a nil-clean ring with 2 2z z=  for all 1( )z J R∈ , and 2R  is a

ring of characteristic 3  whose elements satisfy the equation 3x x= . Moreover, it was
proved in [6] that a ring R  is weakly invo-clean ⇔  either R  is invo-clean or R  can
be decomposed as 5R K= ×] , where {0}K =  or K  is invo-clean.

The above two notions could be expanded as follows:
Definition 1.2. A ring R  is said to be feebly invo-clean if, for each r R∈ , there

exist an involution v  and idempotents e f,  such that r v e f= + − .
We will give up in the sequel an useful criterion for a commutative ring to be feebly

invo-clean in order to be successfully applied to commutative group rings (compare
with Proposition 2.2).
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It was asked in [6] to find a suitable criterion only in terms of the commutative uni-
tal ring R  and the abelian group G  when the group ring [ ]R G  is feebly invo-clean. So,
the goal of this short article is to address that question in the affirmative. Some related
results in this area can also be found in [4 and 7].

2. The Characterization Result

We begin here with the following key formula from [8] which will be freely used
below without concrete citation: Suppose that R  is a commutative ring and G  is an
abelian group. Then

( [ ]) ( )[ ] ( 1) ( )pJ R G J R G r g g G pr J R= + − | ∈ , ∈ ,

where pG  designates the p -primary component of G .
The next two technicalities are crucial for our further considerations.
Lemma 2.1. Let K  be a commutative ring of characteristic 5 . Then K  is feebly

invo-clean ⇔  5x x=  holds for any x K∈ .
Proof. The "left-to-right" implication is almost trivial as writing x v e f= + −  with

2 1v = , 2e e=  and 2f f= , we have that 5 5 5 5 5( )x v e f v e f v e f x= + − = + − = + − = , as
asserted.

As for the "right-to-left" implication, we process like this: Given an arbitrary non-
identity element x  in K . Then the subring, S , generated by 1  and x  will have the
same property, namely its characteristic is again 5  and 5y y=  for all y S∈ . So, with
no harm of generality, we may replace K  by this subring S , and thus it needs to prove
the wanted representation property in S  only. To that purpose, we claim that S  is iso-
morphic to a quotient of the factor-ring 5

5 5 5 5 5 5[ ] ( )X X X/ − ≅ × × × ×] ] ] ] ] ]  of
the polynomial ring 5[ ]X]  over 5] . In fact, we just consider the map 5[ ]X S→] ,
defined by mapping X x→ , which is elementary checked to be a surjective homomor-
phism with kernel which contains the ideal generated by 5X X− , and henceforth the
classical Homomorphism Theorem works to get the desired claim. Working now in the
direct product of five copies of the five-element field 5 {0 1 2 3 4 5 0}= , , , , | =] , a plain
technical argument gives our wanted initial assertion that S  and hence K  are both fee-
bly invo-clean. This is subsumed by the presentations 0 1 0 1= + − , 1 1 0 0= + − ,
2 1 1 0= + − , 3 4 0 1= + −  and 4 4 0 0= + − , where 24 1= , 21 1=  and 20 0= . ,

Proposition 2.2. A commutative ring R  is feebly invo-clean ⇔  R P K= ×  for two
rings P K, , where {0}P =  or P  is invo-clean, and {0}K =  or K  possesses charac-

teristic 5  such that 5x x= , x K∀ ∈ .
Proof. " ⇒ ". It follows from the corresponding characterization method used in [3,

Theorem 2.6].
" ⇐ ". Firstly, it needs to show that K  is feebly invo-clean. This, however, follows di-

rectly from Lemma 2.1. Furthermore, one suffices to observe again with [3, Theorem 2.6]
at hand that the direct product of such a ring K  with an invo-clean ring remains a feebly
invo-clean ring, thus getting resultantly that R  is feebly invo-clean, as expected. ,

We are now ready to proceed by proving the following preliminary statement (see
[5] as well).
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Proposition 2.3. Suppose R  is a non-zero commutative ring and G  is an abelian
group. Then [ ]R G  is invo-clean if, and only if, R  is invo-clean having the decomposi-
tion 1 2R R R= ×  such that precisely one of the next three items holds:

(0) {1}G =
or
(1) 2G| | > , 2 {1}G = , 1 {0}R =  or 1R  is a ring of char 1( ) 2R = , and 2 {0}R = , or

2R  is a ring of char 2( ) 3R =
or
(2) 2G| |= , 2

1 12 2r r=  for all 1 1r R∈  (in addition 4 0=  in 1R ), and 2 {0}R =  or 2R
is a ring of char 2( ) 3R = .

Proof. If G  is the trivial i.e., the identity group, there is nothing to do, so we shall
assume hereafter that G  is non-identity.

"Necessity." Since there is an epimorphism [ ]R G R→ , and an epimorphic image of
an invo-clean ring is obviously an invo-clean ring (see, e.g., [1]), it follows at once that
R  is again an invo-clean ring. According to the criterion for invo-cleanness alluded to
above, one writes that 1 2R R R= × , where 1R  is a nil-clean ring with 2 2a a=  for all

1( )a J R∈  and 2R  is a ring whose elements satisfy the equation 3x x= . Therefore, it
must be that 1 2[ ] [ ] [ ]R G R G R G≅ × , where it is not too hard to verify by [1] that both

1[ ]R G  and 2[ ]R G  are invo-clean rings.
First, we shall deal with the second direct factor 2[ ]R G  being invo-clean. Since

char 2( ) 3R = , it follows immediately that char 2( [ ]) 3R G =  too. Thus an application of
an assemble of facts from [1, 2] allows us to deduce that all elements in 2[ ]R G  also

satisfy the equation 3y y= . So, given [ ]g G R G∈ ⊆ , it follows that 3g g= , that is,
2 1g = .

Next, we shall treat the invo-cleanness of the group ring 1[ ]R G . Since char 1( )R  is a
power of 2  (see [1]), it follows the same for 1[ ]R G . Consequently, utilizing once again
an assortment of results from [1, 2], we infer that 1[ ]R G  should be nil-clean, so that

2 2z z=  for all 1( [ ])z J R G∈ . That is why, invoking the criterion from [7], we have that

G  is a 2 -group. We claim that even 2 1G = . In fact, for an arbitrary g G∈ , we derive
with the aid of the aforementioned formula from [8] that 11 ( [ ])g J R G− ∈ , because

12 ( )J R∈ . Hence 2(1 ) 2(1 )g g− = −  which forces that 21 2 2 2g g g− + = −  and that
2 1g = , as desired. We now assert that char 1( ) 2R =  whenever 2G| |> . To that pur-

pose, there are two nonidentity elements g h≠  in G  with 2 2 1g h= = . Furthermore,
again appealing to the formula from [8], the element 1 1 2g h g h− + − = − −  lies in

1( [ ])J R G , because 12 ( )J R∈ . Thus 2(2 ) 2(2 )g h g h− − = − −  which yields that

2 2 2 2 0g h gh− − + = . Since 1gh ≠ as for otherwise 1g h h−= = , a contradiction, this
record is in canonical form. This assures that 2 0= , as wanted.
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However, in the case when 2G| |= , i.e. when 2{1 1}G g g g= , | = = , we can con-

clude that 22 2r r=  for any 1r R∈ . Indeed, in view of the already cited formula from
[8], the element (1 )r g−  will always lie in 1( [ ])J R G , because 12 ( )J R∈ . We therefore

may write 2[ (1 )] 2 (1 )r g r g− = −  which ensures that 2 22 2 2 2r r g r rg− = −  is canoni-

cally written on both sides. But this means that 22 2r r= , as pursued. Substituting
2r = , one obtains that 4 0= . Notice also that 22 2r r=  for all 1r R∈  and 2 2a a=  for

all 1( )a J R∈  will imply that 2 0a = .
"Sufficiency." Foremost, assume that (1) is true. Since 1R  has characteristic 2 ,

whence it is nil-clean, and G  is a 2 -group, an appeal to [7] allows us to get that 1[ ]R G

is nil-clean as well. Since 2 2 0z z= =  for every 1( )z J R∈ , it is routinely checked that
2 2 0δ = δ =  for each 1( [ ])J R Gδ ∈ , exploiting the formula from [8] for 1( [ ])J R G  and

the fact that 1[ ]R G  is a modular group algebra of characteristic 2 . That is why, by a
consultation with [1], one concludes that 1[ ]R G  is invo-clean, as expected. Further, by a
new usage of [1], we derive that 2[ ]R G  is an invo-clean ring of characteristic 3 . To see

that, given 2[ ]x R G∈ , we write gg Gx r g
∈

= ∑  with 2gr R∈  satisfying 3
g gr r= .

Since 2 1G =  will easily imply that 3g g= , one obtains that
3 3 3 3( )g g gg G g G g Gx r g r g r g x

∈ ∈ ∈
= = = =∑ ∑ ∑ , as needed. We finally conclude with

the help of [1] that 1 2[ ] [ ] [ ]R G R G R G≅ × is invo-clean, as expected.

Let us now point (2) be fulfilled. Since 2 1G = , similarly to (1), 2R  being invo-
clean of characteristic 3  implies that 2[ ]R G  is invo-clean, too. In order to prove that

1[ ]R G  is invo-clean, we observe that 1R  is nil-clean with 12 ( )J R∈ . According to [7],
the group ring 1[ ]R G  is also nil-clean. What remains to show is that for any element δ

of 1( [ ])J R G  the equality 2 2δ = δ  is valid. Since in conjunction with the explicit for-
mula quoted above for the Jacobson radical, an arbitrary element in 1( [ ])J R G  has the
form (1 )j j g r g′+ + − , where 1( )j j J R′, ∈  and 1r R∈ , we have that

2 2 2 2
1 1[ (1 )] ( ( ) 2 ( ))[ ] (1 )j j g r g J R J R G r g′+ + − ∈ + + − . However, using the given con-

ditions, 2 22 2z z z= =  and thus 2 2 0z z= =  for any 1( )z J R∈ . Consequently, one
checks that

2 2 2 2[ (1 )] (1 ) 2 (1 ) 2 (1 ) 2[ (1 )]j j g r g r g r g r g j j g r g′ ′+ + − = − = − = − = + + − , because
22 2r r= , as required. Therefore, 1[ ]R G  is invo-clean with [1] at hand. Finally, again

[1] gives that 1 2[ ] [ ] [ ]R G R G R G≅ ×  is invo-clean, as promised. ,
It is worthwhile noticing that concrete examples of an invo-clean ring of character-

istic 4 , such that its elements are solutions of the equation 22 2r r= , are the rings 4]
and 4 4×] ] .
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We thereby come to our main theorem which states the following:
Theorem 2.4. Let G  be an abelian group and let R  be a commutative non-zero

ring. Then the group ring [ ]R G  is feebly invo-clean if, and only if, at most one of the
next points is valid:

(1) {1}G =  and R  is feebly invo-clean.
(2) {1}G ≠  and R P K≅ × , where 1 2P R R≅ ×  is an invo-clean ring and either

{0}K =  or K  is a ring of char ( ) 5K =  which is a subdirect product of a family of
copies of the field 5]  such that either

(2.1) {0}P =  and 4 {1}G =
or
(2.2) 2G| |> , 2 {1}G = , {0}P ≠  with 1 {0}R =  or 1R  is a ring of char 1( ) 2R =  and

2 {0}R =  or 2R  is a ring of char 2( ) 3R =
or
(2.3) 2G| |= , {0}P ≠  with 2

1 12 2r r=  for all 1 1r R∈  (in addition 4 0=  in 1R ) and

2 {0}R =  or 2R  is a ring of char 2( ) 3R = .
Proof. If G  is trivial, there is nothing to prove because of the validity of the iso-

morphism [ ]R G R≅ , so let us assume hereafter that G  is non-trivial.
"Necessity." As the feebly invo-cleanness of the group ring [ ]R G  implies the same

property for R , utilizing Proposition 2.2 we come to the fact that [ ] [ ] [ ]R G P G K G≅ ×
will imply feebly invo-cleanness of both group rings [ ]P G  and [ ]K G  whence [ ]P G  is
necessarily invo-clean whereas [ ]K G  is either zero or a subdirect product of a family of
copies of the field 5] . After that, under the presence of [ ] {0}P G ≠ , we just need apply
Proposition 2.3 to deduce the described above things in points (2), (2.2) and (2.3). Let-
ting now [ ] {0}P G = , we shall deal only with [ ]K G . To that goal, what we now assert

is that the group ring [ ]K G  having the property 5x x=  for all [ ]x K G∈  with

char ( [ ]) 5K G =  yields that K  has the property 5y y=  for all y K∈  with char ( ) 5K =

and 4 {1}G = . Indeed, since [ ]K K G⊆  and [ ]G K G⊆ , this can be extracted elemen-
tarily thus substantiating our initial statement after all.

"Sufficiency." Item (2) ensures that [ ] [ ] [ ]R G P G K G≅ ×  and so it is simple verified
that the feebly invo-cleanness of both [ ]P G  and [ ]K G  will assure feebly invo-
cleanness of [ ]R G  as well. That is why, we will be concentrated separately on these
two group rings. Firstly, the stated above conditions are a guarantor with the aid of
Proposition 2.3 that [ ]P G  is invo-clean. Secondly, it is pretty easily seen that as 5y y=

and 5g g=  for all y K∈  and g G∈ , because K  is a subdirect product of copies of

the field 5]  possessing characteristic 5  and 4 {1}G = , we may conclude that 5x x=

holds in [ ]K G  too, as required. This substantiates our former assertion after all. ,
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Коммутативное кольцо R называется мало инво-чистым, если каждый его элемент
имеет вид v + e – f, где v – инволюция, а e, f – идемпотенты. Для каждого коммутативного
унитального кольца R и каждой абелевой группы G найдены необходимые и достаточные
условия, когда групповое кольцо R[G] мало инво-чисто. Результаты статьи улучшают
два последних достижения автора по коммутативным инво-чистым и слабо инво-чистым
групповым кольцам, опубликованные в Универсальном журнале математики и математи-
ческих наук (2018) и Уральском математическом журнале (2019) соответственно.
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