2019 Математика и механика № 61

МАТЕМАТИКА

УДК 512.55 DOI 10.17223/19988621/61/1 MSC 20C07; 16D60; 16S34; 16U60

P.V. Danchev

COMMUTATIVE FEEBLY INVO-CLEAN GROUP RINGS

A commutative ring R is called *feebly invo-clean* if any its element is of the form v+e-f, where v is an involution and e,f are idempotents. For every commutative unital ring R and every abelian group G we find a necessary and sufficient condition only in terms of R, G and their sections when the group ring R[G] is feebly invo-clean. Our result improves two recent own achievements about commutative invo-clean and weakly invo-clean group rings, published in Univ. J. Math. & Math. Sci. (2018) and Ural Math. J. (2019), respectively.

Keywords: invo-clean rings, weakly invo-clean rings, feebly invo-clean rings, group rings.

1. Introduction and Conventions

Throughout the current paper, we will assume that all groups G are multiplicative abelian and all rings R with Jacobson radical J(R) are associative, containing the identity element 1 which differs from the zero element 0. The standard terminology and notation are mainly in agreement with [9 and 10], whereas the specific notion and notation shall be explained explicitly below. As usual, both objects R and G form the group ring R[G] of G over R.

The next concepts appeared in [1, 2, and 3], respectively.

Definition 1.1. A ring R is said to be *invo-clean* if, for each $r \in R$, there exist an involution v and an idempotent e such that r = v + e. If r = v + e or r = v - e, the ring is called *weakly invo-clean*.

The next necessary and sufficient condition for a commutative ring R to be invoclean was established in [1, 2], namely: A ring R is invo-clean if, and only if, $R \cong R_1 \times R_2$, where R_1 is a nil-clean ring with $z^2 = 2z$ for all $z \in J(R_1)$, and R_2 is a ring of characteristic 3 whose elements satisfy the equation $x^3 = x$. Moreover, it was proved in [6] that a ring R is weakly invo-clean \Leftrightarrow either R is invo-clean or R can be decomposed as $R = K \times \mathbb{Z}_5$, where $K = \{0\}$ or K is invo-clean.

The above two notions could be expanded as follows:

Definition 1.2. A ring R is said to be *feebly invo-clean* if, for each $r \in R$, there exist an involution v and idempotents e, f such that r = v + e - f.

We will give up in the sequel an useful criterion for a commutative ring to be feebly invo-clean in order to be successfully applied to commutative group rings (compare with Proposition 2.2).

6 P.V. Danchev

It was asked in [6] to find a suitable criterion only in terms of the commutative unital ring R and the abelian group G when the group ring R[G] is feebly invo-clean. So, the goal of this short article is to address that question in the affirmative. Some related results in this area can also be found in [4 and 7].

2. The Characterization Result

We begin here with the following key formula from [8] which will be freely used below without concrete citation: Suppose that R is a commutative ring and G is an abelian group. Then

$$J(R[G]) = J(R)[G] + \langle r(g-1)|g \in G_p, pr \in J(R) \rangle,$$

where G_p designates the p-primary component of G.

The next two technicalities are crucial for our further considerations.

Lemma 2.1. Let K be a commutative ring of characteristic 5. Then K is feebly invo-clean $\Leftrightarrow x^5 = x$ holds for any $x \in K$.

Proof. The "left-to-right" implication is almost trivial as writing x = v + e - f with $v^2 = 1$, $e^2 = e$ and $f^2 = f$, we have that $x^5 = (v + e - f)^5 = v^5 + e^5 - f^5 = v + e - f = x$, as asserted.

As for the "right-to-left" implication, we process like this: Given an arbitrary non-identity element x in K. Then the subring, S, generated by 1 and x will have the same property, namely its characteristic is again 5 and $y^5 = y$ for all $y \in S$. So, with no harm of generality, we may replace K by this subring S, and thus it needs to prove the wanted representation property in S only. To that purpose, we claim that S is isomorphic to a quotient of the factor-ring $\mathbb{Z}_5[X]/(X^5-X)\cong \mathbb{Z}_5\times \mathbb{Z}_5\times \mathbb{Z}_5\times \mathbb{Z}_5\times \mathbb{Z}_5$ of the polynomial ring $\mathbb{Z}_5[X]$ over \mathbb{Z}_5 . In fact, we just consider the map $\mathbb{Z}_5[X]\to S$, defined by mapping $X\to x$, which is elementary checked to be a surjective homomorphism with kernel which contains the ideal generated by X^5-X , and henceforth the classical Homomorphism Theorem works to get the desired claim. Working now in the direct product of five copies of the five-element field $\mathbb{Z}_5=\{0,1,2,3,4|5=0\}$, a plain technical argument gives our wanted initial assertion that S and hence K are both feebly invo-clean. This is subsumed by the presentations 0=1+0-1, 1=1+0-0, 2=1+1-0, 3=4+0-1 and 4=4+0-0, where $4^2=1$, $1^2=1$ and $0^2=0$. \square

Proposition 2.2. A commutative ring R is feebly invo-clean $\Leftrightarrow R = P \times K$ for two rings P, K, where $P = \{0\}$ or P is invo-clean, and $K = \{0\}$ or K possesses characteristic 5 such that $x^5 = x$, $\forall x \in K$.

Proof. " \Rightarrow ". It follows from the corresponding characterization method used in [3, Theorem 2.6].

" \Leftarrow ". Firstly, it needs to show that K is feebly invo-clean. This, however, follows directly from Lemma 2.1. Furthermore, one suffices to observe again with [3, Theorem 2.6] at hand that the direct product of such a ring K with an invo-clean ring remains a feebly invo-clean ring, thus getting resultantly that K is feebly invo-clean, as expected. \Box

We are now ready to proceed by proving the following preliminary statement (see [5] as well).

Proposition 2.3. Suppose R is a non-zero commutative ring and G is an abelian group. Then R[G] is invo-clean if, and only if, R is invo-clean having the decomposition $R = R_1 \times R_2$ such that precisely one of the next three items holds:

(0)
$$G = \{1\}$$

or

(1) |G| > 2, $G^2 = \{1\}$, $R_1 = \{0\}$ or R_1 is a ring of char $(R_1) = 2$, and $R_2 = \{0\}$, or R_2 is a ring of char $(R_2) = 3$

or

(2) |G|=2, $2r_1^2=2r_1$ for all $r_1 \in R_1$ (in addition 4=0 in R_1), and $R_2=\{0\}$ or R_2 is a ring of char $(R_2)=3$.

Proof. If G is the trivial i.e., the identity group, there is nothing to do, so we shall assume hereafter that G is non-identity.

"Necessity." Since there is an epimorphism $R[G] \rightarrow R$, and an epimorphic image of an invo-clean ring is obviously an invo-clean ring (see, e.g., [1]), it follows at once that R is again an invo-clean ring. According to the criterion for invo-cleanness alluded to above, one writes that $R = R_1 \times R_2$, where R_1 is a nil-clean ring with $a^2 = 2a$ for all $a \in J(R_1)$ and R_2 is a ring whose elements satisfy the equation $x^3 = x$. Therefore, it must be that $R[G] \cong R_1[G] \times R_2[G]$, where it is not too hard to verify by [1] that both $R_1[G]$ and $R_2[G]$ are invo-clean rings.

First, we shall deal with the second direct factor $R_2[G]$ being invo-clean. Since $\operatorname{char}(R_2)=3$, it follows immediately that $\operatorname{char}(R_2[G])=3$ too. Thus an application of an assemble of facts from [1, 2] allows us to deduce that all elements in $R_2[G]$ also satisfy the equation $y^3=y$. So, given $g\in G\subseteq R[G]$, it follows that $g^3=g$, that is, $g^2=1$.

Next, we shall treat the invo-cleanness of the group ring $R_1[G]$. Since $\operatorname{char}(R_1)$ is a power of 2 (see [1]), it follows the same for $R_1[G]$. Consequently, utilizing once again an assortment of results from [1, 2], we infer that $R_1[G]$ should be nil-clean, so that $z^2 = 2z$ for all $z \in J(R_1[G])$. That is why, invoking the criterion from [7], we have that G is a 2-group. We claim that even $G^2 = 1$. In fact, for an arbitrary $g \in G$, we derive with the aid of the aforementioned formula from [8] that $1 - g \in J(R_1[G])$, because $2 \in J(R_1)$. Hence $(1-g)^2 = 2(1-g)$ which forces that $1-2g+g^2=2-2g$ and that $g^2 = 1$, as desired. We now assert that $\operatorname{char}(R_1) = 2$ whenever |G| > 2. To that purpose, there are two nonidentity elements $g \neq h$ in G with $g^2 = h^2 = 1$. Furthermore, again appealing to the formula from [8], the element 1-g+1-h=2-g-h lies in $J(R_1[G])$, because $2 \in J(R_1)$. Thus $(2-g-h)^2 = 2(2-g-h)$ which yields that 2-2g-2h+2gh=0. Since $gh \neq 1$ as for otherwise $g=h^{-1}=h$, a contradiction, this record is in canonical form. This assures that 2=0, as wanted.

8 P.V. Danchev

However, in the case when |G|=2, i.e. when $G=\{1,g|g^2=1\}=\langle g\rangle$, we can conclude that $2r^2=2r$ for any $r\in R_1$. Indeed, in view of the already cited formula from [8], the element r(1-g) will always lie in $J(R_1[G])$, because $2\in J(R_1)$. We therefore may write $[r(1-g)]^2=2r(1-g)$ which ensures that $2r^2-2r^2g=2r-2rg$ is canonically written on both sides. But this means that $2r^2=2r$, as pursued. Substituting r=2, one obtains that 4=0. Notice also that $2r^2=2r$ for all $r\in R_1$ and $a^2=2a$ for all $a\in J(R_1)$ will imply that $a^2=0$.

"Sufficiency." Foremost, assume that (1) is true. Since R_1 has characteristic 2, whence it is nil-clean, and G is a 2-group, an appeal to [7] allows us to get that $R_1[G]$ is nil-clean as well. Since $z^2=2z=0$ for every $z\in J(R_1)$, it is routinely checked that $\delta^2=2\delta=0$ for each $\delta\in J(R_1[G])$, exploiting the formula from [8] for $J(R_1[G])$ and the fact that $R_1[G]$ is a modular group algebra of characteristic 2. That is why, by a consultation with [1], one concludes that $R_1[G]$ is invo-clean, as expected. Further, by a new usage of [1], we derive that $R_2[G]$ is an invo-clean ring of characteristic 3. To see that, given $x\in R_2[G]$, we write $x=\sum_{g\in G}r_gg$ with $r_g\in R_2$ satisfying $r_g^3=r_g$. Since $G^2=1$ will easily imply that $g^3=g$, one obtains that $x^3=(\sum_{g\in G}r_gg)^3=\sum_{g\in G}r_g^3g^3=\sum_{g\in G}r_gg=x$, as needed. We finally conclude with the help of [1] that $R[G]\cong R_1[G]\times R_2[G]$ is invo-clean, as expected.

Let us now point (2) be fulfilled. Since $G^2=1$, similarly to (1), R_2 being invoclean of characteristic 3 implies that $R_2[G]$ is invo-clean, too. In order to prove that $R_1[G]$ is invo-clean, we observe that R_1 is nil-clean with $2 \in J(R_1)$. According to [7], the group ring $R_1[G]$ is also nil-clean. What remains to show is that for any element δ of $J(R_1[G])$ the equality $\delta^2=2\delta$ is valid. Since in conjunction with the explicit formula quoted above for the Jacobson radical, an arbitrary element in $J(R_1[G])$ has the form j+j'g+r(1-g), where $j,j'\in J(R_1)$ and $r\in R_1$, we have that $[j+j'g+r(1-g)]^2\in (J(R_1)^2+2J(R_1))[G]+r^2(1-g)^2$. However, using the given conditions, $z^2=2z=2z^2$ and thus $z^2=2z=0$ for any $z\in J(R_1)$. Consequently, one checks that $[j+j'g+r(1-g)]^2=r^2(1-g)^2=2r^2(1-g)=2r(1-g)=2[j+j'g+r(1-g)]$, because $2r^2=2r$, as required. Therefore, $R_1[G]$ is invo-clean with [1] at hand. Finally, again [1] gives that $R[G]\cong R_1[G]\times R_2[G]$ is invo-clean, as promised. \square

It is worthwhile noticing that concrete examples of an invo-clean ring of characteristic 4, such that its elements are solutions of the equation $2r^2=2r$, are the rings \mathbb{Z}_4 and $\mathbb{Z}_4\times\mathbb{Z}_4$.

We thereby come to our main theorem which states the following:

Theorem 2.4. Let G be an abelian group and let R be a commutative non-zero ring. Then the group ring R[G] is feebly invo-clean if, and only if, at most one of the next points is valid:

- (1) $G = \{1\}$ and R is feebly invo-clean.
- (2) $G \neq \{1\}$ and $R \cong P \times K$, where $P \cong R_1 \times R_2$ is an invo-clean ring and either $K = \{0\}$ or K is a ring of char(K) = 5 which is a subdirect product of a family of copies of the field \mathbb{Z}_5 such that either
 - (2.1) $P = \{0\}$ and $G^4 = \{1\}$ or
- (2.2) |G| > 2, $G^2 = \{1\}$, $P \neq \{0\}$ with $R_1 = \{0\}$ or R_1 is a ring of char $\{R_1\} = \{0\}$ or $\{R_2\} = \{0\}$ or $\{R_2\} = \{0\}$ or $\{R_2\} = \{0\}$ or $\{R_3\} = \{0\}$ or
- (2.3) |G|=2, $P \neq \{0\}$ with $2r_1^2=2r_1$ for all $r_1 \in R_1$ (in addition 4=0 in R_1) and $R_2=\{0\}$ or R_2 is a ring of char $(R_2)=3$.

Proof. If G is trivial, there is nothing to prove because of the validity of the isomorphism $R[G] \cong R$, so let us assume hereafter that G is non-trivial.

"Necessity." As the feebly invo-cleanness of the group ring R[G] implies the same property for R, utilizing Proposition 2.2 we come to the fact that $R[G] \cong P[G] \times K[G]$ will imply feebly invo-cleanness of both group rings P[G] and K[G] whence P[G] is necessarily invo-clean whereas K[G] is either zero or a subdirect product of a family of copies of the field \mathbb{Z}_5 . After that, under the presence of $P[G] \neq \{0\}$, we just need apply Proposition 2.3 to deduce the described above things in points (2), (2.2) and (2.3). Letting now $P[G] = \{0\}$, we shall deal only with K[G]. To that goal, what we now assert is that the group ring K[G] having the property $x^5 = x$ for all $x \in K[G]$ with char (K[G]) = 5 yields that K has the property $y^5 = y$ for all $y \in K$ with char (K) = 5 and $G^4 = \{1\}$. Indeed, since $K \subseteq K[G]$ and $G \subseteq K[G]$, this can be extracted elementarily thus substantiating our initial statement after all.

"Sufficiency." Item (2) ensures that $R[G] \cong P[G] \times K[G]$ and so it is simple verified that the feebly invo-cleanness of both P[G] and K[G] will assure feebly invo-cleanness of R[G] as well. That is why, we will be concentrated separately on these two group rings. Firstly, the stated above conditions are a guarantor with the aid of Proposition 2.3 that P[G] is invo-clean. Secondly, it is pretty easily seen that as $y^5 = y$ and $g^5 = g$ for all $y \in K$ and $g \in G$, because K is a subdirect product of copies of the field \mathbb{Z}_5 possessing characteristic 5 and $G^4 = \{1\}$, we may conclude that $x^5 = x$ holds in K[G] too, as required. This substantiates our former assertion after all. \square

10 P.V. Danchev

REFERENCES

- 1. Danchev P.V. (2017) Invo-clean unital rings. Commun. Korean Math. Soc. 32(1), pp. 19–27.
- 2. Danchev P.V. (2017) Weakly invo-clean unital rings. Afr. Mat. 28(7-8). pp. 1285–1295.
- 3. Danchev P.V. (2017) Feebly invo-clean unital rings. *Ann. Univ. Sci. Budapest (Math.)* 60. pp. 85–91.
- 4. Danchev P.V. (2017) Weakly semi-boolean unital rings. JP J. Algebra, Numb. Th. & Appl. 39(3). pp. 261–276.
- 5. Danchev P.V. (2018) Commutative invo-clean group rings. *Univ. J. Math. & Math. Sci.* 11(1). pp. 1–6.
- Danchev P.V. (2019) Commutative weakly invo-clean group rings. *Ural Math. J.* 5(1). pp. 48–52.
- 7. P.V. Danchev and W.Wm. McGovern (2015) Commutative weakly nil clean unital rings. J. Algebra. 425(5). pp. 410–422.
- 8. Karpilovsky G. (1982) The Jacobson radical of commutative group rings. *Arch. Math.* 39. pp. 428–430.
- 9. Milies C.P. and Sehgal S.K. (2002) An Introduction to Group Rings. Vol. 1. Springer Science and Business Media.
- 10. Passman D. (2011) The Algebraic Structure of Group Rings. Dover Publications.

Received: June 4, 2019

DANCHEV Peter V. (Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria). E-mail: pvdanchev@yahoo.com, danchev@math.bas.bg

Данчев П.В. КОММУТАТИВНЫЕ МАЛО ИНВО-ЧИСТЫЕ ГРУППОВЫЕ КОЛЬЦА. Вестник Томского государственного университета. Математика и механика. 2019. № 61. С. 5–10

DOI 10.17223/19988621/61/1

Ключевые слова: инво-чистые кольца, слабо инво-чистые кольца, мало инво-чистые кольца, групповые кольца.

Коммутативное кольцо R называется мало инво-чистым, если каждый его элемент имеет вид v+e-f, где v- инволюция, а e,f- идемпотенты. Для каждого коммутативного унитального кольца R и каждой абелевой группы G найдены необходимые и достаточные условия, когда групповое кольцо R[G] мало инво-чисто. Результаты статьи улучшают два последних достижения автора по коммутативным инво-чистым и слабо инво-чистым групповым кольцам, опубликованные в Универсальном журнале математики и математических наук (2018) и Уральском математическом журнале (2019) соответственно.

Danchev P.V. (2019) COMMUTATIVE FEEBLY INVO-CLEAN GROUP RINGS. *Vestnik Tomskogo gosudarstvennogo universiteta*. *Matematika i mekhanika* [Tomsk State University Journal of Mathematics and Mechanics]. 61. pp. 5–10

AMS Mathematical Subject Classification: 20C07; 16D60; 16S34; 16U60