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REGIONAL GRADIENT COMPENSATION WITH MINIMUM ENERGY

In this paper we interest to the regional gradient remediability or compensation
problem with minimum energy. That is, when a system is subjected to
disturbances, then one of the objectives becomes to find the optimal control which
compensates regionally the effect of the disturbances of the system, with respect
to the regional gradient observation. Therefore, we show how to find the optimal
control ensuring the effect compensation of any known or unknown disturbance
distributed only on a subregion of the geometrical evolution domain, with respect
to the observation of the gradient on any given subregion of the evolution domain
and this in finite time. Under convenient hypothesis, the minimum energy
problem is studied using an extension of the Hilbert Uniqueness Method (HUM).
Approximations, numerical simulations, appropriate algorithm, and illustrative
examples are also presented.

Keywords: gradient, optimal control; regional remediability; disturbance;
efficient actuators.

1. Introduction

The control problem of distributed parameter systems arises in engineering
applications and many different contexts, which are characterized by a spatiotemporal
evolution. Systems analysis consists of a set of concepts as controllability, observability,
remediability,...that allows a better understanding of those systems and consequently
enables to conduct them in a better way. Moreover, the analysis itself has to deal not
with the whole domain, but with its specific subdomain of interest. Thus, motivated by
practical applications, El Jai and Zerrik have introduced and studied the so-called
regional analysis [1-5]. Such analysis aims to analyze or control a system in which an
objective function is defined only on a prescribed subregion. Therefore, the system
dynamics is defined in the whole the domain Q , whilst the objective is focused on a
given subregion ®, where ® < Q2. An extension of this study that is very important in
practical applications is that of regional analysis of the gradient developed in [6—10].
This study is of great interest from a more practical and control point of view since there
exist systems that cannot be controllable but gradient controllable or that cannot be
observable but gradient observable or that cannot be detectable but gradient detectable
and they provide a means to deal with some problem from the real world. With the same
preoccupation, the regional gradient remediability and regionally efficient gradient
actuators are introduced and characterized recently for linear distributed systems in [11].

In this work, we show how to find practically the optimal control (convenient
regionally gradient efficient actuators) ensuring the gradient compensation regionally,
based on a result of characterization obtained in our previous work [11]. In addition, it
constitutes also an extension of our previous work [12] to the regional case.

This paper is organized as follows. In the second section, we start by presenting the
considered problem. After, we recall the definitions of exact and weak regional gradient
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remediability, the notion of regional gradient efficient actuators, and a characterization
which shows that the regional gradient remediability of any system may depend on the
structure of the actuators and sensors.

In section 3, under a condition on the structure of the actuators and the weak
regional gradient remediability hypothesis, using an extension of Hilbert Uniqueness
Method (HUM), we examine the problem of gradient remediability with minimum
energy regionally. Then, we give the optimal control which compensates an arbitrary
disturbance.

In the last section, approximations, simulations, and numerical results are presented.

2. Considered problem, definitions, and characterization

Let Q be an open and bounded subset of IR"((n=1,2,3) with a regular
boundary Q. Fix T >0 and let denoted by O =Qx]0,7[, X =0Qx]0,7[ . Consider
the system described by the parabolic equation

%(x,t):Ay(x,t)+Bu(t)+f(x,t) o
y(x,O) — )/O (x) _ Q, (21)
y(&1)=0 -3,
where A4 is a second order linear differential operator which generates a strongly
continuous semi-group (S(¢)),,, on the Hilbert space L* (Q). (S* (t)) is considered

>0

for the adjoint semi-group of (S(¢)).,. BeL(U,X),ue*(0,T;U) where U is a

20"
Hilbert space representing the control space and X :Hé (Q) the state space. The

disturbance term f € L* (0,7; X)) is generally unknown.
In system (2.1), the disturbance function f has a space support which can be, in

practical applications, a part o of the domain Q (< Q). The system (2.1) admits a
unique solution y e C(0,7; Hg (Q))NC' (0,7 L (Q)) [13] given by

Yy () =8(6)y° +[S(t=5)Bu(s)ds+[S(t=5) f (s)ds .

For ® — Q an open subregion of ) with a positive Lebesgue measure, we consider
the operators

to (L (Q)) (2 (@), and T 2 (Q) > I (),

v ol

while their adjoints denoted by xz) and )Z*w respectively, are defined by

1o (L (0) > (@), and i (o) > 2 (Q),
|y ono, 5,y ono,
Y7 KXo = 0 onQ\wm, Y7 Kod = 0 onQ\w.
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Consider also the operator V defined by
ViH(Q) (2 (),

yovy=| 2y Oy | or]
ox; 0Ox, ox,

while V" its adjoint operator.
The system (2.1) is augmented by the regional output equation

Zu s (1)=Cro Vs (1), 22)
where Ce L ((Lz ((D))n ,0) , O 1is a Hilbert space (observation space). In the case of

an gradient observation on [0,7] with ¢ sensors, we take generally O =[R? . In the
autonomous case, without disturbance ( f = 0) and without control (u = 0), the gradient
observation in ® is given by

200 (1) = Cx, VS (1)),
it is then normal. However, if f #0 and u # 0, the regional gradient observation is

disturbed.
The problem consists to study the existence of an input operator B (actuators), with

respect to the output operator C (sensors), ensuring the gradient compensation at finite
time 7, of any disturbance acting on the system, that is to say:

Forany f eI’ (0,7;.X), there exists u € I’ (0,73U) , such that
znp (1)=Cr,VS(T) 5",
this is equivalent to
Cy o VHu+Cy VFf =0,
where H and F' are two operators defined by
H:[*(0,T;U) > X, F:I*(0,T;X)> X,
T T
and
u—)Hu=J.S(T—S)Bu(s)ds, f—)Ff=J.S(T—S)f(s)ds.
0 0

This leads to the following definitions.
Definition 1.
1) We say that the system (2.1) augmented by the output equation (2.2) is exactly

regionally f-remediable in ®, if there exists a control u € I? (0,7;U ) , such that
Cy o VHu+Cy  VFf =0.

2) We say that the system (2.1) augmented by the output equation (2.2) is weakly
regionally f-remediable in ® on [0,7], if for every &>0,there exists a control

u e *(0,T;U) such that
[Cx VHU + Cy VEf | s <O
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3) We say that the system (2.1) augmented by the output equation (2.2) is regionally
exactly (resp. weakly) remediable in o, if for every f e L*(0,7;.X) the system (2.1) —

(2.2) is exactly (resp. weakly) f-remediable in ®.
We suppose that the system (2.1) is excited by p =zone actuators

(Qi,gi)]gisp,gi el’ (Q,), @ co,Vi=1...,p , in this case the control space is

U = IR? and the operator B is given by
B:IR? > X,

u(t)= (”1 (1),u, (t),...,up (t)) — Bu = ixgi (x)g; (x)u; (2).
Its adjoint is given by

T
B z:((gl,z>Ql ,(gz,z>Q2 ,...,<gp,z>Qp) e IR? .

Also suppose that the output of the system (2.1) is given by ¢ sensors

(D;,h

i1 ) i o i eI’(D,), being the spatial distribution, D, =supph c ®, for

i=1...,q and D, ﬂDj =¢ for i # j, then the operator C is defined by

C:(L (w)) - IRY,

n

y(t)e Cy(t) = (i(hl’yi(t»q ,anl%»yi (1)), ve-n 2 (g (t)>qu :

i=1 i=1

its adjoint is given by C* with for0=(0,,0,,...,6,) € IR,

c'o- [zx (9008 ()30, (30 () 30, ()0 <x>] (2 ()"

We recall the following notion of the regionally gradient efficient actuator [11].

Definition 2. The actuators (Q;,g; ,g; € 7 (Q;) are said to be regionally

)ISiSp

gradient efficient, if the system (2.1) — (2.2) so excited is weakly regional gradient
remediable.

Form=>1,let M, be the matrix of order (P xr, ) defined by
Mm = (<gi,wmj>[‘2(gi))ij N 1<i< p al'ld 1< J < rm

and let G,, be the matrix of order (gxr,, ) defined by

U ow,_ .
G, = Z<hi, mj> ,1<i<qg and 1< j<7, .
k=1 axk LZ(D,-) T

Corollary 1 [11]. If there exists m,, =1, such that

rank G,ZO =q, (2.3)
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then the actuators (€;,g;)..c, 8 eI’ (Q,) are regionally gradient efficient if and
only if
N ker(M,,Gy,)=1{0} .
m>1
3. Regional gradient remediability with minimum energy

Under a condition (2.3) and the weak regional gradient remediability hypothesis, we
study in this section the problem of the exact regional gradient remediability with
minimal energy.

For f e ? (0,T;.X), we study the existence and the unicity of an optimal control
uel? (0,7;U) ensuring, at the time 7 , the exact regional gradient remediability of
the disturbance £, such that

Cy,VHu+Cy VEf =0.
That is the set defined by
D={ue*(0,T;IR")/ Cx,VHu+Cy, VFf =0 (3.1)
is non empty.
We consider the function

J(u)= ”CX(DVHM + CX(DVFf"?R" +"”"iz(o,r;m/’)'

The considered problem becomes

inJ(u).
i )

For its resolution, we will use an extension of the Hilbert Uniqueness Methods
(HUM).
1
2 2
e ds | .

For 0 €IR?, let us note
T
(0,0). = [(B"S" (T =)V, C"0,B°S" (T = 5)V'y, "o )ds

. - [ﬂ

The corresponding inner product is given by
and the operator A :/R? — IR? defined by

B'S" (T -5)V'y.C'0

T
AO = Cy VHH V'3 ,C 0= Cy,V [ S(T~5)BB'S™ (T —5)V 'y, C"0ds.
0

Then, we have the following proposition:

Proposition 1. If the condition (2.3) is satisfied, then || ||,is a norm on IR? if and
only if system (2.1) — (2.2) is weakly regional gradient remediable on [0,7] and the
operator A is invertible.



24 S. Rekkab, H. Aichaoui, S. Benhadid

Proof. We have

[l = [
0

= B'S (T-)V'y,C'0=0=0eker(B'S (T-)V'y,C")=ker(B'F'Vy,C").

Lz(O,T;IRP )

ko k *

5 * % * k%
—5)VyC'0 Pds] =0 =|B'S"(1-5)V%,C"0

N ker (M, ),

m21

But ker(B*F*V*X;C*) =
where, for m>1,
S 0€IR? = £ (0)=((V 10, C 0, )V 10, C 0,0 ).o{

Indeed, let® € IR? , we have

Vi Co,w, >) elR™

Zex (T~ )z<v* e’ W,,U>L2(Q)<gl’W’ﬂ.i>L2(Ql)

m>1

on(T-)
B'F'V'y.C0=B"S" (T-)V'y.C"0 = n;e Z<V LaC OM) 2 (€29) 20

Ze A (T— )z<v ch 0 Wn‘l]>L2(Q)<gP’wmj>L2(QP)

m>1

and we have Vm >1

7,

2V 0 g (1% )

Jj=1
i

M, [, (0)= ;W*ch"e W’"J>L2<o><g2’wmf>ﬁmz> :

Z<V C 0w, >L2(Q)<g1’ m]>L2(Q)

Jj=1

If we assume that0 e ker(M m fn‘;’) , then

m>1

Geker(Mmf ) vm>1:>2<v 1 C 0w, >L2( )<g[,wmj>:0,Vie{1,2,...,p},Vle
Jj=1

:>Ze T)Z<meC9w ><I mj> 0,Vie{l,2,...,p},Vm=1

m21

:B*F*V*X*CG 0= 0eker(B"F'Vy,C"),

where
N ker(Mmf )Cker(B F'V* *C*)

m=1
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that is
mql ker(Mmfn‘f) = ker(B*F*V*x:C*)
and we have also () ker(MmG,:) =N ker(Mmf,ff) . Indeed, let 6 /R, then
m21 m>1
e N ker(M,G)) < (M,G})0=0, Vm>1,
m=1
9 I n Gwm .
sz<gi,wmj><h,,z f> 0, =0,Ym>1Vi=1,...,p,
I=1 j=1 o 0% 12(Dy)

m

o Z<gi’Wmf><V*xlC*,ij>Lz(Q) =0,Vm>1Vi=1,..,p,
j=1

(M, f2)0=0,Vm=1 < 0e N ker(M,f;7).
m=1
Where ker(B*F*V*X;C*) =N ker(MmG;) , this gives 6¢e ker(MmG;) and
m21 m=1
since the Corollary 1, we obtain the result.
On the other hand, the operator A is symmetric, indeed,

* * ok

(AO,0) s =<CXQ)VHH v wa*9,6>1Rq =<e, cwaHH*v*X;c*cs)]Rq =(0,Ac)

and positive definite, indeed,

(A6,0) 40 = <CXmVHH*V*X;C*9’ 9>1Rq
:< *V*X;C*e,H*V*X;C*9>L2(0,T;1RP)

T
= [(B'S' (T-5)V',C0.B'S" (T-5)V'7,C0) , ds
0
= ||9||f >0, for0=0

and then A is invertible. 0
We give hereafter the expression of the optimal control ensuring the regional
gradient remediability of a disturbance f at the time 7 .

Proposition 2. For f € I* (0,7;.X), there exists a unique 6 ;€ IR? such that
A, =—Cy VFf
and the control
uy, ()=B'S"()V,C0,
verifies
CwaHuef +Cy ,VFf=0.

Moreover, it is optimal and

U
“ 0y

.

L2(07T;1RP) - "ef
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Proof. From Proposition 1, the operator A is invertible; then, for /' e L* (0,7;X),
there exists a unique 6, e IR?, such that Ab, =-Cy, VFf and, if we put

Uy, ()=B'S"() V*X;C*Of , we obtain

T
A8, = Cy oV [S(T-5)BB'S"(T =)V, C0, ds =Cy ,VHuy,
0

= —Cy,VFf = CwaHuef = CXmVHuef +Cy VFf =0.
The set D defined by (4.1) is closed, convex, and not empty. For ue D, we
have J(u)= ||u||iz(0 rR") J is strictly convex on D, and then has a unique minimum
at u” e D, characterized by

<u ,v—u >L2(O,T;IRP) 20; VveD.

For ve D, we have

<u9/,v—ue/_>L2(0,T;]RP) :<B S (IV%,C0,,v=BS ()V 1,C ef>L2(0,T;IRP)
=(0,,Cx,VHV=AB,) ., =0.
Since u is unique, then u = g, and Uy, is optimal with
2 * % * k% 2 2
oo, | o) =[B"s" )V o, | . [ =

4. Approximations and numerical simulations

This section concerns approximations and numerical simulations of the problem of

gradient remediability.
First, we give an approximation of 6,as a solution of a finite dimension linear

system Ax=>»b and then the optimal controlue/ , with a comparison between the
corresponding observation noted z;; ; and zg), the observation corresponding to the
I :

autonomous case.

4.1. Approximations

where (e, is the

Coefficients of the system: For i,/ >1,let ¢, = <Aei,ej> )ISiSq

IR?’
canonical basis of IR?, we have
T
Ae, = Cyx V[ S(T—5)BB'S™ (T =)V, C e ds .
0

And for M, N sufficiently large, we have
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Im' P e(xn1+}”n1')7‘_l
[W (g1t} 20, (80 n)iiey

m m'

n . n an
xz<%,hi> z< l,hj> @.1)
o\ Ox 2(p)k=1 \ O (D))

and A, =-Cy VFf , then b; = —<meVFf € >1R‘1 :

For N sufficiently large, we have
R aM/m f A
b= < h h(> je L ()W) 12y 5 - (4.2)
' )0

The optimal control: In this part, we give an approximation of the optimal control
ug, which is defined by u, ()=B'S" (T—.)V*X;C*Of. Its function coordinates

Ujo, (.) are given by

ujo, () :<gj,S* (T—.)V*X;C*ef>

N w4 ow
~ e e m g s < m'h h> (4.3)
m'zzlhzl k=1 i=1 " < g mh>L2( )\ oy (D)
for a large integer N .
Cost: The minimum energy (cost) is defined by
1
2
Huef 12(0.7:1R” ) J."B ST =)V %,C ef|1RP
N
p T N 1y n g » ow . 2
| S SIS S, (.5 () |
j=10\m'=1 h=1k=1 i=1 o, 2(D;) !

for N sufficiently large.
The corresponding observation: The observation corresponding to the control is
given by

Ziy, o ()= Cy,VS(1)y° +cxmvjs(z s)Buy, (s)ds+cxmvjs(t s)f(s)ds. (4.4)

Its coordinates ( Zjug, S (- )) are obtained for a large integer N as follows:
1<j<q
ow,,
Kt m'h
t e R h,,—2L
iy ()= mzl;; <y mh>L2(‘”)< 7o >L2(D.)
J

m'=1 h=1k=1i=1

ow,, ’ 1—s)
+ZZZZ 8- W mh>L2(9)< o 2 h > _[ek'” Uip, (s)ds 4.5)
)o

+2 ZZ< by > J.ek"’ - S)<f(s Worh )2 () 45

m'=1 h=1 k=1 )0
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4.2. Numerical simulations

We recall the problem considered above:

(P) {Find uel? (0,75U), such that
Cyo VHu+Cy VFEf =0.

Based on Proposition 2 and using the above results, we can develop an algorithm
which allows us to determine a sequence of controls which converges to the solution u'
of (P). The output is given by (4.4) — (4.5).

Algorithm

Step 1: Data: the domain Q , the subregion ®, the final time 7, the initial state yo ,
the disturbance function f, the sensors (D, &), the efficient gradient actuators (o, g),

and the accuracy threshold ¢ .
Step 2: Choose a low truncation order M = N .

Step 3: Compute zg : the output, when f =0 and u =0 (an autonomous case).

Step 4: Compute 28’, - the output, when f =0 and u =0 (a disturbed case).

Step 5: Solve a finite dimension linear system A6 = b, where these coefficients are
given by (4.1) — (4.2).
Step 6: Calculate u given by (4.3).

Step 7: Compute z;", s+ the output when f =0 and u#0 (a disturbed and

controlled case, that is to say a compensate case).

Step 8: If "zl‘:J 7 _Z&OHLZ((») < g, then stop. Otherwise,

Step 9: M <~ M +1 and N < N +1and return to step 3.
Step 10: the optimal control u corresponds to the solution u' of (P).

Now, we give a numerical example, which illustrates the efficiency of the approach
given in the above section.

Illustrative example. We consider without loss of generally the following diffusion
system

& (6) =B p(u0)+ Yo & () (0 £ (wr)  QxX]0.T]

i=1
»(x.0)=5"(x) Q
y(&1)=0 oQx10,7]
with Q=1]0,1[ and a Dirichlet boundary condition. In this case, the functions w,, (.) are
defined by
w,, (x)= \/Esin(mnx);m >1.
The associated eigenvalues are simple and given by

2 2.
Ay =—mn"; m21.

Let ®=1]0.15,0.25[ (0 < Q) be the geometrical support or the disturbance.
Then in the case of:
- an initial state: y° () =0,
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-asensor: (D,h) with D= and h(x)=~2x* (¢=1),

- an efficient actuator: (o, g) with c=wand g(x)=2x" (p=1),

- a disturbance function: defined by f(x)=240cosx .

For M =N =10 and T =0.5, we obtain numerical results illustrating the theoretical
results established in previous sections. Hence, in Fig. 1, we give the representations of the
discrete observation z, . corresponding to the control u = Uy, and the disturbance f

and z, , , which represent the normal observation, thatis « =0 and /' =0.

Observations

0.25

0.20

0.15

0.10

0.05

3

0.1 0.2 0.3 0.4 0.5 0.6
Time

Fig. 1. Representation of z, ¢ (line /), z s (line 2)

and z, (line 3)

This figure shows that the disturbance f is compensated by the optimal control

u=ug atthetime T thatis, we have zy 1 (T)=250(T).

The optimal control Uy, ensuring the regional gradient remediability of the

disturbance f is represented in Fig. 2.

Optimal control

-2-104

—4.10%

—-6-104

-8-10*

Time
0.1 0.2 0.3 04 0.5 0.6

Fig. 2. Representation of the optimal control oy
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Table 1 shows that if we want to eliminate the effect of the disturbance in a short

time T, the cost increases.

Table 1
Evolution cost with respect to the finite time 7
T Cost
0.3 1.06-10°
0.4 1.05-10°
0.5 1.03-10°
1 9.46-10*
2 8.99.10*
3 8.89-10*
5 8.85-10*
10 8.84-10*
100 8.84-10%
Conclusions

Under a condition on the sensors and the weak regional gradient remediability

hypothesis, we have studied the problem of exact regional gradient remediability with
minimal energy. That is to say, when a system is subjected to disturbances, we have
shown how to find the optimal control, which compensate the effect of the disturbance
that can be located in a given subregion of the space domain, with respect to the
regional gradient observation and this using an extension of the Hilbert Uniqueness
Method. Illustrative examples, numerical approximations, and results are also presented.
These results are developed for a class of discrete linear distributed parabolic systems,
but the considered approach can be extended to regional or bounded gradient
remediability of other class of systems with a convenient choice of space.
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KiroueBble CllOBa: IPaMEHT, ONTUMAJIbHOE YIpPABICHHE, JIOKaJIbHAs BOCCTAHOBUMOCTH, BO3MY-
nieHue, 3G peKTUBHBIC aKTIOATOPHI.

PaccmarpuBaercs npobieMa JOKaJbHOW T'PAIUEHTHOH BOCCTAHOBHMOCTHU FUIM KOMIICHCAITHN
IpY MUHAMAJBHBIX 3aTpaTax SHEpPrud. VIHBIMK CcIIOBaMH, MPH BO3MYIICHUH CHCTEMBI OJXHOHN W3
3a7a4 CTAHOBUTCS OTBHICKAaHHE ONTHMAJBHOIO YHPABICHUs, KOTOPOE JIOKAIBHO KOMIIEHCHPYET
pe3yJIbTaT BO3MYILIECHUsSI CUCTEMBI MO OTHOIICHUIO K JIOKAIBHOMY TIPaJeHTHOMY H3MEpEHHIO.
Takum o00pa3oMm, IOKa3aHO, Kak HaWTH ONTUMAIBbHOE YIpAaBIEHHE, OOecleYHBarolee
KOMIICHCALHIO JII000T0 M3BECTHOTO MJIM HEM3BECTHOIO BO3MYIICHUS, PACIIPENEIEHHOTO JHIIb Ha
4acTH 00JacTH I'€OMETPUYECKOr0 POCTa, MO OTHOIICHHIO K MU3MEPEHHIO IpaJUeHTa Ha JH000H
3aJaHHOW MOJO0NAcTH OOJIACTH POCTa 3a KOHeuHoe BpeMs. [Ipobnema MHHUMyMa 3HEPIHU
UccleayeTcss NpH  YAOOHBIX — HPEINONOKEHUSIX C  IOMOIIBI0  OOOOIIEHHOTO  MeToxa
enuHCTBeHHOCTH 'Mimb0epta. [IpencraBieHs! Takxke MPUOIMKEHHS, YUCICHHOE MOACIPOBAHNE,
COOTBETCTBYIOIINIT QIITOPUTM U WILTIOCTPATUBHBIN IPUMEPEL.
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