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Gamma degradation models with fixed or random effects are widely used for reliability analysis. In this paper,
the problem of testing significance of random effects for the gamma degradation model is considered. We propose
two statistical tests which enable to reveal the existence of random effects in degradation data corresponding to
the gamma degradation model. The first test is the well known likelihood ratio test and the second one is based on
the variance estimate of the random parameter of the “random-effect” gamma degradation model. These tests have
been compared in terms of power with Monte-Carlo simulation method. Moreover, the example of GaAs lasers
degradation analysis has been considered.
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Statistical degradation models are used for the analysis of lifetime data of tested items in the cases
when along with the failure time data there is the detailed information about the change of degradation index
[1, 2]. Parametric models, which are distinguished by the distribution of increments of degradation index
and the existence of random effects, are widely used in practice. In [3-5] and [6, 7], the authors consider the
gamma degradation model with random effects, where the scale parameter is a random variable from the
gamma distribution. Thus, considering the “random-effect” degradation model, we need to take into account
the distribution of the random parameter and hence, the number of unknown parameters of the “random-
effect” model is larger than the number of unknown parameters of the “fixed-effect” model. As a result, the
accuracy of parameter estimation for the “random-effect” model may decrease. On the other hand, if the
unit-to-unit variability is rather large, then the “fixed-effect” model is not appropriate, and in this case, the
use of the “random-effect” model could provide more accurate estimates. By this reason, the use of the deg-
radation model with random effects is not advisable when the random effect is insignificant or not observed
at all. So, it is necessary to have the statistical test which can reveal the random effect influence and help
with the choice between fixed- and random-effect degradation models.

In [8], the Hausman test is proposed for distinction between the “fixed-" and “random-effect” models.
However, this statistical test is applied only for linear regression models where the estimates are calculated
by the least square method that does not allow using the Hausman test for degradation models. Other criteria
for comparison of statistical models are AIC and BIC information tests [9]. These tests are based on values
of the maximum likelihood function and apply the penalty for test statistics value taking into account the
number of estimated parameters. Such information criteria enable to compare statistical models, but they are
not used for hypothesis testing. Hereby, it is necessary to develop a criterion which can test the hypothesis of
absence of random effects in degradation data. So, the goal of this research is to develop a statistical test,
which enables to reveal the existence of random effects in degradation data corresponding to the gamma deg-
radation model.

In this paper, we propose two tests for the hypothesis of absence of random effects for the gamma deg-
radation model: the likelihood ratio test and the test based on the variance estimate of the random parameter.
Moreover, we use Monte Carlo simulations to investigate the power for the constructed tests for different
pairs of competing hypotheses. Then, we illustrate testing significance of random effects for the gamma deg-
radation model using the example of GaAs lasers data analysis, which is often considered in publications,
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devoted to the investigation of degradation models [4, 6, 9, 10]. In [4], the “random-effect” gamma degradation
model was fitted. In [6], these data have been analyzed using gamma and Wiener degradation models. Inverse
Gaussian degradation model is described in [9] as another variant of the degradation model for the lasers data.

1. Gamma degradation models

Stochastic process Z(t) characterizing degradation process is referred to as the gamma degradation
process, if

- Z(0)=0;

— Z(t) is astochastic process with independent increments;

— increments AZ(t) =Z(t + At)—Z(t) have the gamma distribution with probability density function:

Av(t)-1 X

fGamma(X;G’AV(t)) :GA\/(t)—e °,

r(av(t))
where Av(t)=v(t+At)—v(t) is the shape parameter and o is the scale parameter, v(t) is a positive in-

creasing function [7].
If random variables &, and &, follow the gamma distribution with scale parameter ¢ and shape pa-

rameters v, and v,, correspondingly, then & +&, follows the gamma distribution with scale parameter o

and shape parameter v, +v,. This property explains the fact of using the gamma distribution as a distribu-

tion of increments.
Let the mathematical expectation of degradation process Z(t) is

M(Z(t))=m(t),
where m(t)=m(t;y), v=(Yp-7s )T is a trend function of the degradation index. Then, the shape parameter
Am(t)

(&}
In this paper, we consider two types of trend functions:

is equal to Av(t)=

—linear function m(t)=vyyt, v, >0;
— power function m(t)=yt’?, v, >0, y,>0.
Taking into account the given assumptions, the stochastic process Z(t) at time moment t=t,_ has the

o . m(t,
gamma distribution with the shape parameter equal to v(t,) = Y :
()

The time to failure is the random variable
T =sup{t:Z(t) <z},
where z, is the critical value of the degradation path. Then, the reliability function for the gamma degrada-
tion model is given by:
S(t) = P{T >t} =P{Z(t) < 2y} = Fsarma (Z0; 0, V(1)) . 1)
As was noted in the introduction, if the unit-to-unit variability is rather large, then it is necessary to
take into account the heterogeneity in degradation paths. In [3], the “random-effect” gamma degradation
model is specified by considering parameter o as a random effect. To obtain mathematically tractable distri-
butions, it is assumed that the random parameter n=c"" has the gamma distribution with the density func-

tion f (x;8‘1,e) , Where 0 is the shape parameter and &1 is the scale parameter. Here n has mathematical

Gamma

expectation Mn=6/8 and variance Dn=0/5, and ¢ has finite mathematical expectation Mc5=8/(9—1)
for 6>1 and finite variance
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82

(0-1)(0-2)
for 6>2 [3]. Then the marginal density function for Z(t) in the case of gamma degradation model with
random effects is equal to:

f X 3,0, v( wf amma X ;0 V(1)) fapmma (@:87,0)do=————
Z(t) _([ G ()) G ( ) (X+6)v(t)+9

where B() is the Euler beta function. The shape parameter of the gamma degradation model with random

effects is v(t) :w . It can be noted that Z(t) has an F-distribution with parameters 2v(t)

e .
8v(t)
and 26 . In this case, the reliability function can be written as

0-2,
y2v(t); 20 |. 2
sty 202 @

Let the realization of stochastic process Z(t) for the i-th item is denoted as

S(t)=P{T >t}=P{Z(t) < z0}=zj° f,0(%8,6,v(t))dx = F(

={(0,2=0),t},Z}), (&2}, i=Ln,
where k; is the number of time moments, in which the degradation index was measured. Then, the sample of
independent degradation index increments can be written as:

X,={X]=2}-2],i=1n, j=1k}.
Maximum likelihood estimates (MLEs) of parameters ¢ and y of the “fixed-effect” gamma degrada-
tion model are calculated by maximization of the likelihood function:

n ki . .
L(X,) =HHIn foamma (X5:0,V}), (3)
i=1 j=1
where v’ —v( ) ( ) i=1n, j= Lk are the values of shape parameter.
If Z'(t), i=1n are the gamma degradation processes with random effects, then the likelihood func-

tion can be written as a multiplication of the joint density functions of increments X} on the common
random effect:

=TT (X0 XX )HJ{Hme(x;;m1,Av(tj))}feamma(w,5l,e)dmz

o r((t)) < (X)) 4)
i1 F(e) (Z +6) e ,:11"( ( ))

=1

2. Testing hypothesis of absence of random effects

Let us assume that observed degradation paths are the realizations of the gamma degradation process.
If the unit-to-unit variability is rather large, then random effects in these data can be significant and
the “fixed-effect” model is not appropriate. So, it is necessary to test the hypothesis of absence of random
effects, which means that the parameter ¢ in the gamma degradation model is not random:
H,: Do=0.
In fact, the acceptance of this hypothesis will imply that data correspond to the “fixed-effect” model.
The competing hypothesis H, corresponding to the “random-effect” model is written as:

H,: Do >0.
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Let consider two statistical tests for the null hypothesis: the likelihood ratio test and the test based on
the variance estimate. The likelihood ratio test (LR test) is usually constructed for distinguishing between
two competing statistical models. The LR test statistic value is calculated as follows:

_ I L(Xn | Hl)
n— n——71
L(X, H,)

where L(Xn | HO) is the maximum value of the likelihood function (3) in the case of “fixed-effect” model,

()

L(X,|H,) is the maximum value of the likelihood function (4) in the case of “random-effect” model. The

testing hypothesis H, is rejected for large values of A, . According to the Neyman-Pearson lemma, the LR

test is the most powerful criterion, when testing a simple hypothesis. However, the hypothesis is composite,
so this test cannot be the best one.
As an alternative approach, we consider the variance estimate of the random parameter (VERP):
82
d, = . (6)

o)

where én and Sn are the maximum likelihood estimates of the shape and scale parameters of the “random-

effect” model (2), correspondingly. In Table 1, there are the means and standard deviations of estimates d, ,
obtained by N =10000 simulated samples from the “fixed-effect” and “random-effect” models. The true
values of parameters for the “random-effect” model are 6=10, §=15, y,=0,002, and for the “fixed-

effect” model are 6 =14, vy, =0,002 . The time moments for measuring degradation were chosen as follows:
t\ =t , +250, where t{ =0, j=Lk , i=1n, k =16.

]

Table 1
Means (M) and standard deviations (SD) of estimates d,
True model Descriptive statistic n=5 n=10 n=20 n=30 n =50
) M 2,55-10°° 2,23-10° 1,95-10° 1,79-10°° 112-10°°
“Fixed-effect” model
SD 4,08-107™ 2,19.10™ 1,36-10™ 1,02.107™ 7,53-107%
M 4,01-10°° 3,63-10°° 3,61-10°° 3,56-10°° 3,54-10°°
“Random-effect” model
SD 1,08-107 4,28-10°° 6,88-107° 5,49-107° 2,86-107°

As can be seen from Table 1, the means of variance estimate d, obtained for the “fixed-effect” model
tend to 0 with the sample size growth in contrast to the means obtained for the “random-effect” model, which
tend to the true value of Do =3,49-107°. Thus, the variance estimate d, of the random parameter can be
used as a test statistic for testing the hypothesis of absence of random effect. Let us refer this test to as the
VERP test. Similar to the LR test, the hypothesis H, is rejected for large values of d, .

The theoretical statistics distributions for the proposed tests are not known as there are a number of
factors influencing the form of the statistics distributions: the method of model parameters estimation, the
type of trend function, the values and the number of time moments of measuring degradation, the sample size
and others. So, to apply the LR and VERP tests we use the parametric bootstrap method according to the fol-
lowing algorithm:

1. Generate a sample of increments from the “fixed-effect” model with parameters &, and y, ac-

cording to the given time moments t'J i=1n, j:],_ki; here 6, and 7, are the MLEs obtained from the

source data.
2. Determine the MLEs of parameters o and y of the “fixed-effect” model from the simulated

sample of increments using the likelihood function (3).
3. Determine the MLEs of parameters 6, 6 and vy of the “random-effect” model from the simulated

sample of increments using the likelihood function (4).
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4. Calculate the test statistics, namely A, and d, .
5. Repeat points 1-4 N times to obtain the empirical distributions G, (s| H,) for each proposed test.

6. Calculate the p-values o, =1-G, (S, | H,) , where S is a value of test statistic (A, or d,), calcu-

lated from the source sample.
7. If o, is less than the significance level o, then hypothesis H, is rejected.

3. Empirical power study of the LR and VERP tests

The test power 1—f3 is the probability to reject the null hypothesis H, with the significance level o
when the competing hypothesis H, is true:
1—B=1—G(Sa | Hl).
Actually, the more powerful test is, the higher its ability to distinguish close competing hypotheses. We have

carried out the investigation of the LR and VERP test power for various pairs of competing hypotheses
through Monte Carlo simulations.

The estimates of test power have been obtained for different sample sizes, sets of time moments t ¥

j =1k and magnitudes of the random effect. The number of simulations used N =10000. The estimates of
tests power were calculated with the nominal significance level o =0,01.

In Table 2, the powers of the proposed tests are presented for different sets of time moments for meas-
uring degradation:

T, t,=t,, +400, where t =0, j=1,10,

T,:t,=t,, +250, where t =0, j=116,

T,:t; =t, , +125, where t; =0, j=132.
Under hypothesis H,, samples of increments were generated from the “fixed-effect” gamma degradation
model with the scale parameter ¢ =14; and in the case of true hypothesis H, samples were generated from

the “random-effect” model with parameters 6=1.56=28. The linear trend function with parameter
v, =0.002 was taken.

Table 2
The power estimates of the VERP and LR tests for different sets of time moments T
Time frequency | n=5 | n=10 | n=15 n=20
VERP test
T 0,69 0,93 0,99 1,0
T, 0,70 0,94 0,99 1,0
T, 0,71 0,94 0,99 1,0
LR test
T, 0,67 0,92 0,99 1,0
T, 0,69 0,93 0,99 1,0
T, 0,70 0,95 0,99 1,0

As can be seen from Table 2, the power of both tests increases with the growth of the number of items
n and the frequency of measuring degradation.

The second experiment has been designed to show, how the power of proposed tests changes depend-
ing on the magnitude of the random effect under competing hypothesis H,. For this research, we consider

different values of the shape parameter: 6, =42, 6, =35, 6, =28 with the scale parameter 6 =1,5, which
correspond to different magnitudes of the random effect, as the variance Do decreases with the shape pa-
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rameter growth. Time moments for measuring degradation index were taken corresponding to values of T,

from the first experiment. In Figures 1-4, there are the examples of generated degradation paths according to
the “random-effect” gamma degradation model with different values of shape parameter and the “fixed-
effect” gamma degradation model. As can be seen from Figures 3 and 4, in the case of the “random-effect”
model with 6 =42 the unit-to unit variability looks very similar to the case of the “fixed-effect” degradation
model, and it is difficult to distinguish these cases without a special statistical test.

In Table 3, the estimates of power of the proposed tests are presented for different values of shape 6
of the random parameter ¢ and number of tested items n. The estimates of tests power were calculated with
the nominal significance level o =0,01.
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Fig. 1. The degradation path with the second Fig. 2. The degradation path with the second
experiment conditions and 6 =28 experiment conditions and 6 =35
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Fig. 3. The degradation path with the second Fig. 4. The degradation path with the second
experiment conditions and 0 = 42 experiment conditions for the “fixed-effect” model
Table 3
The power estimates of VERP and LR test for different values of shape 0
of the random parameter ¢ and number of tested items n
Shape parameter | n=>5 | n=10 | n=15 | n=20
VERP test
0,=42 0,69 0,94 0,99 1,0
0,=35 0,69 0,94 0,99 1,0
0,=28 0,70 0,94 0,99 1,0
LR test
0, =42 0,67 0,93 0,98 0,99
0,=35 0,68 0,93 0,98 0,99
0,=28 0,69 0,93 0,99 1,0
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As can be seen from Table 3, the tests power slightly increases with the growth of random effect mag-
nitude. Moreover, it can be seen from Tables 2 and 3, that VERP test is a bit more powerful than the LR test
in the considered cases.

4. The GaAs lasers data analysis using LR and VERP tests

In this section, we illustrate the analysis of the GaAs lasers data [10, 11] with the use of proposed LR
and VERRP tests. Gallium arsenide (GaAs) lasers are used in telecommunication systems, processing of mate-
rials, various fields of medicine. The aging process of some lasers leads to deterioration of light output
throughout the whole life cycle. The lasers fail when the consumption current exceeds nominal value on 10%.
Developing the lasers, engineers had some requirements: lasers have to work no less than 200000 hours un-
der temperature of 20°C without failure. During the accelerated experiment 15 lasers were tested under the
stress of 80°C for 40 000 hours. The degradation paths for tested lasers are shown in Figure 5.

z
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0 500 1000 1500 2000 2500 3000 3500 4000 t

Fig. 5. The degradation paths for the GaAs lasers example

As can be seen from Figure 5, the degradation paths distinctly differ from each other. However, we
cannot be sure that the random effect is significant here. Thereby, it is necessary to test the hypothesis of
absence of random effect using proposed tests.

The results of the model parameters estimation, test statistics values and corresponding p-values for
LR and VERRP tests are presented in Table 4.

Table 4
MLEs of gamma degradation model parameters, test statistics values and p-values for LR and VERP tests
i LR test VERP test
Gamma degradation model MLEs of model parameters
Ay p-value d, p-value
“Fixed-effect” model 6,=14.15, ¥, =0.002 \ .
< - ~ 24,24 10° 0,0001 10
“Random-effect” model 5,=145, 6, =28,86, 7, =0,002 < <

Considering the fact that p-value < a=0,05 for both LR and VERRP test, the hypothesis of absence of
random effect is rejected. Therefore, the “random-effect” gamma degradation model is more appropriate
model for the GaAs lasers data.

In Figure 6, the reliability functions of the “fixed-effect” and “random-effect” gamma degradation
models (dashed and solid line correspondently) and the empirical reliability function of the interpolated la-
sers failures are presented. As can be seen from the figure, the reliability function of the “random-effect”
model is closer to the observed failure distribution. So, this fact demonstrates that the gamma degradation
model with random effects is more appropriate for describing considered GaAs lasers data.
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Conclusion

In this paper, we have considered the problems of testing the hypothesis of absence of random effects
in degradation data. The likelihood ratio test (LR test) and based of the variance estimate of the random
parameter ¢ (VERP test) were proposed to reveal the existence of random effects in degradation data corre-
sponding to the gamma degradation model. The conducted research of the tests power showed that the VERP
test is a bit more powerful criteria than the LR test for smaller sample sizes.
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Fig. 6. The reliability functions of the “fixed-effect” and “random-effect”
gamma degradation models and the empirical distribution of lasers failures

The example with the GaAs lasers data was considered. Based on the results of the investigations, we
recommend to use the gamma degradation model with random effects for the further analysis of the lasers
data because this model is more appropriate for describing the change of degradation index than the “fixed-
effect” model.
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JlerpananionHble TaMMa-MOJENHN MIHPOKO HCIIOIB3YIOTCS UL OLEHKH (YHKIIMH HAJISKHOCTH MO JaHHBEIM 00 M3MEHEHUH IIOKa-
3aTens Jerpajallii BO BpeMeHU. B naHHOI cTaThe paccMaTpUBalOTCsS MPOOIEMBI MOCTPOSHHUS JETPaJalliOHHON raMMa-MOJETH CO
ciryqaiiHbIM 3 eKToM, KOTOpast yIUTHIBaeT pa3dpoc MexIy AerpalallioHHBIMU HporieccaMu. [Iperoixkens! 1Ba CTaTHCTHUECKHX
KPHUTEPHsI, KOTOPHIE ITO3BOJISIIOT BEISIBUTH HAMYHE CITy4alHOro 3¢¢dexTa B JaHHBIX, COOTBETCTBYIOIINX PacCMaTpHBacMON MOJEINH.
[lepBoIii KpUTEpHA NPEACTABIAET COOOH XOPOIIO M3BECTHBII KPUTEPUil OTHOLICHUS MPAaBIONOA00uS, a BTOPOil OCHOBAaH Ha OLICHKE
JUCHepcHHu ciydaifHoro napamerpa. C UCIOJIB30BAHUEM METOA0B MMUTALMOHHOTO MOJENUPOBAHUS IIPOBEICHO HCCIIEA0BaHNUE MOIII-
HOCTHU JaHHBIX KpuTepueB. [IpuMeHeHne pa3paOOoTaHHBIX KPUTEPHEB PACCMOTPEHO Ha MpUMEpe JaHHBIX 00 MCCIEIOBAHNH apCeHU-
rayutneBbixX (GaAs) azepos.

KiroueBble cioBa: JerpagalioHHAas raMMa-MOJENb; MOJENb ¢ (UKCHPOBAHHBIM 3((GEKTOM; MOJEIb CO CIydalHBIM 3(hQeKToMm;
HaJeKHOCTb; apCCHH/I-TAJUTUEBbIC JIa3ePhl.
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