Т. 63, № 1 ФИЗИКА 2020

УДК 621.396.67 DOI: 10.17223/00213411/63/1/11

А.И. ПОТЕКАЕВ 1,2 , Г.Н. ПАРВАТОВ 2 , И.И. ГОРЕЛКИН 3 , А.С. ШОСТАК 3 , К.А. ДЖАКЫПОВ 3 , И.А. ЯКОВЛЕВ 2 , Е.С. ЗАГОРОДНЯЯ 3

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ПОДСТИЛАЮЩИХ СРЕД НА ИМПЕДАНС СИСТЕМЫ ИЗ ДВУХ ПРОИЗВОЛЬНО РАСПОЛОЖЕННЫХ ПАРАЛЛЕЛЬНЫХ ЛИНЕЙНЫХ АНТЕНН *

Анализируются результаты численного исследования влияния неоднородных диэлектрических сред на импеданс системы их двух параллельных линейных антенн, произвольно расположенных вблизи границы раздела. На основе сравнительного анализа показана возможность оптимизации габаритов и конфигурации антенной системы для радиоволновой диагностики диэлектрических средств в СВЧ-диапазоне.

Ключевые слова: линейная антенна, слоистая среда, взаимный внесенный импеданс, диэлектрическая подстилающая среда, СВЧ-зондирование.

Разработки радиоволновых методов и приборов дистанционной диагностики слабопроводящих сред на основе линейных приемоизлучающих антенн актуальны и в настоящее время [1, 2]. В работах [2–5] исследована возможность построения зондирующих радиоволновых систем на основе одиночных приемоизлучающих линейных антенн и частотно-усредненного алгоритма измерения внесенного импеданса антенн. Однако в реальных устройствах радиоволновой диагностики используются более сложные приемоизлучающие системы из двух и более линейных антенн, которые с учетом влияния контролируемых сред слабо изучены. В данной работе приведены результаты численного исследования влияния неоднородных подстилающих сред на импеданс приемоизлучающей системы из двух произвольно расположенных параллельных линейных антенн с учетом их влияния друг на друга. При этом оптимизируется конфигурация и величина разнесения антенн по двум координатным осям.

Исследуемая модель представлена на рис. 1, где приняты следующие обозначения: A_1 , A_2 – линейные равноплечные антенны с размером плеча l, расположенные параллельно координатной оси 0X и друг другу на одной высоте h симметрично относительно 0У над границей раздела сред. Антенны удалены друг от друга на расстояние у, центры антенн сдвинуты в плоскости X0Y на величину c относительно друг друга по оси Х. Исследуемая структура состоит из четырех плоских слоев. Каждый слой характеризуется собственной толщиной T_i и комплексной диэлектрической проницаемостью $\dot{\epsilon}_i$. При расчетах импеданса линейных антенн контролируемую среду представляем в виде многослойной системы и для наглядности предполагаем ее однородной в направлениях X и Y. Слой T_1 – воздушное пространство, в котором расположена антенна; слой T_2 представляет собой укрывающую среду (характеризует глубину залегания неоднородности); слой T_3 характеризует искомую неоднородность, а слой T_4 идентичен по комплекс-

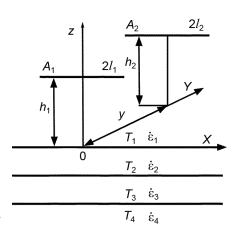


Рис. 1. Схема к задаче об определении импеданса системы линейных антенн

ной диэлектрической проницаемости слою T_2 и является полупространством $(T_4 \to \infty)$.

Для того чтобы оценить влияние различных неоднородных плоскослоистых сред на внесенное сопротивление $\dot{Z}_{\rm BH}$ в отдельно взятый вибратор, в системе из двух параллельно расположенных вибраторных антенн необходимо учесть взаимное сопротивление антенн в свободном про-

^{*} Статья написана в рамках научного проекта, выполненного при поддержке Программы повышения конкурентоспособности ТГУ среди ведущих мировых научно-образовательных центров.

Уважаемые читатели!

Доступ к полнотекстовой версии журнала «Известия высших учебных заведений. Физика» осуществляется на платформе Научной электронной библиотеки eLIBRARY.RU на платной основе:

https://www.elibrary.ru/contents.asp?titleid=7725