Т. 63, № 2 ФИЗИКА 2020

УДК 621.373 DOI: 10.17223/00213411/63/2/22

М.П. ДЕЙЧУЛИ, В.И. КОШЕЛЕВ, А.А. ПЕТКУН

СКАНИРОВАНИЕ ЛИНЕЙНО-ПОЛЯРИЗОВАННОГО ВОЛНОВОГО ПУЧКА ПРИ ДВУХМОДОВОМ ВЗАИМОДЕЙСТВИИ В МНОГОВОЛНОВОМ ЧЕРЕНКОВСКОМ ГЕНЕРАТОРЕ

Теоретически и экспериментально исследована возможность получения сканирующего линейно-поляризованного волнового пучка из многоволнового черенковского генератора. Теоретически показано, что при использовании азимутально-неоднородных периодических замедляющих структур возможна генерация двух периодически сменяющих друг друга поперечных мод на одной несущей частоте (9 ГГц). В выводящем излучение волноводе поле мод в основном линейно поляризовано. Поперечное распределение поля мод соответствует модам ТЕM_{00} и ТЕM_{10} конфокального резонатора. Из расчетов следует, что угловое положение максимума в распределении интенсивности излучения на фиксированном расстоянии от таких источников меняется от -9° до $+9^{\circ}$ с периодом 17–20 нс. Результаты экспериментальных исследований согласуются с теоретическими данными.

Ключевые слова: микроволновое излучение, сканирование, азимутально-неоднородная замедляющая структура, многоволновой черенковский генератор.

Введение

Микроволновые генераторы гигаваттного уровня мощности разрабатываются для исследований воздействия импульсов электромагнитного излучения на объекты и среды, ускорения заряженных частиц, радиолокации. В настоящее время можно выделить два основных направления. Первое направление связано с исследованием взаимодействия релятивистских сильноточных электронных пучков и электромагнитного поля в сверхразмерных (диаметр D много больше длины волны излучения λ) замедляющих структурах (3C) и направлено на увеличение мощности в одном устройстве. Здесь можно отметить многоволновые черенковские генераторы (МВЧГ) [1, 2] и генераторы поверхностной волны [3, 4].

Второе направление увеличения мощности излучения связано со сложением импульсов от отдельных черенковских генераторов на общий выход [5, 6] либо в свободном пространстве [7, 8]. В последнем случае возможно управление диаграммой направленности между импульсами или в течение одного импульса соответственно за счет сдвига фаз или частоты между элементами решетки [9]. Так как расстояние между рупорными антеннами много больше длины волны излучения, то диаграмма является многолучевой, а угол сканирования составляет несколько градусов.

В настоящее время ведутся исследования, направленные на разработку сканирующих антенн для одиночных генераторов мощного микроволнового излучения [10, 11]. Общей проблемой здесь является электрический пробой выходных устройств.

Целью данной работы является разработка нового метода сканирования волнового пучка в предложенном ранее МВЧГ с линейной поляризацией излучения [12]. В таком генераторе используется сверхразмерная азимутально-неоднородная ЗС. Электродинамический анализ предложенного подхода основан на разработанном ранее методе матриц рассеяния для азимутально-неоднородных ЗС [13]. Для релятивистского сильноточного электронного пучка в численных расчетах используется РІС-модель [14]. Возможность сканирования волновым пучком в одной плоскости проверяется экспериментальными исследованиями.

Теоретическая модель

Для исследования взаимодействия поля электродинамической системы с электронным пучком разработана трехмерная численная модель на основе метода «частиц в ячейке». Динамика электронного пучка определяется интегрированием 3D-уравнений движения частиц по времени в полном поле. Полное поле складывается из внешне приложенного магнитного поля, поля пространственного заряда и тока пучка и электромагнитного поля, представленного в виде разложения по собственным полям азимутально-неоднородной 3С многоволнового черенковского генератора. Поле пучка определяется решением трехмерного конечно-разностного уравнения Пуассона

Уважаемые читатели!

Доступ к полнотекстовой версии журнала «Известия высших учебных заведений. Физика» осуществляется на платформе Научной электронной библиотеки eLIBRARY.RU на платной основе:

https://www.elibrary.ru/contents.asp?titleid=7725