<u>№ 353</u> Декабрь 2011

НАУКИ О ЗЕМЛЕ

УДК 553.411:546.22

Е.А. Вагина

ИЗОТОПНЫЙ СОСТАВ СЕРЫ СУЛЬФИДОВ РУД ЗОЛОТОГО МЕСТОРОЖДЕНИЯ ЧЕРТОВО КОРЫТО (ПАТОМСКОЕ НАГОРЬЕ)

Работа выполнена при финансовой поддержке ФЦП «Научные и научно-педагогические кадры инновационной России на 2009–2013 годы» Федерального агентства по образованию (ГК № П238 от 23.04.2010 г.).

Изучен изотопный состав серы сульфидов руд месторождения Чертово Корыто, локализованного в раннепротерозойской черносланцевой толще. Изотопы серы проанализированы в пирите, арсенопирите, пирротине и галените различных генераций. Разброс изотопных отношений серы в ранних и поздних сульфидах укладывается в интервал –3,8...+4,7‰, что согласуется с представлением о ее мантийном источнике.

Ключевые слова: изотопы; сера; сульфиды; золоторудное месторождение; черные сланцы.

Введение

Соотношения стабильных изотопов химических элементов используются для суждения об источниках рудного вещества различных месторождений полезных ископаемых. При этом не всегда результаты поддаются одновариантной интерпретации. Примеры такого рода известны и распространяются на месторождения, образованные в несланцевом и особенно черносланцевом субстрате.

К представителям золоторудных объектов, локализованных, например, в черносланцевых толщах, относятся месторождения Ленского района, в том числе Сухой Лог. Согласно данным [1], величина δ^{34} S пирита в месторождении Сухой Лог колеблется от +0,9 до +6,2‰ при среднем значении +4,7‰. Эти результаты интерпретируются авторами как свидетельство сравнительно высокой однородности изотопного состава серы рудообразующих гидротермальных растворов и близости его к метеоритному стандарту. Вместе с тем указывается, что повышенное содержание тяжелого изотопа не исключает участия в составе пиритов осадочной серы, извлеченной при рудообразовании из вмещающих пород. По обобщенным данным В.А. Буряка [2], δ^{34} S в пирите прожилкововкрапленных руд, образованных в хомолхинской и аунакитской свитах позднего рифея Ленского района, изменяется соответственно от +7.0 и +6.2‰. При этом не указывается, относятся ли эти данные к пириту одной генерации или нет. На это важно обратить внимание, поскольку δ^{34} S различается от +3,4 до +3,78‰ в ранней генерации пирита и до +6,08...+8,95‰ – в поздней [3].

По другим данным [4, 5], пирит прожилково-вкрапленных руд месторождения Сухой Лог имеет изотопный состав серы, изменяющийся в пределах +5,8...+10,6%, а для вкрапленного пирита за пределами рудной зоны характерно обогащение тяжелым изотопом (+12,5...+21,6%).

Для Гольца Высочайшего и Вернинского месторождений получены результаты изотопии серы со средними значениями +6,2 и +5,5‰ соответственно [4]. Авторами также исследована рассеянная вкрапленность пирита в гранитах Константиновского штока и отмечена близость изотопного состава серы сульфидов месторож-

дения Сухой Лог — Вернинское и сульфидов Константиновского штока. На основании выполненных исследований сделан вывод, что источником металлоносных флюидов служили подрудные области высокотемпературного метаморфизма и гранитизации. Как видно из приведенных данных, имеются расхождения в результатах, а следовательно, и в их интерпретации. Следует подчеркнуть, что значения δ^{34} S, соответствующие метеоритному стандарту (± 5 %), рассматриваются упомянутыми авторами в рамках гранитогенной концепции.

Наиболее убедительные выводы о происхождении металлоносных растворов могут быть получены посредством сравнения изотопных данных с другими независимыми фактами.

В статье приведен пример подобного сравнительного исследования, выполненного в месторождении Чертово Корыто.

Краткий очерк геологического строения месторождения

Месторождение расположено на севере Патомского нагорья в бассейне р. Б. Патом (рис. 1). Мощная (до 150 м) рудная залежь образована в раннепротерозойской углеродистой толще терригенных сланцев михайловской свиты и сложена метасоматитами березитпропилитовой формации с жильно-прожилково-вкрапленной сульфидно-кварцевой минерализацией. В кварцевых жилах и прожилках сульфиды встречаются эпизодически. Преобладают пирит, арсенопирит, пирротин, в качестве несущественной примеси в сульфидно-кварцевых комплексах участвуют галенит, сфалерит, халькопирит, микропримеси кобальтина, самородного свинца, ульманита, теллуровисмутита, валлериита. Преобладает свободное золото в кварце. Более подробно строение месторождения описано в статьях [6, 7].

Материал для анализа изотопов серы и методика исследования

Образцы керна, содержащие сульфидную минерализацию, измельчались до +0.25 мм, затем пропуска-

лись через бромоформ с целью отделения легкой фракции и дополнительно разделялись на магнитную и немагнитную части с использованием магнита. Затем полученные концентраты сульфидов (пирит, арсенопирит, пирротин, галенит) чистились под бинокулярным микроскопом. Отбор осуществлялся с учетом генетической принадлежности сульфидов.

Выделено 4 генерации пирита, 2 генерации арсенопирита и 3 генерации пирротина [8].

Пирит. Пирит I распространен в углеродистой зоне метасоматического ореола в виде мелких кристаллов с четкими гранями размером до 0,5 см или же в форме мелких прожилков. Для пирита II характерно развитие цепочечных скоплений в маломощных кварц-карбонатных прожилках в форме кубических метакристаллов размером до 1 см с четкими гранями. Пирит III из кварцевых жил развит в виде зернистых агрегатов и обладает большим разнообразием морфологических типов кристаллов. Для пирита IV, образованного в процессе замещения пирротина, характерно развитие марказит-пиритовых агрегатов. Для проведения изотопных исследований непригоден.

Арсенопирит. Весьма распространенный сульфид в рудах месторождения, присутствует во всех частях рудной залежи. Контур рудного тела вписывается в аномалии мышьяка. По физическим свойства выделено 2 генерации. Арсенопирит I присутствует в породе в виде метакристаллов короткопризматической формы с четко выраженными гранями. Арсенопирит II расположен в кварцевых жилах и прожилках в виде зернистых агрегатов. Встречается редко.

Пирротин. Присутствует в трех генерациях. Пирротин I развит в углеродистой зоне метасоматического ореола в виде штриховых выделений, параллельных сланцеватости. Прослеживается по всему разрезу. Пирротин II присутствует в маломощных кварц-карбонатных прожилках в виде плотных скоплений. Пирротин III распространен в мощных кварцевых жилах в форме зернистых масс.

Галенит. Встречается редко в виде гнездовых выделений в кварцевых жилах.

На основании выделенных генераций сульфидов, их взаимоотношений предварительно выделены минеральные комплексы руд (табл. 1).

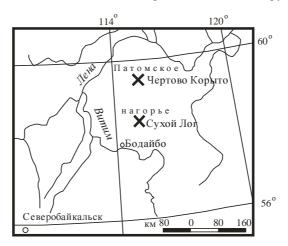


Рис. 1. Схема расположения месторождения Чертово Корыто

Таблица 1

Минеральные комплексы руд месторождения Чертово Корыто

Минеральный комплекс	Состав	
Кварц-пирит-пирротиновый	Кварц, пирит I, пирротин I, халькопирит I	
Кварц-пирит-арсенопирит-пирротин-карбонатный	Кварц, пирит II, арсенопирит I, золото, пирротин II, сфалерит, халькопирит II, карбонаты	
Кварц-пирит-арсенопиритовый	Кварц, пирит III, арсенопирит II, золото	
Галенит-сфалерит-пирротин-халькопирит- карбонатный	Кварц, галенит, сфалерит II, золото, пирротин III, халькопирит III, карбонаты	
Кварц-карбонатный (безсульфидный)	Кварц, карбонаты	

Анализы выполнены в лаборатории стабильных изотопов Аналитического центра Дальневосточного отделения Российской академии наук (г. Владивосток), аналитик Т.А. Веливецкая. Подготовка образцов для масс-спектрометрического изотопного анализа серы проведена по методике В.А. Гриненко [9]. Измерение выполнено на изотопном масс-спектрометре Finnigan MAT 253 (ThermoFinnigan, Bremen, Germany) с использованием двойной системы напуска. Вес анализируемых образцов 10 мг. Погрешность определения δ^{34} S (1 σ) составляет 0,1‰, σ = 5. В качестве стандарта использован троилит метеорита Каньона Дьябло (CDT).

Результаты исследования

Для пиритов различных генераций характерен незначительный разброс значений δ^{34} S, изменяющийся в пределах -0,2...+4,7% со средним значением +3,25%. Для арсенопиритов интервал более узок и составляет -3,8...+1,3%. Пирротинам свойственны значения, изменяющиеся в пределах +2,7...+7,1%. Как видно из полученных результатов, для пирита и арсенопирита свойственны значения изотопных соотношений серы, укладывающиеся в интервал -3,8...+4,7%. В сравнении с пиритом сера арсенопирита имеет более облегченные

значения. Значительно отличаются изотопные отношения раннего пирротина. Сера в нем обогащена тяжелым изотопом (+6.9%, +7.1%). Для более позднего сульфи-

да — галенита — свойственны изотопные отношения серы (+1,8%, +2,5%) приближенные к метеоритному стандарту (табл. 2).

Таблица 2 Изотопный состав серы сульфидных минералов в рудах месторождения Чертово Корыто

№ образца	Минерал	Тип минерализации	δ ³⁴ S, ‰ (CDT)
89-77,2	Пирит I	Мелкие кристаллы пирита, рассеянные в породе	+4,7
195-144,0 194-83,4 194-112.0	Пирит II	Кубические кристаллы пирита в сопровождении кварц-карбонатных прожилков из центральной части рудного тела	+2,3 +3,4 +2,4
307-43,0			-0,2
82-72,0 193-141,0	Пирит III	Зернистые агрегаты из маломощных кварцевых жил центральной части рудного тела	+1,7
194-167,4 306-52,8	Арсенопирит I	Метакристаллы короткопризматической формы в углеродистой зоне мета- соматического ореола из центральной части рудного тела	+0,3 -3,8
85-99,4			+0,8
84-44,0 195-121,0	Арсенопирит II	Зернистые агрегаты арсенопирита из кварцевых жил центральной части рудного тела	+0,9
84-153,3 192-227,9	Пирротин I	Штриховые выделения пирротина в терригенной толще пород, расположенные по сланцеватости	+6,9 +7,1
84-84,5	Пирротин II	Зернистые агрегаты из кварцевых жил центральной части рудного тела	+4,0
195-144,0	Пирротин III	Пирротин в ассоциации с кубическими кристаллами пирита в сопровождении кварц-карбонатных прожилков из центральной части рудного тела	+2,7
194-161,5	Галенит	Гнездовые выделения галенита в кварцевых жилах	+1,8
195-48,3	Галенит		+2,5

Обсуждение результатов и выводы

Изотопные отношения серы сульфидов месторождения изменяются в пределах –3,8...+4,7‰, что соответствует представлению о мантийном ее происхождении. Наиболее ранним (пирит I) и более поздним (галенит) сульфидам свойственны значения изотопов серы +4,7; +1,8 и +2,5‰ соответственно. Это показывает однородность источника серы в процессе рудообразования начиная с раннего комплекса и кончая поздними выделениями сульфидов в кварцевых жилах. Более положительные отношения изотопов серы пирротина I (+6,9‰, +7,1‰), вероятно, можно объяснить смешением ювенильной серы с серой осадочного генезиса или фракционированием изотопов серы в условиях ее дефицита.

Полученные результаты хорошо соотносятся с данными по другим объектам. Сера галенита из жил Кедровского рудного поля, например локализованных в углеродистых сланцах, имеет в среднем $\delta^{34}S = +3,6\%$ при диапазоне вариаций от 8,5 до 1,0% [1]. Из этих данных авторы делают вывод о высокотемпературном гомогенном, скорее всего, глубинном источнике серы и рудного вещества. Позднее было подтверждено, что изотопный состав серы пирита из околорудных березитов и лиственитов Кедровского рудного поля близок к приведенным данным (-0,2...+3,0%) [10]. Изотопный состав серы игольчато-призматического арсенопирита и глобулярно-кристаллического пирита раннего этапа минерализации золото-сульфидных руд месторождений Восточного Казахстана, расположенных в черно-

сланцевых карбонатно-терригенных породах карбона, отвечает интервалу значений $\delta^{34}S=0,0...-3,3\%$ [11]. Изотопный состав арсенопирита и пирита второй продуктивной ассоциации характеризуется более легкой серой (-7,7...-10,2‰), что, по мнению авторов, связано с процессами ее фракционирования в условиях повышенной фугитивности кислорода на позднем этапе рулоотложения.

Полученные значения для сульфидов месторождения Чертово Корыто согласуются с изотопными отношениями серы месторождений, локализованных и в несланцевом субстрате. Так, согласно И.А. Загрузиной с соавт. [1], изотопный состав серы галенита, сфалерита, халькопирита, пирита в разных рудных жилах Ирокиндинского рудного поля и на разных гипсометрических уровнях примерно одинаков. Среднее значение δ^{34} S для различных жил изменяется от -3.5 до -2.7% при вариации значений δ^{34} S не более $\pm 3.5\%$. Кроме того, наблюдается утяжеление серы по мере приближения (от 1.5-1.0 до 0.5 км) к глубинному разлому [10].

Изотопные значения серы сульфидов месторождения Чертово Корыто соотносятся с наличием контрастных аномалий фемофильных элементов (P, Ti, Mg, Fe, Ca, Mn) в ближнем обрамлении рудоконтролирующего разлома [12]. Ті накапливался в форме рутила и лейкоксена в рудах и метасоматитах, Р присутствует в составе апатита, Mg Fe, Ca, Mn входят в состав карбонатов (анкерита). Кроме того, в месторождении описаны внутрирудные дайки умеренно-щелочного базитового состава [7]. Такие дайки-флюидопроводники известны

и в месторождениях, локализованных в несланцевом субстрате (Берикульском, Кедровском, Каралонском, Холбинском и др.) [13, 14]. Перечисленные факты свидетельствуют о раствороподводящей функции и глубинном статусе рудоконтролирующего разлома, об активном базальтовом магматизме в период рудообразования с импульсным режимом внедрения в верхние горизонты земной коры расплавов и металлоносных растворов.

Таким образом, контроль месторождения глубинным разломом, наличие внутрирудных даек умереннощелочного базитового состава, контрастные аномалии фемофильных элементов в околорудных метасоматитах и рудах, изотопные значения серы, близкие к метеоритному стандарту, — все эти факты в их сочетании служат доказательством генетической связи рудообразования с умеренно-щелочным базальтовым магматизмом.

ЛИТЕРАТУРА

- 1. Загрузина И.А., Голубчина М.Н., Миронюк Е.П. и др. Изотопный состав серы сульфидов некоторых золоторудных месторождений зоны БАМ // Записки Всесоюзного минералогического общества. 1980. Ч. 109, вып. 3. С. 290–300.
- 2. Буряк В.А. Пространственно-временная эволюция состава изотопов серы золоторудных месторождений среди углеродистых толщ // Доклады АН СССР. 1987. Т. 295, № 1. С. 160–164.
- 3. Левицкий В.В., Викулова Л.П., Демина Б.Г. и др. Сравнительный анализ золото-углеродисто-сульфидно-кварцевых руд металлорганических соединений // Доклады АН СССР. 1980. Т. 255, № 6. С. 1471–1474.
- 4. *Кряжев С.Г.*, *Устинов В.И.*, *Гриненко В.А.* Особенности флюидного режима формирования золоторудного месторождения Сухой Лог по изотопно-геохимическим данным // Геохимия. 2009. № 10. С. 1108–1117.
- 5. Иконникова Т.А. Поведение стабильных изотопов (O, C, S) в гидротермально-метасоматическом рудообразовании на месторождении Сухой Лог: дис. ... канд. геол.-минер. наук. М., 2010. 123 с.
- 6. *Кучеренко И.В., Гаврилов Р.Ю., Мартыненко В.Г., Верхозин А.В.* Структурно-динамическая модель золоторудных месторождений, образованных в несланцевом и черносланцевом субстратах. Ч. 2. Месторождение Чертово Корыто (Патомское нагорье) // Известия Томского политехнического университета. 2008. Т. 314, № 1. С. 23–38.
- 7. Гаврилов Р.Ю., Кучеренко И.В., Мартыненко В.Г., Верхозин А.В., Мартынова Т.Е. Объемная геолого-геохимическая модель мезотермального золоторудного месторождения Чертово Корыто (Патомское нагорье) // Известия Томского политехнического университета. 2009. Т. 315, № 1. С. 30–43.
- 8. *Вагина Е.А., Рудмин М.А.* Кристалломорфология и термоэлектрические свойства пирита и арсенопирита в золоторудном месторождении Чертово корыто (Патомское нагорье) // Известия Томского политехнического университета. 2010. Т. 317, № 1. С. 66–73.
- 9. Гриненко В.А. Приготовление двуокиси серы для изотопного анализа // Журнал неорганической химии. 1962. № 7. С. 2578–2582.
- 10. Кучеренко И.В. Магматогенное золотое оруденение в структурах допалеозойской складчатости (на примере южного обрамления Сибирской платформы): дис. . . . д-ра геол.-минер. наук. Томск, 1991. Т. 1. 243 с.
- 11. Ковалев К.Р., Калинин Ю.А., Наумов Е.А. и др. Золотоносность арсенопирита золото-сульфидных месторождений Восточного Казахстана // Геология и геофизика. 2011. Т. 52, № 2. С. 225–242.
- 12. Кучеренко И.В., Гаврилов Р.Ю., Мартыненко В.Г., Верхозин А.В. Новые данные о фемофильной специализации золотоносных березитов // Известия Томского политехнического университета. 2009. Т. 315, № 1. С. 26–29.
- 13. Кучеренко И.В. Петрологические и металлогенические следствия изучения малых интрузий в мезотермальных золоторудных полях // Известия Томского политехнического университета. 2004. Т. 307, № 1. С. 49–57.
- 14. *Кучеренко И.В., Гаврилов Р.Ю., Мартыненко В.Г., Верхозин А.В.* Структурно-динамическая модель золоторудных месторождений, образованных в несланцевом и черносланцевом субстратах. Ч. 1. Берикульское месторождение (Кузнецкий Алатау) // Известия Томского политехнического университета. 2008. Т. 313, № 1. С. 12–26.

Статья представлена научной редакцией «Науки о Земле» 12 сентября 2011 г.