МАКРОЭЛЕМЕНТНЫЙ СОСТАВ ТОРФА ВЫПУКЛЫХ ВЕРХОВЫХ БОЛОТ СРЕДНЕЙ ТАЙГИ ЗАПАДНОЙ СИБИРИ (НА ПРИМЕРЕ БОЛОТНОГО КОМПЛЕКСА «МУХРИНО»)

Работа выполнена при финансовой поддержке проекта РФФИ НЦНИЛ а № 10-04-93109.

Приведены данные по химическому составу торфа пяти экосистем болотного комплекса, расположенного в долине Нижнего Иртыша на низкой террасе в пределах Кондинского геохимического округа. Мощность торфяной залежи колеблется от 1,3 до 3,5 м. Распределение макроэлементов в торфяном профиле во всех экосистемах одинаково — содержание макроэлементов увеличивается в верхней и нижней частях профиля. В верхней части они накапливаются вследствие биогенной аккумуляции, в нижней части — под влиянием нижележащих минеральных горизонтов. Миграционные процессы выравнивают генетические различия во внутрипрофильном распределении содержания макроэлементов. Обнаружено резкое различие содержания калия в живой фитомассе экосистем и торфяном слое 0–30 см. Коэффициент биологического поглощения калия изменяется от 1,5 (гряда) до 11 (топь), что говорит о его быстром вымывании болотными водами из отмерших частей мхов, трав и кустарничков при деструкции и поглощении живыми корнями растений.

Ключевые слова: макроэлементы; торф; торфяной профиль; миграция элементов; живое вещество; биогенная аккумуляция; фитомасса; геохимический округ; деструкция; закрепление.

Переувлажненные ландшафты играют роль своеобразных «легких» для урбанизированных территорий, насыщенных транспортом и промышленными предприятиями. Этому способствует явление термофореза, когда атмосферные потоки с частицами аэрозольной пыли и микрофлорой движутся в направлении зон пониженной температуры, повышенной влажности и осаждаются там [1]. В среднем болота способны ассимилировать 300 кг/га пыли, частично осуществляя минеральное питание растений при одновременном очищении атмосферы [2]. Химические элементы N, P, K, Ca, Mg, S, находящиеся в пыли, используются растениями для создания органического вещества. Тяжелые металлы, выпадающие с пылью, аккумулируются болотами и исключаются из биологического круговорота [3].

При слабых процессах разложения в болотных экосистемах регистрируется механический вынос элементов вследствие избыточного увлажнения и большей интенсивности стока. Поэтому сток с выпуклых центральных участков болот к окраинам обеспечивает самоочищение в центре верховых болот и аккумуляцию загрязняющих веществ на их периферии [4]. Отмечая эту способность болот, представляющих собой естественные фильтры и препятствующих распространению загрязняющих веществ, М.А. Глазовская [3] относит их к восстановительным ландшафтногеохимическим барьерам.

Цель данной работы – выявить особенности распределения макроэлементов в торфяной толще, сформированной под различными экосистемами олиготрофного болотного комплекса в пределах геохимически связанных элементарных ландшафтов.

Материалы и методы исследования

По болотному районированию Западно-Сибирской равнины объект исследования входит в среднетаежную провинцию Западно-Сибирских олиготрофных грядово-мочажинных и сосново-кустарничково-сфагновых болот. Средняя заторфованность провинции составляет 50%. Некоторые исследователи выделяют их в особую болотную зону олиготрофных выпуклых верховых сфагновых болот [5] или в группу типов болотных мас-

сивов (выпуклых олиготрофных комплексных) в зоне избыточного увлажнения [6].

Нами был изучен элементный химический состав торфов пяти элементарных ландшафтов болотного массива, расположенного в долине Нижнего Иртыша на низкой террасе в пределах Кондинского геохимического округа [7]. Координаты болотного стационара «Мухрино», где проводились исследовательские работы, — 60°53'41" с.ш. и 68°41'45" в.д. Трансект проложен через элементарные ландшафты: рослый рям, низкий рям, грядово-мочажинный комплекс (гряда и мочажина) и олиготрофную топь.

Рослый рям представлен сосново-кустарничковосфагновым растительным сообществом. В верхнем древесном ярусе встречаются сосна и кедр, которые составляют около 5% ПП, высотой до 10 м, диаметром 4 см. Плотность деревьев составляет около 2 000 шт./га. Подрост из кедра, сосны с примесью березы составляет около 5%, высота его не превышает 1 м. Микрорельеф кочковатый, преобладают кочки. Соотношение кочек и межкочек составляет 70:30. Высота кочек не превышает 40 см.

Низкий рям представлен сосново-кустарничковосфагновым растительным сообществом. В верхнем древесном ярусе встречаются сосна и кедр, которые составляют около 15% ПП, высотой до 3–4 м, диаметром 6 см. Подрост из кедра, сосны с примесью березы составляет около 5%, высота его не превышает 1 м. Рельеф волнистый. Соотношение кочек и межкочек составляет 90:10. Высота кочек не превышает 40 см. Мощность торфяной залежи 340 см.

Мочажина у озера представлена осоково-пушицевосфагновым растительным сообществом. Мощность торфяной залежи 330 см.

В грядово-мочажинном комплексе преобладают гряды с сосново-кустарничково-сфагновым растительным сообществом высотой до 60 см, довольно обрывистые с резким переходом к мочажинам с андромедовошейхцериево-сфагновыми растительными сообществами. Соотношение гряд и мочажин составляет 3:1. Гряды слабо ориентированы. В мочажинах обводненность незначительна, УБВ не превышает 10 см от поверхности мхов. В верхнем древесном ярусе гряд встречаются невысокие деревья (1,5–2 м) сосны и кедра, которые со-

ставляют около 20% ПП, с диаметром 4 см. Подрост из кедра, сосны составляет около 5%, высотой 0,3–0,4 м. Микрорельеф кочковатый. Мощность торфяной залежи на гряде 370 см, в мочажине – 350 см.

При исследования элементного химического состава торфа в каждой экосистеме с помощью торфоразведочного бура производилось бурение скважин с последовательным послойным отбором образцов (с интервалом в 10 см) на всю мощность торфяной залежи. В камеральных условиях в образцах торфа определялись С, H, N (на элементном анализаторе CHNS на PE 2400 – II) и Ca, Mg, Na, K, P, Fe (методом масс-спектрометрии с индуктивно связанной плазмой ICP MS). Всего проанализировано около 160 образцов.

Результаты исследования и обсуждение

Торфообразование изучаемого болотного массива происходило на сложенной древнеаллювиальными песчаными отложениями низкой террасе [8]. Мощность торфяной залежи колеблется от 1,3 до 3,5 м. Исходя из данных О.Л. Лисс с соавторами [5] о средней скорости торфонакопления за периоды голоцена, было рассчитано, что торфяные отложения имеют Позднеатлантический возраст. Образование болотного массива началось 5 600–5 300 лет назал.

По морфологическим признакам, данным зольности и кислотности торфяная толща была дифференцирована по типам торфа (рис. 1).

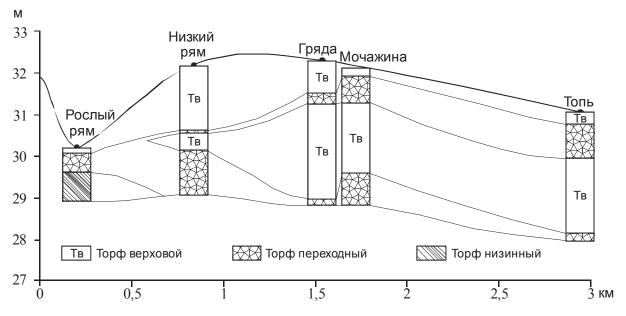


Рис. 1. Схема профиля болотного массива: по вертикали – высота над ур. м., м; по горизонтали – расстояние, км

В торфяной толще экосистемы рослый рям выделяются 3 части. Верхний слой мощностью 10 см образован верховым торфом с зольностю 2,6% и рН 3,3. Ниже следует сорокасантиметровый слой переходного торфа с зольностью около 6,0% и рН 3,4. Нижний слой 80 см образован низинным торфом с большим разбросом показателей зольности — от 2,4 до 27,2 и рН 3,7.

Торфяная толща низкого ряма разбивается на 4 части чередующихся слоев верхового и переходного торфов. Верхний слой представлен верховым торфом мощностью 150 см с зольностью 1,1–6,3. Ниже располагается небольшая прослойка (10 см) переходного торфа с более высокой зольностью 10,9%. С глубины 160 см лежит шестидесятисантиметровый слой верхового торфа с низкой зольностью 1,7%. Самый нижний слой переходного торфа, контактирующий с минеральным субстратом, имеет высоту 110 см. Вследствие этого фиксируется широкий разброс значения зольности – от 1,2 до 14,5%. Величина рН, незначительно колеблясь, увеличивается сверху вниз и составляет в нижней части 3,0–3,7.

В торфяной толще гряды, так же как и в экосистеме низкого ряма, чередуются слои верхового и переходного торфов. Слои имеют различную толщину и характеризуются более низкими количествами золы и менее

кислы по сравнению со значениями низкого ряма. В первом слое верхового торфа мощностью 70 см зольность колеблется в пределах 1,8–4,7. Ниже следует слой переходного торфа на глубине 70–100 см. Он имеет зольность 4,3–5,0%. Следующий мощный слой 100–330 см верхового торфа имеет зольность от 1,2 до 4,0%. Исключение составляет последний слой переходного торфа 330–350 см, он имеет широкий разброс значения зольности от 6,0 до 49,2%. Максимальное значение зольности связано с обогащением его минеральными частицами из нижележащего минерального горизонта. Кислотность колеблется в пределах рН 3,6–4,0 по всей толще.

Торфяная толща мочажины представлена чередованием верхового и переходного торфов. Верхний слой мощностью 20 см представлен верховым торфом с зольностью 1,5–2,6, рН водный 3,3–3,5. Ниже располагается слой переходного торфа 20–80 см с зольностью, процент которой колеблется в пределах 3,4–22,8%. Далее следует слой верхового торфа на глубине 80–250 см, в нем процент золы падает до 4,0%. Следующий слой 250–330 см переходного торфа имеет широкий разброс значения зольности – от 2,0 до 25,4% и рН 3,7–4,0.

В торфяной толще олиготрофной топи также выделяются 4 части. Верхний слой верхового торфа мощно-

стью 30 см имеет низкий разброс показателей зольности 0,9–1,1 и рН 3,1. Ниже следует семидесятисантиметровый слой переходного торфа. В нем разброс значений зольности значительно возрастает — от 3,6 до 9,6% и рН равен 3,2. Следующий мощный слой 180 см верхового торфа имеет низкую зольность — от 1,2 до 3,6% и рН около 3,0. Самый нижний двадцатисантиметровый слой переходного торфа имеет, так же как и первый слой переходного торфа, большой разброс значений зольности 3,0–11,2% и рН, равный 3,5.

Слои верхового, переходного и низинного торфа в торфяной залежи изучаемых элементных ландшафтов по количественным характеристикам зольности сходны. Несмотря на генетическую неоднородность торфной залежи изучаемых экосистем величины рН имеют близкие значения вследствие внутрипрофильного нивелирования реакции среды в торфяной толще под водно-миграционными процессами и восстановительным режимом [8], свойственные олиготрофной стадии развития.

Содержание углерода в пределах торфяного профиля всех экосистем незначительно колеблется от 49 до

58%. Резкое его уменьшение регистрируется при контакте с подстилающим минеральным горизонтом.

Содержание водорода также стабильно из-за выравнивания реакции среды вследствие водно-миграционных процессов и восстановительной обстановки: изменяется по профилю в пределах 6,3–6,9%. В нижнем горизонте его содержание уменьшается до 3,3–6,0%.

Содержание азота в торфяных горизонтах изменяется, возрастая с увеличением трофности. На рослом ряме пределы колебания в торфяной залежи от 0,9 до 1,4%. В экосистеме низкий рям содержание азота увеличивается от 0,4 до 1,5. В грядово-мочажинном комплексе: на гряде - 0,7–1,1, в мочажине - 0,8–2,1. В топи пределы изменения содержания азота составляют 0,6–2,2.

Зольные элементы (K, Na, Ca, Mg, Fe) и Р были изучены для трех экосистем: низкого ряма, гряды и олиготрофной топи. Генетические различия в формировании торфяных толщ различных экосистем нашли отражение в их вещественном составе (табл. 1). Однако общие миграционные процессы также участвуют в распределении макроэлементов в пределах торфяной толщи.

Таблица 1 Средние значения содержания макроэлементов в торфяном профиле (сухое вещество, мг/кг)

Экосистема	Тип торфа, глубина, см	K	Na	Ca	Mg	P	Fe
Низкий рям	Тв 0-150	227	137	1 365	220	178	791
	Тп 150–160	72	42	1 670	253	109	1 114
	Тв 160-200	61	39	2 030	309	98	1 387
	Тп 200-310	87	55	2 758	362	155	2 221
Гряда	Тв 0-70	341	292	1 268	274	216	948
	Тп 70–100	683	418	970	215	283	610
	Тв 100-330	128	70	2 738	331	153	1 331
	Тп 330-350	4 290	2 458	5 553	1 024	267	5 822
Олиготрофная топь	Тв 0-30	262	217	1 329	337	235	791
	Тп 30-110	353	277	1 088	153	349	807
	Тв 110-290	107	86	2 330	284	263	1 261
	Тп 290-300	548	365	5 707	419	307	4 840

Примечание. Тв – верховой торф, Тп – переходный торф.

Во внутрипрофильном распределении накопление в верхней его части элементов (Р и Мg) связано с биогенной аккумуляцией. Распределение содержания биогенных элементов в торфах связано с особенностями ботанического состава торфа [9].

Накопление Fe, Na, Ca, K в нижней части торфяного профиля связано с наличием здесь комплексного глеевого и сорбционного барьера, а также с влиянием глинистых отложений, имеющих повышенные концентрации большинства химических элементов.

Распределение К и Na в торфяной толще гряды и олиготрофной топи одинаково. Более низкое содержание их в слоях верхового торфа, выше в переходном и значительно увеличивающемся нижнем слое переходного торфа. На низком ряме наблюдается небольшое повышение в верхнем горизонте верхового торфа, затем равномерное распределение внутри профиля с увеличением в нижнем горизонте (см. табл. 1).

Распределение фосфора в экосистемах гряды и олиготрофной топи и низкого ряма подчинено такой же закономерности, но содержание Р в переходном слое торфа нижних горизонтов данных экосистем имеет

близкие значения с переходными торфами, расположенными в середине профиля.

Содержание Са и Fe на гряде и олиготрофной топи в верхнем горизонте, сложенном верховым торфом, немного выше, чем в нижележащем переходном, затем содержание этих элементов начинает резко возрастать и максимально увеличивается в нижнем слое переходного торфа. В экосистеме низкий рям содержание Са и Fe постепенно увеличивается сверху вниз. Различия, обусловленные ботаническим составом верхового и переходного торфов, отсутствуют.

Содержание Mg в торфяной толще экосистемы низкий рям имеет распределение, схожее с Са и Fe. Распределение содержания Mg в экосистемах гряды и олиготрофной топи следующее: одинаковое содержание в слоях верхового торфа, ниже в переходном торфе содержание Mg уменьшается. Так же как и у других элементов, его содержание увеличивается в нижнем горизонте переходного торфа, более значительно — на гряде, менее выражено — в топи. При пересчете содержания макроэлементов в сухом веществе на содержание их в золе были получены следующие результаты (табл. 2).

Экосистема	Тип торфа	K	Na	Ca	Mg	P	Fe
Низкий рям	Тв	6	4	100	15	7	66
	Тπ	1	0,7	35	5	2	28
Гряда	Тв	10	8	100	15	9	55
	Тπ	15	9	20	4	3	17
Топь	Тв	15	13	120	23	18	68
	Тπ	6	5	48	4	5	40
Среднее	Тв	11	8	107	18	11	63
	Тπ	7	5	34	4	3	28
Данные Е.Г. Нечаевой, 1991 [8]	Тв	_	-	74	28	15	56
	Τп	_	-	63	15	10	35

Исследования Е.Г. Нечаевой [10] проводились на низкой террасе также в долине Нижнего Иртыша. При сопоставлении наших данных с данными Е.Г. Нечаевой [10] повышенное содержание имеют только Са и Fe в золе верхового торфа. Содержание Mg и P в нем ниже. В золе переходного торфа содержание Са, Mg, P, Fe значительно ниже, особенно Mg – в 3,5 раза, P – в 3 раза.

Содержание макроэлементов в торфах в пределах болотного массива также изменяется. По профилю низкий рям – гряда – топь в верховом торфе все макроэлементы (за исключением Fe) увеличивают свое содержание в золе. Изменение находится в следующих интервалах: K - 6-15, Na - 4-13, Ca - 100-120, Mg - 15-23, P - 7-18 и Fe - 55-68 г/кг. В переходном торфе содержание макроэлементов в золе сильно варьирует: K - 1-15, Na - 0,7-9, Ca - 20-48 и Fe - 17-40 г/кг. Незначительно изменяются в пределах профиля Mg - 4-5 и P - 2-5 г/кг.

По всем изученным химическим элементам резких различий в их содержании в живой фитомассе и торфяном слое 0–30 см обнаружено не было, за исключением калия.

Отмечается высокое содержание К в живой фитомассе по сравнению с торфом: на гряде -840, на низком ряме -2184 и в олиготрофной топи -2914 мг/кг.

Возможно, это обусловлено его вымыванием из растительных остатков вследствие его высокой подвижности в кислой среде [11].

Выводы

Установлено, что миграционные процессы, происходящие в торфяной толще различных болотных экосистем, нивелируют различия во внутрипрофильном распределении содержания макроэлементов, обусловленных генетически. По профилю низкий рям — гряда — топь в верховом торфе все макроэлементы увеличивают свое содержание в золе. Усредненные колебания по профилю регистрируются в следующих интервалах: K-6-15, Na-4-13, Ca-100-120, Mg-15-23, P-7-18 и Fe-55-68 г/кг. Значения содержание макроэлементов в золе переходного торфа сильно варьируют: K-1-15, Na-0,7-9, Ca-20-48 и Fe-17-40 г/кг.

Распределение макроэлементов в пределах торфяного профиля независимо от экосистемы имеет общие черты: увеличение содержания макроэлементов в верхней части профиля, связанное с их биогенной аккумуляцией, и увеличение содержания большинства элементов в нижней части профиля вследствие влияния нижележащих минеральных горизонтов.

ЛИТЕРАТУРА

- 1. Грегори М. Микробиология атмосферы. М.: Мир, 1964. 371 с.
- 2. Пьявченко Н.И., Сибирева З.А. О роли атмосферной пыли в питании болот // Доклады АН СССР. 1959. Т. 124, № 2. С. 414–417.
- 3. Глазовская М.А. Способность окружающей среды к самоочищению // Природа. 1979. № 3. С. 71–79.
- 4. *Лисс О.Л., Трофимов В.Т., Кашперюк В.И., Кудряшов В.Г.* Тенденция развития болотообразовательного процесса // Прогноз изменений природных условий Западной Сибири. М.: Изд-во Моск. ун-та, 1988. С. 5–20.
- 5. Лисс О.Л., Абрамова Л.И., Аветов Н.А., Березина Н.А. и др. Болотные системы Западной Сибири и их природоохранное значение. Тула : Гриф и К° 2001 584 с
- 6. *Кац Н.Я.* Болота Земного шара. М. : Наука, 1971. 294 с.
- 7. Романова Е.А. Типы болотных массивов и закономерное распределение их на территории Западной Сибири // Типы болот СССР и принципы их классификации. Л.: Наука, 1974. С. 167–174.
- 8. Львов Ю.А. Торфяное болото как система болотных фаций // Биологические науки. 1977. № 9. С. 97–103.
- 9. *Ефремова Т.Т., Ефремов С.П., Куценогий К.П., Онучин А.А. и др.* Биогеохимия Fe, Mn, Cr, Ni, Co, Ti, V, Mo, Ta, W, U в низинном торфянике на междуречье Оби и Томи // Почвоведение. 2003. № 5. С. 557–567.
- 10. Шевченко В.П. Влияние аэрозолей на среду и морское осадконакопление в Арктике / отв. ред. А.П. Лисицын ; Институт океанологии им. П.П. Ширшова РАН. М.: Наука, 2006. 226 с.
- Нечаева Е.Г. Ландшафтно-геохимическое районирование Западно-Сибирской равнины // География и природные ресурсы. 1990. № 4. С. 77–84

Статья представлена научной редакцией «Биология» 14 сентября 2011 г.