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THE GLOBAL OPTIMIZATION METHOD WITH SELECTIVE AVERAGING  

OF THE DISCRETE DECISION VARIABLES 

 
In the paper, the functional of selective averaging of discrete decision variables is proposed. The positive selectivity 

coefficient is entered into a positive decreasing kernel of functional and with growth of selectivity coefficient the 

mean gives optimum values (in a limit) of decision discrete variables in a problem of global optimization. Based  

on the estimate of the selective averaging functional, a basic global optimization algorithm is synthesized on a set of 

discrete variables with ordered possible values under inequality constraints. The basis is a computational scheme for 

optimizing continuous variables and its transformation for optimization with respect to discrete variables. On a test 

example the high convergence rate and a noise stability of base algorithm are shown. Simulations have shown that the 

estimate of the probability of making a true decision reaches unit. 

Keywords: global optimization; discrete variable; selective averaging of decision variables; multiextreme function; 

constraints of inequality type. 

 

The problem of search of a global extremum of objective functions on admissible set of decision  

variables (continuous, discrete or continuous-discrete) belongs to the very complex class [1–27]. The speci-

ficity of global optimization is caused by multiextremal view of the objective functions, their discontinuous 

nature, very different sensitivity of objective functions in relation to decision variables, the discrete nature of 

part or all the variables, the presence of noises, the presence of a considerable quantity of decision variables 

and constraints of inequalities type and equalities type. If objective functions are not calculated, they are 

measured in points of admissible set of decision variables.  

The majority of algorithms is oriented only on cases of continuous decision variables and on elemental 

constraints of inequalities type. The comparative analysis of base algorithm of a method with selective averaging 

of continuous decision variables [6, 7, 10, 14, 24] in relation to existing heuristic algorithms showed its  

advantages on the rate of convergence, a noise stability and total computing complexity. In [27] the variant 

of base algorithm of a solution of a problem of global optimization on set of continuous-discrete variables is 

proposed. It is rational to develop this effective method of global optimization on the set of discrete variables.  

In this paper for a solution of global optimization problems on a set of discrete variables the approach 

based on the selective averaging of decision variables with adaptive reorganization of an admissible set of 

trial movements is proposed. 

It is constructed the functional of selective averaging of discrete decision variables. The selectivity co-

efficient is entered into kernel of functional. With an increase in the core selectivity coefficient, it becomes 

possible for the functional to distinguish the positions of the global minimum. It is shown that when selec-

tivity coefficient of kernel tends to infinity the averaging gives optimal value of decision discrete variables.  

The computing scheme of base algorithm of global optimization at continuous variables is transformed 

to the similar scheme at discrete variables. The base algorithm of global optimization on a set of discrete  

variables with ordered possible values at the presence of inequalities constraints is synthesized.  

Trial and working steps are also separated in time. Before performance of each working step the series 

of calculations of the minimized function in the sampling points is carried out. Based on this information at 

the fixed selectivity coefficient of kernel, the selective averaging of decision variables will be executed  

numerically. For each discrete variable the continuous auxiliary non-dimension variable which contains 
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numbers of possible values of a discrete variable and the identical the adjoining each other subintervals  

covering these numbers is put in compliance. Due to one-to-one compliance the transition in the sampling 

points from continuous variables to discrete possible values is carried out. The same (but already reverse) 

transition occurs for received averaged values of decision variables. 

Also, the adaptive reorganization of sizes of a set of possible trial movements is carried out and func-

tions of inequalities constraints are considered.  

The example shows the high convergence rate and noise stability of the base algorithm. It also pro-

vides near-to-one the estimate of the probability of obtaining a true solution. 

 
1. Statement of problem 

 
The problem of search of a global minimum of objective function )(yf  on a set of discrete variables 

with ordered possible values at the presence of inequalities constraints is solving: 

 mjyyf j ,1,0)(min,glob)(  , (1) 

where )...,,( 1 hyyy   is vector h of discrete variables. Each discrete variable ty  has tr  possible ordered 

values 
trtt yy ,1, ,..., . 

Inequalities constraints select (narrow) admissible set of possible values in which search of minimum 

of global minimum is carried out. It’s required to define the position miny  of global minimum of objective 

function )(yf  on limited set of change of its variables. 

Function )(yf  is multiextreme and can be distorted by noises. Functions of constraints can be non-

convex. Search of extremum is carried out on basis only measurements or calculations of specified functions 

mjyyf j ,1),(),(   in the selected sampling points which satisfy to the inequalities constraints: 

mjyj ,1,0)(  . 

We assume that a global minimum of function )(yf  on an admissible set of points with discrete  

values of variables is unique.  

 
2. The selective averaging of discrete decision variables 

 
The selective averaging of decision continuous variables [6, 7, 10, 14, 24] is a mathematical expecta-

tion with special probability density function of these variables. Probability density function at a decreasing 

kernel (with increase of its normalized argument from 0 to 1) allows to approach with growth of selectivity 

coefficient of a kernel to the specified average value of decision variables i.e. to the true position of global 

minimum. This theoretical result gave to chance of construct the structure of a base numerical algorithm, 

which successfully applied at the presence of inequalities constraints. Due to the expansion of possibilities of 

this algorithm, the algorithms of single-objective global optimization at the constraints such as inequalities 

and equalities are synthesized. The algorithms of the solution of other extreme problems are obtained: multi-

objective and minimax global optimization, search of the main minima of multiextremal functions [14]. 

Let’s transfer idea of selective averaging [14] on solution the problem of global optimization (1) on set 

of possible values of the discrete decision variables which satisfy the inequalities constraints (1). 

At first we will consider the one-dimensional version of optimization problem (1). Discrete variable 

y  has r possible ordered values 1( ,..., )ry y . 

We enter the notation: min max,f f  are smallest and largest values of minimized function on an admissi-

ble set of possible values; 
miny  is admissible value of discrete variable at which function ( )f y  is reaching 

the minimum value: min min( )f y f . 
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The averaged value (mathematical expectation) of decision variable is equal to value: 

 
1

[ ] ( )
r

ssy p g y 


  ,  (2) 

where 
1

( ) ( ) ( )
r

s s s k
k

p g p g p g 


   is normalized (on 1) positive decreasing kernel (analog of probability  

of a random event): 1)(
1






r

s gp ; kernels )( gps  and )( gps


 lie in interval [0; 1]; s  is selectivity coeffi-

cient of kernel ( s1 ), at the decision it’s enough to set of it from integer sequence: 1, 2, 3, … ; 

min max min( ( ) ) ( )g f y f f f     is arguments of kernels which also lie in interval [0; 1]: 0 1, 1,g r    . 

In optimal point 
min min( )f y f  and 

min 0g  , in point of the maximum value 
max max( )f y f  and 

1max g . The presence in the argument of kernel of values 
minf  and 

maxf  allows cover of all range  

of change of the optimized function and to pass to non-dimension variable. Due to of it the subsequent nu-

merical algorithms become more universal. They independent of the units of measure of minimized function. 

And also the rate of convergence of algorithms and accuracy tracking of position of extremum increases.  

The absence of information about 
minf  and 

maxf  is compensated by their estimates which calculated on each 

working step based on measurements (calculations) of optimized function in trial points. 

Let’s stop on a type of kernel ( )sp g  because normalized kernel )(gps


 repeats its form. It’s conven-

ient to represent the )(gps  in the form of raising to the degree s  rather simple decreasing kernel: 

( ) [ ( )]s

sp g p g . Possible degree kernels ( )p g : linear ggp 1)( , parabolic 21)( ggp  , cubic 

31)( ggp   and etc. The example of other type of kernels is an exponential kernel gegp )( , a hyperbolic 

kernel 1)(  ggp . Further we will consider only degree kernels. 

With growth of selectivity coefficient s all components of discrete function ( ), 1,s lp g l r , approaches 

to zero, except 
min( 0) 1sp g    and 

max( 1) 0sp g   . Then normalized discrete function tends to Kroneker’s 

function [28]. It’s equal to 1 in a point 
min 0g   and equal to 0 in other points. At a result in the right part of 

procedure of averaging (2) Kroneker’s function «prick out» optimal value of decision variable 
miny , i.e. 

min[ ]s s
y y


 . 

 

Fig. 1. The values of linear kernel ( )sp g  and normalized kernel ( )sp g  at three 

possible values of a discrete variable and selectivity coefficient 1s   

On Fig. 1 the simplest case of the linear kernel ( )sp g  and its normalized analog ( )sp g  when discrete 

variable has three possible values: min 2 max, ,y y y . Let’s say in the point 
2y  the value g  is equal to 0.5.  

With growth of selectivity coefficient s the kernel (0.5) 1 2s

sp   and normalized kernel 

(0.5) (1 2 ) (1 (1 2 )) 1 (1 2 )s s s

sp      tends to zero. Respectively the (0) 1 (1 (1 2 ))s

sp    tends to 1 and 

function ( )sp g  tends to Kroneker’s function with the special point 0min g . With increase the number of 

possible values of discrete variable y , all noted limit regularities are preserved. 
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At increase the number of discrete variables 
1( ,..., )hy y y  (see (1)) all noted properties also take 

place. Each discrete variable 
ty  has the 

tr  possible ordered values ,1 ,,...,
tt t ry y . All admissible points have 

the h  coordinates and satisfy to inequalities constraints. One of these points min 1,min ,min( ,..., )hy y y  corre-

sponds to a global minimum min min( )f y f  and min 0g  . 

For any single-valued function )( y  the selective averaging has the form: 




 
R

ss ygpy
1

)()()]([


. 

Here: y  is admissible point with one of combinations of possible values of its coordinates,   is number of 

this point, )...,,()( 1 hyyy  , )...,,()( ,,1   hyyy ; R  is number of admissible points: (combina-

tions of possible values of discrete variables) and each point which satisfy to inequalities constraints.     

Limit result  

)...,,()()]([ min,min,1min hss yyyy  


 

is the same as for one-dimensional case.  

We take the h  functions htyy tt ,1,)(   and we receive limit values for all coordinates 

htyy tsst ,1,][ min,  


, 

where ,

1

[ ] ( ) , 1,
R

t s ts
y p g y t h 



  , ,ty  is coordinate with number t  in point with number  . This is co-

ordinate-wise averaging. It’s written in vector form: 

min 1,min ,min[ ] ( , ..., )hs s
y y y y


  , 

where 
1

[ ] ( )
R

ssy p g y 


  , y  is admissible point with number   at one of combinations of possible values 

of its variables. 

By search of a maximum of function f the arguments of kernels are calculated on another: 

max max min( ( )) ( )g f f y f f     and the point maxy  corresponds to global maximum value: max max( )f y f  

and maxg = 0.  

 

3. Basic algorithm of optimization 

 

The method is based on separation in time of trial and working steps, uniform distribution of sampling 

points on admissible set of possible values of discrete decision variables, numerical selective averaging  

(calculation of mathematical expectation) of decision variables by results of calculated (or measured) values 

of optimized function in sampling points. Adaptive reorganization of the sizes of the set of sampling points  

is carried out also on each working step.  

The basic algorithm of global optimization based on selective averaging of decision continuous vari-

ables allows implementation on a set of discrete and continuous-discrete variables. In [27] the specified algo-

rithm was generalized on a case of continuous and discrete variables with ordered possible values. Based on 

the scheme presented in [27], in this work the algorithm for a case only of discrete variables is constructed. 

The solution of problem of optimization with discrete variables is based on transition from each dis-

crete variable ty  to the corresponding auxiliary continuous variable tx . From possible values ,1 ,, ,
tt t ry y   

of a discrete variable ty  transition to their numbers are carries out. Calculations on each working step are 

conducted for the number 
( )

,

i

t Nx  possible values of discrete variables ty . Averaged values of variables (esti-

mates of mathematical expectation) and the sizes (also averaged) the variation sets of variables are calculated. 
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For receiving of n  sampling points 
( ) , 1,iy i n  consistently by uniform distribution are generated on 

a «rectangular» set of a points and from them only those which satisfy inequalities constraints are left.  

After the l –th working step the generation of sampling points is carried out equally: 

 
( ) ( ) ( ), [ 1;1], 1, , 1,

t t

l l
i i i

t tt x xx x x u u t h i n       , (3) 

In a formula (3) ( )

t

i

xu  is elements of pseudo-random sequence of uniform distributed of the continuous 

random value. This uniform law of distribution causes identical probabilities of emergence of possible values 

(and their numbers) all discrete variables.  

In the received sampling points value of minimized function 
( ) ( )( ), 1,i if f y i n   is calculated. Fur-

ther, the position of the minimum is specified. 

New value 
1lx 

 on auxiliary variables and the sizes 
1lx   of «rectangular» set of trial movements are 

calculated by the following formulas: 

 ( ) ( )1
, ,min

1

, 1,
n

i il
t t N s

i

x x p t h



  , (4) 

( ) ( )
( ) ( )min min
,min min

( ) max min
min

1

( )
,

( )

i i
i is

s n
j

s
j

p g f f
p g

f fp g



 




, 

1/
( ) ( )1
, ,min

1

| | , 1,

q
n

i il l q
t q tt N s

i

x x x p t h



 
     

 
, 

0,1, 2, ...; [0 , {1,2,...},0 ]ql q s     . 

Here: 
( ) ( )

max minmax{ , 1 }, min{ , 1, }i if f i ,n f f i n    , )(sp  is positive kernel, s  is selectivity  

coefficient of kernel. The positive kernels ( )
,min
i

sp  normalized on 1 on a system of n sampling points: 

1
1

)(
min, 



n

i

i
sp . The argument of kernel is non-dimension variable, which always lie in interval [0; 1]. The 

kernels )(sp  monotonically decrease at argument increase.  

On l -th step the value 
l
tx  calculated in accordance with formula (4) gets to the individual interval 

which covering some number of the corresponding value of a discrete variable. So the possible values of  

all discrete variables are calculated. Calculated (on the previous working step) on a formula (4) interval of  

a variation 
l
tx2  of a continuous auxiliary variable allocates numbers of possible values of the discrete  

variable. The intervals of unit length covering these numbers form a new interval of change of an auxiliary 

variable. For any component tx  the initial values of these variables is equal: 2,2)1(
00

tttt rxrx  . 

When approaching to minimum the region of trial movement reduced, and thus, there is more  

exact tracking of position of extremum. The criterion of stop of search process is the condition of reduction 

(at some l ) of size of region of variation of variables to the given value:  

 20
max , 1,

l

t

t

x
t h

x

  
   

  

.                                    (5) 

The corrected value 
l
tx  in formula (4) directly is not used but 

l
tx  gives a variation interval 

l
tx2  for 

auxiliary coordinate tx  (at the subsequent formation of sampling points) and is used in the condition break 

of search process (5). 
 

4. Numeric example  
 

Let’s consider test function with 16 minima which constructed at the expense of operations «min» to 

16 degree one-extreme potential functions: 
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1 2 1 2( , ) min{ ( , ), 1,16}if y y z y y i  ; 

2 2 1,5 1,8

1 1 2 1 2 2 1 2 1 2( , ) 2 | 9 | 2 | 9 | ; ( , ) 4 | 9 | 4 | 1| 7;z y y y y z y y y y          

0,8 1,6 1,1 1,8

3 1 2 1 2 4 1 2 1 2( , ) 4 | 6 | 4 | 5 | 4; ( , ) 3 | | 3 | 2 | 16;z y y y y z y y y y          

1,5 1,6

5 1 2 1 2 6 1 2 1 2( , ) 6 | 4 | 6 | 7 | 5; ( , ) 4 | 8 | 4 | 13 | 10;z y y y y z y y y y           

1,5 1,5 0,8 0,9

7 1 2 1 2 8 1 2 1 2( , ) 2 | 3 | 2 | 11| 9; ( , ) 4 | 11| 4 | 2 | 8,5;z y y y y z y y y y           

0,8 0,8 1,8 1,6

9 1 2 1 2 10 1 2 1 2( , ) 4 | 8 | 4 | 1| 14; ( , ) 3 | 13 | 3 | 12 | 13;z y y y y z y y y y           

1,3 1,3 0,8 0,6

11 1 2 1 2 12 1 2 1 2( , ) 3 | 13 | 3 | 4 | 12; ( , ) 5 | 6 | 5 | 1| 15;z y y y y z y y y y           

1,6 1,9 0,6 0,6

13 1 2 1 2 14 1 2 1 2( , ) 5 | 13 | 5 | 9 | 8; ( , ) 6 | 9 | 6 | 8 | 18;z y y y y z y y y y           

1,1 1,3 1,6 1,6

15 1 2 1 2 16 1 2 1 2( , ) 5 | 3 | 5 | 4 | 6; ( , ) 5 | 3 | 5 | 13 | 10,5.z y y y y z y y y y           

The admissible region has the form of square which defined by two constraints-inequalities: 

015||)( 111  yy ;  015||)( 222  yy . 

The global minimum thus corresponds to a point )9;9(* y  and has a 0)( * yf . 

We enter the additional constraints, one of which cuts the specified minimum: 

012)( 213  yyy ; 010)( 214  yyy . 

The conditional global extremum is in point
* (6; 5)y  , 4)( * yf . 

 

Fig. 2. Multiextremal function ( )f y : at the left is a perspective view of function; on the right is the position 

of minima, admissible region of search and movement trajectory in a neighborhood of global minimum at 

three starting points (–14, –14), (–14, –4), (13, 12) 

On Fig. 2 it is shown the perspective view of minimized function, the positions of minima of given 

function and the constraints which select admissible region. Both figures are constructed in the assumption 

that the discrete variables are continuous, and then the possible values of the discrete variables are specified. 

In fact we have 9 cross sections of the presented function at the specified discrete values of the first variable 

1y  and the 11 cross sections for the second variable 2y . Each point in Fig. 2 on the right corresponds to the 

position of the minimum (small points is local minima, large points is global minimum) of a given objective 

function, the intersection of dotted lines is admissible points y  with one of combinations of possible values 

of its coordinates. 
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Fig. 3. The left is the dependence of estimate of probability of hitting to neighborhood of true decision  

from a number of sampling point; the right is the change of variables on iterations at 100% noise 

Let’s show operability of the offered algorithm. The complex characteristic of process of search of 

global minimum is the estimate correctP  of probability of hitting of the obtained decision 
*y  in the neighbor-

hood of true decision 
**y : 

, ,
| | 0, 1,

t N t N
y y t h 
    , i.e. calculated values of discrete variables precisely 

coincide with the true values in the point of  minimum.  

Let’s consider dependence of received of true decision from a number of sampling point n . For this 

purpose the M  realization of process of search of minimum carried out. The estimate of probability correctP  

will be equal to the relative frequency of hitting of the obtained decision Mjy j ,1,*   in neighborhood of 

true decision. 

The parameters of the algorithm of minimization: 0 0( , ) ( 13, 4;1, 3)y x    , 
0

(8,5; 8,5)x  , 1q   

(is equal 2 for case by 100% noise), 2q , kernel on the minimized function parabolic with degree of selectivi-

ty 300s  (is equal 1000 for the case by 100% noise). Research parameters: number of realization 101M .  

On Fig. 3 (the left) the dependence correctP


 from a number of sampling point is presented. On Fig. 3  

(the right) given a typical implementation of reorganization from step to step of discrete variables when 

search global minimum by a number of sampling points 500n  (for the case without noise are required  

3–5 iterations, for the case with 100% noise are required 7–11 iterations). 

 

Conclusion 

 

The developed method of selective averaging of decision variables and respectively base numerical 

algorithm of a global optimization has a rather simple structure. Due to the selective averaging of decision 

variables, the base algorithm has high noise stability. Use in an argument of a kernel of base algorithm  

of non-dimension (relative) values an essentially increase rate of convergence of algorithm, and reduces 

number of adjustable parameters.  

The dimension of a problem of optimization at the chosen approach doesn’t change. The complexity 

of calculations in comparison with a problem with continuous-discrete variables increases slightly. All main 

properties of an algorithm are also preserved.  

The algorithm is based on execution the same type operations, which can be executed in parallel on 

multiprocessing computing systems. This feature is important in the presence of a large number of decision 

variables and different constraints. 
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Предложен функционал покомпонентного селективного усреднения искомых дискретных переменных. В положительное 

убывающее ядро функционала введен положительный коэффициент селективности. При его увеличении усреднение в пре-

деле обеспечивает получение оптимального значения искомых дискретных переменных. На основе оценки функционала 

селективного усреднения синтезирован базовый алгоритм глобальной оптимизации на множестве дискретных переменных  

с упорядоченными возможными значениями при наличии ограничений неравенств. На тестовом примере продемонстриро-

ваны высокие скорость сходимости и помехоустойчивость базового алгоритма. Статистическое исследование алгоритма 

показало, что оценка вероятности получения истинного решения достигает единицы. 

 

Ключевые слова: глобальная оптимизация; дискретные переменные; селективное усреднение искомых переменных; много-

экстремальная функция; ограничения типа неравенств. 
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