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THE GLOBAL OPTIMIZATION METHOD WITH SELECTIVE AVERAGING
OF THE DISCRETE DECISION VARIABLES

In the paper, the functional of selective averaging of discrete decision variables is proposed. The positive selectivity
coefficient is entered into a positive decreasing kernel of functional and with growth of selectivity coefficient the
mean gives optimum values (in a limit) of decision discrete variables in a problem of global optimization. Based
on the estimate of the selective averaging functional, a basic global optimization algorithm is synthesized on a set of
discrete variables with ordered possible values under inequality constraints. The basis is a computational scheme for
optimizing continuous variables and its transformation for optimization with respect to discrete variables. On a test
example the high convergence rate and a noise stability of base algorithm are shown. Simulations have shown that the
estimate of the probability of making a true decision reaches unit.

Keywords: global optimization; discrete variable; selective averaging of decision variables; multiextreme function;
constraints of inequality type.

The problem of search of a global extremum of objective functions on admissible set of decision
variables (continuous, discrete or continuous-discrete) belongs to the very complex class [1-27]. The speci-
ficity of global optimization is caused by multiextremal view of the objective functions, their discontinuous
nature, very different sensitivity of objective functions in relation to decision variables, the discrete nature of
part or all the variables, the presence of noises, the presence of a considerable quantity of decision variables
and constraints of inequalities type and equalities type. If objective functions are not calculated, they are
measured in points of admissible set of decision variables.

The majority of algorithms is oriented only on cases of continuous decision variables and on elemental
constraints of inequalities type. The comparative analysis of base algorithm of a method with selective averaging
of continuous decision variables [6, 7, 10, 14, 24] in relation to existing heuristic algorithms showed its
advantages on the rate of convergence, a noise stability and total computing complexity. In [27] the variant
of base algorithm of a solution of a problem of global optimization on set of continuous-discrete variables is
proposed. It is rational to develop this effective method of global optimization on the set of discrete variables.

In this paper for a solution of global optimization problems on a set of discrete variables the approach
based on the selective averaging of decision variables with adaptive reorganization of an admissible set of
trial movements is proposed.

It is constructed the functional of selective averaging of discrete decision variables. The selectivity co-
efficient is entered into kernel of functional. With an increase in the core selectivity coefficient, it becomes
possible for the functional to distinguish the positions of the global minimum. It is shown that when selec-
tivity coefficient of kernel tends to infinity the averaging gives optimal value of decision discrete variables.

The computing scheme of base algorithm of global optimization at continuous variables is transformed
to the similar scheme at discrete variables. The base algorithm of global optimization on a set of discrete
variables with ordered possible values at the presence of inequalities constraints is synthesized.

Trial and working steps are also separated in time. Before performance of each working step the series
of calculations of the minimized function in the sampling points is carried out. Based on this information at
the fixed selectivity coefficient of kernel, the selective averaging of decision variables will be executed
numerically. For each discrete variable the continuous auxiliary non-dimension variable which contains
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numbers of possible values of a discrete variable and the identical the adjoining each other subintervals
covering these numbers is put in compliance. Due to one-to-one compliance the transition in the sampling
points from continuous variables to discrete possible values is carried out. The same (but already reverse)
transition occurs for received averaged values of decision variables.

Also, the adaptive reorganization of sizes of a set of possible trial movements is carried out and func-
tions of inequalities constraints are considered.

The example shows the high convergence rate and noise stability of the base algorithm. It also pro-
vides near-to-one the estimate of the probability of obtaining a true solution.

1. Statement of problem

The problem of search of a global minimum of objective function f(y) on a set of discrete variables
with ordered possible values at the presence of inequalities constraints is solving:

f (y) =globmin, ; (y) <0, j=L1m, 1)
where y =(y,,..., y,,) is vector h of discrete variables. Each discrete variable y, has r possible ordered
values Yy, Yip -

Inequalities constraints select (narrow) admissible set of possible values in which search of minimum
of global minimum is carried out. It’s required to define the position vy, of global minimum of objective
function f(y) on limited set of change of its variables.

Function f(y) is multiextreme and can be distorted by noises. Functions of constraints can be non-
convex. Search of extremum is carried out on basis only measurements or calculations of specified functions

f(y), 0;(¥), ] =1m in the selected sampling points which satisfy to the inequalities constraints:

We assume that a global minimum of function f(y) on an admissible set of points with discrete
values of variables is unique.

2. The selective averaging of discrete decision variables

The selective averaging of decision continuous variables [6, 7, 10, 14, 24] is a mathematical expecta-
tion with special probability density function of these variables. Probability density function at a decreasing
kernel (with increase of its normalized argument from O to 1) allows to approach with growth of selectivity
coefficient of a kernel to the specified average value of decision variables i.e. to the true position of global
minimum. This theoretical result gave to chance of construct the structure of a base numerical algorithm,
which successfully applied at the presence of inequalities constraints. Due to the expansion of possibilities of
this algorithm, the algorithms of single-objective global optimization at the constraints such as inequalities
and equalities are synthesized. The algorithms of the solution of other extreme problems are obtained: multi-
objective and minimax global optimization, search of the main minima of multiextremal functions [14].

Let’s transfer idea of selective averaging [14] on solution the problem of global optimization (1) on set
of possible values of the discrete decision variables which satisfy the inequalities constraints (1).

At first we will consider the one-dimensional version of optimization problem (1). Discrete variable
y has r possible ordered values (y,,...,Y,) -

We enter the notation: f_, ,
ble set of possible values; vy, ., is admissible value of discrete variable at which function f(y) is reaching
the minimum value: f(y.;,) = f., -

f..x are smallest and largest values of minimized function on an admissi-
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The averaged value (mathematical expectation) of decision variable is equal to value:

—_ r
[yl = Zl Ps(9,) Y, s (2)
H:
where p,(g,) = ps(gu)/i P, (9y) is normalized (on 1) positive decreasing kernel (analog of probability
k=1

.

of a random event): Zﬁs(gu)zl; kernels py(g,) and ps(g,) lie ininterval [0; 1]; s is selectivity coeffi-
n=1

cient of kernel (1<s), at the decision it’s enough to set of it from integer sequence: 1, 2, 3, ... ;

9, =(F(¥,) = frin)/(frex = frin) is arguments of kernels which also lie in interval [0; 1]: 0<g, <1, pn=1r.

In optimal point f(y,,,)=f., and g, =0, in point of the maximum value f(y,,,)= f.. and

Omax =1. The presence in the argument of kernel of values f_ and f__ allows cover of all range

of change of the optimized function and to pass to non-dimension variable. Due to of it the subsequent nu-
merical algorithms become more universal. They independent of the units of measure of minimized function.
And also the rate of convergence of algorithms and accuracy tracking of position of extremum increases.
The absence of information about f_ . and f_. is compensated by their estimates which calculated on each

working step based on measurements (calculations) of optimized function in trial points.
Let’s stop on a type of kernel p,(g) because normalized kernel p,(g) repeats its form. It’s conven-

ient to represent the p,(g) in the form of raising to the degree s rather simple decreasing kernel:
p.(9)=[p(9)I°. Possible degree kernels p(g): linear p(g)=1-g, parabolic p(g):l—gz, cubic
p(g) =1— g and etc. The example of other type of kernels is an exponential kernel p(g) =e~9, a hyperbolic
kernel p(g)=g™* . Further we will consider only degree kernels.

With growth of selectivity coefficient s all components of discrete function p,(g,), | =1r, approaches
to zero, except p,(9,,, =0)=1 and p,(9,., =1) =0. Then normalized discrete function tends to Kroneker’s
function [28]. It’s equal to 1 in a point g,;, =0 and equal to O in other points. At a result in the right part of

procedure of averaging (2) Kroneker’s function «prick out» optimal value of decision variable y, . , i.e.

ms T) Yimin -

p.(2) p.(g)
1 1
0.6(6)
0.5 o 0.5
0o 05 1 ° 0o 05 1 °

Fig. 1. The values of linear kernel p,(g) and normalized kernel p,(g) at three
possible values of a discrete variable and selectivity coefficient =1

On Fig. 1 the simplest case of the linear kernel p,(g) and its normalized analog p,(g) when discrete
variable has three possible values: y,..,V,,Ym- Let’s say in the point y, the value g is equal to 0.5.
With growth of selectivity coefficient s the kernel p,(0.5)=1/2° and normalized kernel
P.(0.5) = (1/2°)/(1+ (1/2°)) =1/(1+2°) tends to zero. Respectively the p,(0)=1/(1+(1/2°)) tends to 1 and
function p,(g) tends to Kroneker’s function with the special point g,,,, =0. With increase the number of
possible values of discrete variable Y, all noted limit regularities are preserved.

49



A.l. Rouban, A.S. Mikhalev

At increase the number of discrete variables y=(y,,...,y,) (see (1)) all noted properties also take
place. Each discrete variable y, has the r, possible ordered values V,,,..., ¥, . All admissible points have

the h coordinates and satisfy to inequalities constraints. One of these points Y. = (Yimin s Ynmin) COrre-
sponds to a global minimum f(y.;,) = fmin @and 9,,, =0.
For any single-valued function ¢(y) the selective averaging has the form:

R
[o(Y)]s = 22 Ps (9, )0(y,.) -
p=l

Here: y, is admissible point with one of combinations of possible values of its coordinates, p is number of

this point, ¢(y)=d(y,, - Vy), (Y ) =0(Yy s s Y, )i R is number of admissible points: (combina-

tions of possible values of discrete variables) and each point which satisfy to inequalities constraints.
Limit result

[6(Y))s —=5=>¢(Ymin) = O(Yimin+ -+ Yh,min)
is the same as for one-dimensional case.
We take the h functions ¢,(y)=Y,,t =1, h and we receive limit values for all coordinates

Yils —=z Yemin. t=1h,

. R
where [y,]. =Zps(gu)yt,u, t=1nh, Y, iscoordinate with number t in point with number w. This is co-
p=1

ordinate-wise averaging. It’s written in vector form:

[_y]s oow > Ymin = (Yomins -+ Yn,min)
J— R
where [y], = X Ps(9,)Y, . Y, isadmissible point with number p at one of combinations of possible values
pn=1

of its variables.
By search of a maximum of function f the arguments of kernels are calculated on another:

9, = (frax = T (¥,))/(frmax — fmin) and the point y,. corresponds to global maximum value: f(Y,.)= f..

and g, =0.

3. Basic algorithm of optimization

The method is based on separation in time of trial and working steps, uniform distribution of sampling
points on admissible set of possible values of discrete decision variables, numerical selective averaging
(calculation of mathematical expectation) of decision variables by results of calculated (or measured) values
of optimized function in sampling points. Adaptive reorganization of the sizes of the set of sampling points
is carried out also on each working step.

The basic algorithm of global optimization based on selective averaging of decision continuous vari-
ables allows implementation on a set of discrete and continuous-discrete variables. In [27] the specified algo-
rithm was generalized on a case of continuous and discrete variables with ordered possible values. Based on
the scheme presented in [27], in this work the algorithm for a case only of discrete variables is constructed.

The solution of problem of optimization with discrete variables is based on transition from each dis-

crete variable y; to the corresponding auxiliary continuous variable X, . From possible values Y, ..., Y,

of a discrete variable y, transition to their numbers are carries out. Calculations on each working step are
conducted for the number X possible values of discrete variables y; . Averaged values of variables (esti-
mates of mathematical expectation) and the sizes (also averaged) the variation sets of variables are calculated.
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For receiving of n sampling points Yy, i =1 n consistently by uniform distribution are generated on
a «rectangular» set of a points and from them only those which satisfy inequalities constraints are left.
After the | —th working step the generation of sampling points is carried out equally:
X0 =%+ A%, u® e[-L1,t=Lh, i=1n, 3)
In a formula (3) ug’ is elements of pseudo-random sequence of uniform distributed of the continuous

random value. This uniform law of distribution causes identical probabilities of emergence of possible values
(and their numbers) all discrete variables.

In the received sampling points value of minimized function fO = £(y®),i=1,n is calculated. Fur-
ther, the position of the minimum is specified.

New value X'*' on auxiliary variables and the sizes AX'** of «rectangular» set of trial movements are
calculated by the following formulas:

noo. . _
X = 2 X Plinin =10, (@)
j=
i (b)) iy FV - o PR L R
g%’“n:ns—ml(r;), Igl’ll?n:f‘f[m.na Axt|+l:Yq Z' (‘RI_th |q S?nm ,tzl,h,
Zl Ps (gmin) max min i=1
J:

1=0,1, 2,...;[0<yq,q e{,2,..}0<s].

Here: fo =max{f® i=1n}, f.., =min{f" i=1,n} ps() is positive kernel, s is selectivity

coefficient of kernel. The positive kernels P normalized on 1 on a system of n sampling points:

s, min

n .
ZESZT“” =1. The argument of kernel is non-dimension variable, which always lie in interval [0; 1]. The
.:1 !

kernels pg(-) monotonically decrease at argument increase.

On | -th step the value >‘<t' calculated in accordance with formula (4) gets to the individual interval
which covering some number of the corresponding value of a discrete variable. So the possible values of
all discrete variables are calculated. Calculated (on the previous working step) on a formula (4) interval of
a variation ZAXt' of a continuous auxiliary variable allocates numbers of possible values of the discrete
variable. The intervals of unit length covering these numbers form a new interval of change of an auxiliary

variable. For any component X; the initial values of these variables is equal: %? =(r, +1)/2, ﬁ? =r/2.

When approaching to minimum the region of trial movement reduced, and thus, there is more
exact tracking of position of extremum. The criterion of stop of search process is the condition of reduction
(at some 1) of size of region of variation of variables to the given value:

—l
max{A_Xto,t=1,_h}S82. (5)

AXt

=l . . . — . C .. —I
The corrected value Xt in formula (4) directly is not used but AXt gives a variation interval 2Ax; for
auxiliary coordinate X; (at the subsequent formation of sampling points) and is used in the condition break
of search process (5).

4. Numeric example

Let’s consider test function with 16 minima which constructed at the expense of operations «min» to
16 degree one-extreme potential functions:
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f (1, ¥2) = min{z; (v, ¥,), i =1,16};
(Y, ¥2) =21 Y, =91 421y, =91 2,(y1, ¥,) =41y, =91 +4]y, +1[° +7;
Zy(Y1, ¥2) =41 Y, =67 +41y, =5[° +4; 2, (y,, ¥,) =3| v, [ +3] y, —2["° +16;
Z5(Yy, ¥2) =61y, + 41461y, = 7|45, 25(y,, ;) =41y, +8[° +4]y, 13" +10;
2, (Y1, ¥2) =21 Y, =31 42|y, =111 +9; 2, (¥, ¥,) =4 ¥, —11]°° +4] y, —2[*° +8,5;
Zo(Yy, ¥,) =41y, +81°° +41y, +1["° +14; 2,4 (y,, ¥,) =3| v, —13["° +3] y, —12[*° +13;
2,(Y,, ¥,) =3y, +13[° +3|y, +4|** +12; 2,,(V,, ¥,) =5] ¥, — 6> +5| y, +1|>° +15;
25 (Y1, ¥5) =51 ¥, +13[° 45|y, —=9[° +8; 2,,(y,, ¥,) =61y, —9[°° +6] y, +8[*° +18;
2s(1. ¥2) =51y, =3[ 45y, + 417 +6; 25(¥, ¥,) =51y, —3["° +5] y, +13[*° +10,5.
The admissible region has the form of square which defined by two constraints-inequalities:
O1(Y1) = V11-15<0; 0,(y,) =y, [-15<0.
The global minimum thus corresponds to a point y“ =(9;9) and hasa f (y") =0.
We enter the additional constraints, one of which cuts the specified minimum:
P3(Y) =Y, +Y,-12<0; @,(y)=-y, -y, -10<0.
The conditional global extremum is in pointy” = (6; 5), f(y)=4.

Fig. 2. Multiextremal function f(y) : at the left is a perspective view of function; on the right is the position

of minima, admissible region of search and movement trajectory in a neighborhood of global minimum at
three starting points (14, -14), (-14, -4), (13, 12)

On Fig. 2 it is shown the perspective view of minimized function, the positions of minima of given
function and the constraints which select admissible region. Both figures are constructed in the assumption
that the discrete variables are continuous, and then the possible values of the discrete variables are specified.
In fact we have 9 cross sections of the presented function at the specified discrete values of the first variable

y, and the 11 cross sections for the second variable y, . Each point in Fig. 2 on the right corresponds to the
position of the minimum (small points is local minima, large points is global minimum) of a given objective
function, the intersection of dotted lines is admissible points y, with one of combinations of possible values

of its coordinates.
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Fig. 3. The left is the dependence of estimate of probability of hitting to neighborhood of true decision
from a number of sampling point; the right is the change of variables on iterations at 100% noise

Let’s show operability of the offered algorithm. The complex characteristic of process of search of
global minimum is the estimate P, of probability of hitting of the obtained decision y* in the neighbor-

hood of true decision y~ : |yt*N* _V:E** =0,t=1h, i.e. calculated values of discrete variables precisely

coincide with the true values in the point of minimum.
Let’s consider dependence of received of true decision from a number of sampling point n . For this

purpose the M realization of process of search of minimum carried out. The estimate of probability P ect
will be equal to the relative frequency of hitting of the obtained decision y’j’, j=1,M in neighborhood of
true decision.

The parameters of the algorithm of minimization: (y° X°)=(-13,-4:1, 3), EO =(8,5; 8,5),yq =1
(is equal 2 for case by 100% noise), q =2, kernel on the minimized function parabolic with degree of selectivi-
ty s =300 (is equal 1000 for the case by 100% noise). Research parameters: number of realization M =101.

On Fig. 3 (the left) the dependence ISCorrect from a number of sampling point is presented. On Fig. 3

(the right) given a typical implementation of reorganization from step to step of discrete variables when
search global minimum by a number of sampling points n=500 (for the case without noise are required
3-5 iterations, for the case with 100% noise are required 7—11 iterations).

Conclusion

The developed method of selective averaging of decision variables and respectively base numerical
algorithm of a global optimization has a rather simple structure. Due to the selective averaging of decision
variables, the base algorithm has high noise stability. Use in an argument of a kernel of base algorithm
of non-dimension (relative) values an essentially increase rate of convergence of algorithm, and reduces
number of adjustable parameters.

The dimension of a problem of optimization at the chosen approach doesn’t change. The complexity
of calculations in comparison with a problem with continuous-discrete variables increases slightly. All main
properties of an algorithm are also preserved.

The algorithm is based on execution the same type operations, which can be executed in parallel on
multiprocessing computing systems. This feature is important in the presence of a large number of decision
variables and different constraints.
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[pennoxxeH QyHKIMOHAI TOKOMIIOHEHTHOTO CEIEKTHBHOTO YCPEIHEHHS MCKOMBIX AMUCKPETHBIX NEpeMEHHBIX. B moroskurensHoe
yObIBarolee 11po (yHKIMOHANA BBEACH MOJIOKUTENbHBIH KO3(OUINEHT CeNeKTUBHOCTH. IIpu ero yBeInueHUH yCpEeJHEHHUE B Ipe-
nerne obecreynBaeT MOJTyYCHHE ONTUMAIBHOTO 3HAYEHMSI MCKOMBIX JUCKPETHBIX NepeMeHHBIX. Ha ocHOBe omeHKM (yHKIMOHaa
CENIEKTUBHOTO YCPEAHEHUS] CHHTE3MPOBaH 0a30BbIM aNropUTM I106anbHOM ONTUMH3AIMN HA MHOXKECTBE IUCKPETHBIX NMEPEMEHHBIX
C YIOPAJOYECHHBIMH BO3MOKHBIMH 3HAUCHUSMM IIPU HAJIMUUM OrpaHUYeHUil HepaBeHCTB. Ha TecToBOM mpuMepe poJeMOHCTPUPO-
BaHbI BBICOKHE CKOPOCTb CXOAMUMOCTH M MOMEXOYCTOHUMBOCTh 0a30BOT0 anroputma. CTaTHCTHYECKOE HCCIE0BaHHE alropUTMa
I0KAa3aJI0, YTO OLICHKA BEPOATHOCTHU IOJIyYEHUS HICTUHHOTO PEIICHUS JOCTUTAeT CAUHUILIBL.

KiroueBsie ciioBa: riiodanbHas ONnTUMH3aNUA; AUCKPETHBIE IEPEMEHHBIC; CEJIEKTUBHOE YCPEAHCHUE UCKOMBIX NIEPEMEHHBIX; MHOT'O-
OKCTpEMaJIbHas (I)YHKHI/IH; OrpaHU4Y€HUs THUIIa HCPABEHCTB.
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