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The procedure of active parametrical identification of stochastic linear continuous-discrete systems including robust
estimation of parameters and optimal design of input signals is offered. A general case of entering unknown parameters
into the equations of state and observation, initial conditions and covariance matrices of system noise and measure-
ments is considered. The efficiency of this procedure is demonstrated by the example of a direct current motor control
system.
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Development of information technologies for identification of complex dynamic systems of stochastic
nature is an important area of research and has attracted considerable interest. Application of the optimal experi-
ment theory methods in parametrical identification improves the quality of the results by taking into account
more fully the properties of the dynamic object and data collection procedures [1-7]. Thus, given the structure
of the mathematical model, the procedure of active parametrical identification involves the following steps:

— Calculation of parameter estimates based on measurement data corresponding to a test input signal.

— Synthesis based on the obtained estimates of the optimal input signal (experiment design).

— Recalculation of estimates of unknown parameters according to the measured data corresponding to
the synthesized signal.

Traditionally, the estimation of unknown parameters is carried out based on the classical Kalman
filter, which makes it possible to find estimates of the state vector and corresponding covariance matrices
under the assumption of the normality of the noise distribution of the system and measurements. When solving
practical problems (for example, problems of communication, navigation, control and radar) there are cases
when the usual mechanism of formation of observation data is broken and the appearance of anomalous ob-
servations that do not contain information about the object under study. In this case the specified filter can
lead to biased estimates or even diverge. At the moment, numerous robust modifications of the Kalman filter,
resistant to the appearance of outliers, have been developed. In this regard, it is advisable to consider robust
estimation methods that provide good quality results.

This work is devoted to the development of mathematical and software procedures of active identifica-
tion of stochastic continuous-discrete systems based on robust parameter estimation. The efficiency of the
developed procedure is demonstrated by the example of one model structure.

1. Problem statement

Consider the following controlled, observed, identifiable dynamic system model in state space:
%x(t) =F(t)x(t)+(t)u(t)+T(t)w(t), te[ty,ty ], (1)

Y(tei1)=H (te,)X(ten) +V(tes ), k=01,..,N -1, (2)

61



V.M. Chubich, E.V. Filippova

where x(t) is the state n-vector; u(t) is deterministic control (input) r-vector; w(t) is the process noise

p-vector; y(t,.;) is the measurement (output) m-vector; v(t,,;) is the measurement error m-vector.
Let us suppose that
— the random vectors w(t)and v(t,,;) form a white Gaussian noise, for which

E[w(t)]=0, E[w(t)w'(x)]=Q(1)5(t-x),
E[V(tku)] =0, E[V(tkﬂ)VT (ti+1):| =R (1),

B[ V(tea)W' (1)]=0
(here E[ ] is operator of mathematical expectation, &(t - t)is delta function, 8,; is the Kronecker symbol);

— initial state x(t,) has a normal distribution with parameters

- - — T
B[ x(t)]=%(t). E{[x(to)_x(to)][x(to)_x(to)] [=r(t)
and is uncorrelated with w(t) and v(t,,,) for all values of k ;
— output data may contain outliers;
— unknown parameters are summarized in the s-vector 0, including the elements of matrices F(t),
P (t), T(t), H(t.1), Q(t), R(t1), P(ty) and vector X(t,) in various combinations.

For the mathematical model (1), (2), taking into account the a priori assumptions, it is necessary to de-
velop procedures for the active parametrical identification of stochastic continuous-discrete systems based on
robust parameter estimation and conduct a numerical study of the effectiveness of its application.

2. Methods of research

Let us consider the main theoretical aspects of the active identification procedure.

Parameter estimation. Unknown parameters estimations of the mathematical model (1), (2) are carried
out according to observational data = by using some criterion of identification 7 . The collection of numerical
data occurs during identification experiments which are carried out under some discrete design &, :

u'(t),u?(t),...,ud(t)
§=1 kK kK ou(t)eQ,, i=1..q.

A% v A%

Here v is the total number of launches of the system, q is the number of points of the design, k; is the num-

ber of experiments corresponding to the signal u' (t) Q,, is the set of design (determined by restrictions on
the conditions of the experiment).

. T L T R R R .
Let us denote through YijT =HyIJ (tl)] ,...,[y” (tN)] } realization of the output signal with number j
(j=1... k) corresponding to the input signal U’ (t). Then

5:{(ui (t).Y; ) i=12,...k,i =1,2,...,q}, %ki =v.

Due to the fact that the measurement data contain anomalous observations, we will calculate quasi-
likelihood estimates [8], solving the following optimization problem:

0 =arg min [%(6:2)]=arg min [-InL(6;2)]. (3)
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Here
.~ Nmv i T gi I
x(6:E)= In2m+~ aélkZ[ J('[|<+1)] [B (tk+1):| |:81(tk+1)]+
+—2hinma§@ﬂy 4)
2i-1 k=0

where ¢’ (t,,,) and B'(t,,,) determined by the recurrent equations of a robust filter.

The calculation of the conditional minimum (3) will be carried out by the method of sequential quad-
ratic programming [9, 10], implemented in the optimization Toolbox MATLAB package and assuming the
calculation of the gradient.

Differentiating the equality (4) by 6, (a=1,...,s) taking into account expression

oIndet B(t _ oB(t
k+l) S B 1(tk+]_) (k+l) :
09, 09,
B (t,,q) _ B(te,1) o
Tkl ~B(t,1) 921 B~ (t.1)

and symmetry of the matrix B(t, ;) , we obtain

M and M
a

tions of the robust filter.

In [11] the authors conducted a comparative analysis of the efficiency of some modern robust filters
for non-stationary linear continuous-discrete systems. While best and quite comparable the results showed
correntropy filters 1zanloo—Fakoorian—Yazdi-Simon [12] and Chen-Liu-Zhao-Principe [13]. From the point
of view of the organization of calculations and, as a consequence, the software implementation of the first of
these filters is much easier. In this regard, it seems appropriate to use the Izanloo—Fakoorian—Yazdi-Simon
filter when estimating the parameters of models of stochastic linear continuous-discrete systems in the pres-
ence of anomalous observations. The corresponding recurrence relations for a single system startup are
shown below.

Derivatives of

Izanloo—Fakoorian—Yazdi—Simon filter. Initialization:
R(to1t) =X (o), P(toItg)=P(ty); o =05
Toruninaloopon k=0,N —1:
d 5
ax(t|tk) F(O)X(tIt )+ (t)u(t), te[ttuq];
d

—P(t|t)=F(t)P(tIt )+ P(tIt )FT (t)+T(t)Q(t)I (t).t e[ty tena]s
ST (tk+1) R_l (tk+1)8(tk+l)}

20°

e(ty1) =yt ) —H D)X 11); L(tk+1) = exp[_
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B(tis1) =H (tea )Pt 1t ) Lt ) HT (ta) + R (b )3 K (tear) =Pt 1) Lt ) HT (b ) B (tia);
R (e 1tan) = R(tkar 1) + K (teia ) & (tkaa )5 Pt [t ) = [I - K(ty1)H (tk+1):| P (tes )-
End of loop.

Algorithms for calculating the maximum likelihood criterion and its gradient based on robust filtering
for linear continuous-discrete models are presented in [14].

Experiment design. Let us consider the features of input signal design for models of continuous-
discrete systems (1), (2). Continuous normalized design in this case can be specified as

: - u'(t),u®(t),...,ul (t)
Prs P2 oseees Py
Unlike discrete design &, , weights p; in continuous design & can take any values, including irrational

number.
Information matrix M (é) for design (5) is determined by the relation

},mzqipf4M%0€Qwi=Lzmq. ()
i=1

M(2)=3 M (u' (1).6),

in which the information matrices of single-point design depend on the unknown parameters to be estimated
and are calculated in accordance with [15].

We find the optimal experiment design for some convex functional X information matrix M (&) by
solving the following extremal problem
g* :arggggi)r?X[M (&)]. (6)

The construction of optimal design can be associated with the representation of the components of the
input signals in the form of linear combinations of basic functions (as such, you can use orthogonal polyno-
mials Legendre, Chebyshev, Walsh function, etc.) and then search for the coefficients of such linear combi-
nations. Another approach is related to the assumption that the input signals are piecewise-constant functions
preserving their values on the interval between adjacent measurements. In [16] have demonstrated the effec-
tiveness and applicability of the piecewise-constant approximation of the input signal, which makes it possible
to calculate the derivatives of the information matrix Fisher from the components of the input signal by
recurrent analytical formulas and, consequently, to apply gradient procedures for the synthesis of optimal
signals. This means that

. . . . T

u'(t):[u'(to),u'(tl),...,u'(tN_l)] =U,.
Based on the method of sequential quadratic programming, we present a combined procedure for con-
structing D- or A-optimal continuous design for pre-computed estimates of the parameters 6, which using

direct and dual approaches [17-19] for solving the extremal problem (6).
1. Set the initial nondegenerate design

{Uf,ug,m,ug,

0 0 o , 1=12,...,Q.
Py P2y Py

& =

O |

}, UiOEQu, pIO:

Calculate the information matrix of a single-point designs M (Uio,é) for i=1,...,q and put k=0.

2. Counting the design weight p{ ..., pi are fixed, find the design

Calculate the information matrix of a single-point designs M (Uik*l,é), i=1..q.
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3. Having fixed the points of the design spectrum &, ,,, we find the design
. = q .
B =arg min, X[M (&q1)] bl >0, > P =1i=1..q.
----- g 1=
4.1f an inequality holds for a small positive J;

|§:1[HU ik+1 _Uik “2 +( pik+1 . pik )2} <5,

then let's put &, =&, ; (the execution of the direct procedure is finished), k=0 and go to step 5. Otherwise,
take k =k +1and go to step 2.

5. Calculate the information matrix M (&, ).

6. Find the local maximum

Uk —argmaxp(U, &,).
UeQ,
If the condition ‘u(Uk, ak)—n‘ssz for a small positive 5, is met, then the process is finished. If

u(U K Ex ) >m, let's move on the step 7, otherwise, to seek a new local maximum.

T, =arg min X [M (&Ll)].

0<t<1
Here &F,, = (1—-1)&, +tEU"), where EU K) isa one-point design posted at the point U .
8. Make a design
Eraa = A1) + T EUY),
let's clean it up by following [17], put k =k +1and go to step 5.
The correspondence of the parameters X [M (&)] uU, €), n of the combined procedure to the spec-
ified criteria is presented in table 1.

Tablel
Parameters of the combined procedure
- Parameters
Criterion X [M (&)] w(U, € N
D —IndetM (§) sp[MLEMU)] s
A sp[M®)] sp[MZEMU)] sp[M @]

The analytical expressions of the required for the combined procedure derivatives and its calculation
algorithms are presented in [15].

Practical application of the synthesized optimal design is difficult, because weights are arbitrary real
numbers, enclosed in the interval from zero to one. In the case of a given number v of possible system starts,
it is necessary to "round" the continuous design to discrete [18]. As a result, we obtain a discrete design

u,.U,,...,u

*

g
L)
vV Vv v
we perform identification experiments and recalculate estimates of unknown parameters.
3. Simulation

We assume that all a priori assumptions made in the problem definition are fulfilled. Following [20],
consider a position control system consisting of an antenna and a direct current (DC) motor. Let the first com-
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ponent of the state vector be responsible for the angular position of the antenna, the second - for its angular veloci-
ty. The input signal is the voltage at the input of the DC amplifier controlling the motor. The angular position is
measured using a potentiometer. Then the models of state and observation can be determined by the relations:

d 0 1 0 0

—X(t)= t t t), te(0,30(;

SxOg g 10 o b0 o). o)
Y(tea)=[1 O]x(tis1)+V(ta), k=0,..,N-1.

Here 6,, 6, are unknown parameters and Q, ={1< 6, <10,0<6, <1} .

Set N=30, u(t)=12, Q(t)=Q=0,01, R(t,,;)=R=0,1, i(to)zm, P(to):{o'gl 0%1] As-

sume that the measurements are made uniformly every single second and the value of the parameter l1zanloo—
Fakoorian—Yazdi—Simon filter is c=10. Chose area of allowable values of input signals

0, ={2<u(t)<30,te[0;30]}.
We simulate samples with anomalous observations using the MATLAB software environment by set-
ting the pollution coefficient of the sample A =0.1 and the noise dispersion of anomalous observations

R, =1000R , assuming that the true values of the parameters E)I =4.600, 92 =0.787.

To reduce the dependence of the estimation results on the experimental data, we perform five inde-
pendent starts of the system and average the obtained estimates of the unknown parameters. The quality of
parametric identification will be judged by the value of the relative estimation error &, calculated by formula:

(e{ —él)2 +(e§ —éz)2
(67) +(e5)

where 6= (él : éz) is vector of unknown parameters estimates.

Numerical results of calculations are presented in table 2 (the optimal design is one-point).

Table 2
Results of robust procedure of active parametrical identification
Estimates and estimation errors
Input signal and values of the D-optimality criterion SysLensztrart B B 8o
1 2
u(t) 1 5,012 0,547 0,102
12 2 3,411 0,689 0,255
o 3 3,632 0,302 0,232
2 4 4,890 0,705 0,064
f 5 3,075 0,488 0,332
2
0 . : Average value
5 : e o 5 55 5 for startups 4,004 0,546 0,137
X[M(g)]=0,791
u*(t) 1 4,277 0,705 0,071
30 2 4,332 0,791 0,057
= 3 5,016 0,589 0,098
© 4 4,170 0,691 0,094
” 5 3,994 0,722 0,130
10
5
, Average value 4,357 0,699 0,055
o 5 0 15 0 25 30 fOI’ Stal’tups ) [l ]
X [M (g)} -0,208
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Analysis of table 2 contents shows that design of D-optimal input signal using the combined procedure
make it possible to improve the quality of estimation by 8,2%.

Thus, the authors consider that the applying of the active parametrical identification procedures based
on robust estimation and optimal design of input signals is helpful and advisable in the presence of outliers in
the measurement data.

Conclusion

Robust procedure of active parametrical identification for models of stochastic linear continuous-
discrete systems including robust estimation of parameters based on the Izanloo—Fakoorian—Yazdi—Simon
filter and optimal design of input signal is developed. The case of the entry of unknown parameters into
the state and observations equations, the initial conditions and the covariance noise matrices of the system
and measurements is considered. The efficiency of the developed robust procedure of active parametrical
identification is demonstrated on the example of a DC motor control system for the random nature of the
outliers.
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[pemnokeHa mporenypa akTHBHON IapaMeTPUUeCKOW HACHTU(GUKAINKM CTOXaCTHYECKUX JIMHEHHBIX HEIPEPHIBHO-IUCKPETHBIX
CHCTEM, BKIIOYAIOIMasi poOacTHOE OIEHWBAHUE MApaMEeTPOB M ONTHMANbHOE IUIAHMPOBAHHE BXOIHBIX CHTHAIOB. PaccmaTtpuBaercs
o0Imuii cxydaid BXOXKIECHHSI HEM3BECTHBIX ITapaMeTPOB B yPaBHEHUs COCTOSHMS M HAONIOAEHMs, HayaJbHBIE YCIOBUS U KOBapHalH-
OHHBIE MaTPHIIBI IIyMOB CHCTEMBI U U3MepeHuil. D HeKTHBHOCTh JaHHON MPOIEAYpPHI IPOJEMOHCTPUPOBAHA HA IPUMEPE CUCTEMBI
YIpaBIICHUSA 3JIEKTPOABUrATENIEM ITOCTOSHHOIO TOKA.

KiroueBrsie cioBa: HENPEePBHIBHO-AUCKPETHASI CHCTEMA; aHOMAJIbHbIC HAOIO/ICHNS; ONTUMAIBHBIA BXOJHON CUTHAI; poOacTHOE oIle-
HUBaHHE.
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