Т. 63, № 3 ФИЗИКА 2020

УДК 539.12-17 DOI: 10.17223/00213411/63/3/27

С.К. АБДУЛЛАЕВ, Э.Ш. ОМАРОВА

РАСПАДЫ ХИГГС-БОЗОНОВ H,h,A И H^\pm НА ФОТОН И КАЛИБРОВОЧНЫЙ БОЗОН

В рамках Минимальной суперсимметричной стандартной модели исследованы каналы распада хигтс-бозонов на фотон и калибровочный бозон: $H(h;A) \Rightarrow \gamma Z$, $H^{\pm} \Rightarrow \gamma W^{\pm}$. Получены аналитические выражения для ширины указанных распадов и изучена зависимость их от массы хигтс-бозона.

Ключевые слова: Минимальная суперсимметричная стандартная модель, хиггс-бозон, ширина распада, фотон, константа связи.

Введение

Стандартная модель (СМ), основанная на локальной калибровочной симметрии $SU_C(3) \times SU_L(2) \times U_Y(1)$, хорошо описывает физику сильных и электрослабых взаимодействий между кварками, лептонами и калибровочными бозонами [1–3]. В модель введен дублет скаляр-

ных полей
$$\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$$
, нейтральная компонента которой обладает отличным от нуля вакуумным

значением. В результате спонтанного нарушения симметрии из-за квантовых возбуждений скалярного поля появляется стандартный хигтс-бозон H_{SM} , а за счет взаимодействия с этим полем калибровочные бозоны (W^\pm,Z^0), кварки и заряженные лептоны приобретают массу. Этот механизм генерации масс частиц известен как механизм спонтанного нарушения симметрии Хиггса. Открытие хигтс-бозона с характеристиками, соответствующими предсказаниям СМ, осуществлено коллаборациями ATLAS и CMS в 2012 г. в Большом адронном коллайдере (LHC) в ЦЕРНе [4, 5] (см. также обзоры [6–8]). С открытием хигтс-бозона начался новый этап по исследованию свойств фундаментальных взаимодействий элементарных частиц.

Наряду со СМ, в литературе широко обсуждается Минимальная суперсимметричная стандартная модель (МССМ) [1, 9–12], в которой вводится два комплексных хиггсовских $SU_L(2)$ дублета с гиперзарядами -1 и +1:

$$\varphi_1 = \begin{pmatrix} H_1^0 \\ H_1^- \end{pmatrix}, \quad \varphi_2 = \begin{pmatrix} H_2^+ \\ H_2^0 \end{pmatrix}.$$

Чтобы получить физические поля хиггс-бозонов, поля $\,\phi_1\,$ и $\,\phi_2\,$ записываются в виде

$$\phi_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} \upsilon_1 + H_1^0 + iP_1^0 \\ H_1^- \end{pmatrix}, \quad \phi_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} H_2^+ \\ \upsilon_2 + H_2^0 + iP_2^0 \end{pmatrix},$$

где H_1^0 , P_1^0 , H_2^0 и P_2^0 — вещественные поля, описывающие возбуждения системы относительно вакуумных состояний $\langle \phi_1 \rangle = \frac{1}{\sqrt{2}} \upsilon_1$ и $\langle \phi_2 \rangle = \frac{1}{\sqrt{2}} \upsilon_2$. СР-четные H - и h-бозоны получаются смешиванием полей H_1^0 и H_2^0 (угол смешивания α):

$$\begin{pmatrix} H \\ h \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} H_1^0 \\ H_2^0 \end{pmatrix}.$$

Аналогично смешивают поля P_1^0 и P_2^0 , H_1^{\pm} и H_2^{\pm} (угол смешивания β):

Уважаемые читатели!

Доступ к полнотекстовой версии журнала «Известия высших учебных заведений. Физика» осуществляется на платформе Научной электронной библиотеки eLIBRARY.RU на платной основе:

https://elibrary.ru/contents.asp?titleid=7725