<u>№</u> 348 Июль 2011

БИОЛОГИЯ

УДК 581.5

И.Г. Боярских, А.В. Шитов

ОСОБЕННОСТИ ВНУТРИПОПУЛЯЦИОННОЙ ИЗМЕНЧИВОСТИ ПЛОДОВ LONICERA CAERULEA L. В СВЯЗИ С АКТИВНЫМИ ГЕОЛОГИЧЕСКИМИ ПРОЦЕССАМИ ГОРНОГО АЛТАЯ

Выявлены особенности внутрипопуляционной изменчивости плодов жимолости синей в геологически активном районе Горного Алтая (бассейн р. Джазатор). Отмечены влияние локальных геофизических факторов, связанных с активной тектоникой на массовое проявление рецессивного признака – отсутствие горечи в плодах *L. caerulea*, и уровень изменчивости их морфологических признаков.

Ключевые слова: жимолость синяя; тектонический разлом; изменчивость плодов.

Голубые жимолости распространены широко по всей бореальной части Северного полушария [1]; несмотря на это, для отбора и введения в культуру селекционерами использовались в основном образцы камчатского и приморского происхождения. Это связано прежде всего с тем, что в этих районах преобладают растения со съедобными, лишенными горечи плодами, тогда как в большей части ареала вкус плодов жимолости горький и они не съедобны. Доминирование горькоплодности в потомстве создавало определенные трудности для использования в селекции исходного материала жимолости из других её природных популяций [2].

В условиях континентального климата Западной Сибири у сортов дальневосточного происхождения часто отмечается снижение продуктивности [3]. Немногочисленные сорта алтайского происхождения характеризуются скороплодностью, повышенным содержанием Р-активных веществ и высокой продуктивностью, но изза наличия горечи в плодах они могут использоваться только для переработки. В то же время в литературе есть указания на то, что в природных алтайских популяциях встречаются отдельные растения со сладкими плодами [4], выявление которых становится важной задачей для интродукции и дальнейшей селекции L. caerulea.

В результате изучения фенотипического разнообразия *L. caerulea* в различных районах Горного Алтая была сделана оценка индивидуальной изменчивости признаков репродуктивных органов жимолости более чем в 50 её популяциях. Определены диапазон изменчивости и частота встречаемости различных морфометрических и качественных признаков. В отдельных районах было отмечено увеличение дисперсии наиболее стабильных признаков, в том числе очень высокий полиморфизм вкусовых вариаций плодов жимолости, вследствие чего наблюдалось увеличение частоты встречаемости растений с безгоречными плодами.

Комплексные ботанические и геофизические исследования в долине р. Ак-Туру (Северо-Чуйский хр.) [6] показали наличие реакции растений *L. caerulea* subsp. *altaica* (Pall.) Plekhanova на проявления активной тектоники. Было выявлено массовое фенотипическое проявление рецессивного признака — отсутствие горечи в плодах, увеличение их формового разнообразия и уменьшение размеров плодов жимолости в аномальных зонах активного тектонического разлома.

Некоторыми авторами отмечается влияние геохимической и геофизической активности на увеличение генетического полиморфизма, видового разнообразия и массового проявления эндемизма [5]. Приуроченность безгоречных популяций L. caerulea к районам с высокой тектонической активностью (Камчатка, Курильские острова, Забайкалье), а также результаты наших исследований в сейсмически активной зоне (подножье Северо-Чуйского хр.) позволили предположить наличие связи между активными геологическими процессами и массовым фенотипическим проявлением этого рецессивного признака жимолости. Для проверки этого предположения были проведены изучение внутрипопуляционной изменчивости плодов L. caerulea в бассейне р. Джазатор (Жасатер) и оценка степени воздействия на неё локальных геофизических факторов, связанных с активной тектонической деятельностью.

Исследования проводились в Кош-Агачском районе Республики Алтай в долинах рек Джазатор, Ак-Алаха и Аргут (рис. 1). Участок проведения работ расположен в Юго-Восточной Алтайской ландшафтной провинции, в пределах террасированных долин с комплексом низких и высоких террас, сложенных супесчанно-гравийным, галечниково-валунным, песчанно-галечниковым материалом и занятыми елово-лиственничными лесами на лесных бурых, местами оподзоленных почвах.

В геологическом плане участки находятся в пределах Холзунской структурно-формационной зоны и входящих в нее Южно-Чуйского полиметаморфического комплекса (участки по течению р. Джазатор) и Чиндагатуйского гранит-лейкогранитового комплекса (участки по р. Ак-Алаха). По долине р. Джазатор до устья р. Ак-Алаха проходит Саржематинский активный разлом [7]. В районе микропопуляции Ильдыгем широко представлена различная рудная минерализация (W, Au, Cu), в устье р. Ак-Алаха – вольфрамовая минерализация.

Геофизические исследования проводились в профильном варианте по стандартной методике [8] с использованием магнитометра ММП-303, радиометра СРП-68-01 с одновременным измерением координат точки измерения (GPS-приемник Etrex).

В районе проведения исследований на участках Тюнь-1, Тюнь-2, Узургу и Беляши отмечено совместное произрастание *L. caerulea* subsp. *altaica* и

L. caerulea subsp. pallasii (Ledeb.) Plekhanova (табл. 1), которые обычно занимают разные экологические ниши. В изученных фитоценозах данные подвиды можно

было довольно четко дифференцировать по систематическим морфологическим признакам. Сравнительная оценка проводилась отдельно по каждому подвиду.

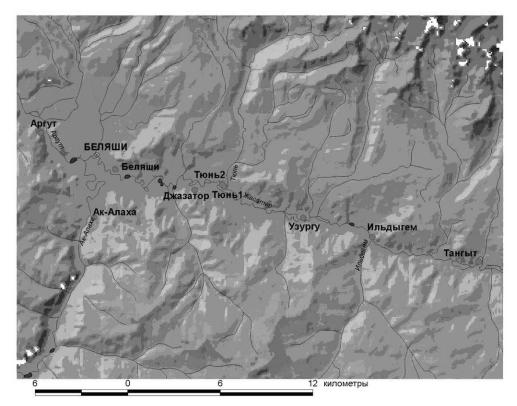


Рис. 1. Район исследований

Таблица 1 Эколого-географические особенности микропопуляций *L. caerulea* в бассейне р. Джазатор

Название популяции	Местонахождение	Рельеф, растительность					
Тангыт	Южно-Чуйский хр., южный макросклон, долина р. Джазатор, правый берег, устье р. Тангыт, 23 км от с. Беляши, 1713 м над ур. м.	Прирусловый зеленомошный лиственнично-еловый лес с подлеском из Pentaphylloides fruticosa, L. caerulea subsp. altaica, Spiraea media, Betula fruticosa, Salix viminalis, Rosa acicularis Узкая полоса зеленомошного лиственнично-елового леса (кедр единичный) вдоль крутого каменистого склона с подлеском из L. caerulea subsp. altaica, Betula fruticosa, Caragana arborescens, Salix caprea, Rosa acicularis					
Ильдыгем	Южно-Чуйский хр., южный макросклон, долина р. Джазатор, правый берег, напротив устья р. Ильдыгем, 1637 м над ур. м.						
Узургу	Южно-Чуйский хр., южный макросклон, долина р. Джазатор, правый берег, 0,5 км ниже устья р. Узургу, 1605 м над ур. м.	Долинный зеленомошный хвощевый лиственнично-еловый лес с подлеском из Pentaphylloides fruticosa, L. caerulea subsp. pallasii, L. caerulea subsp. altaica, Betula fruticosa, Spiraea media, Caragana arborescens, Ribes nigrum, Salix caprea					
Тюнь-1	Южно-Чуйский хр., южный макросклон, долина р. Джазатор, правый берег, 0,1 км ниже устья р. Тюнь, 1593 м над ур. м.	Поляна в долинном разнотравном лиственнично-еловом лесу с подлеском из Pentaphylloides fruticosa, L. caerulea subsp. pallasii, L. caerulea subsp. altaica, Spiraea media, Betula fruticosa, Salix caprea					
Тюнь-2	Южно-Чуйский хр., южный макросклон, долина р. Джазатор, правый берег, 0,5 км ниже устья р. Тюнь, 1593 м над ур. м.	Поляна в долинном разнотравном лиственнично-еловом лесу с подлеском из Pentaphylloides fruticosa, L. caerulea subsp. pallasii, L. caerulea subsp. altaica, Spiraea media, Betula fruticosa					
Джазатор	Плоскогорье Укок, северный макросклон, долина р. Джазатор, левый берег, 3 км ниже устья р. Тюнь, 1595 м над ур. м.	Выровненный участок лиственнично-елового леса у подножья крутого каменистого склона с подлеском из Pentaphylloides fruticosa, L. caerulea subsp. pallasii, L. caerulea subsp. altaica, Spiraea media, Betula fruticosa, Ribes atropurpureum, Caragana arborescens, Salix caprea					
Беляши	Южно-Чуйский хр., южный макросклон, долина р. Джазатор, правый берег, 2 км выше устья р. Ак-Алаха, 1588 м над ур. м.	Терраса реки с временными водотоками, прирусловый зеленомошный лиственнично-еловый лес с подлеском из Pentaphylloides fruticosa, L. caerulea subsp. pallasii, L. caerulea subsp. altaica, Spiraea media, Betula fruticosa, Salix caprea					
Ак-Алаха	Плоскогорье Укок, северный макросклон, долина р. Ак-Алаха, правый берег, 10 км выше устья, 1591 м над ур. м.	Прирусловая нижняя часть крутого северо-западного склона, гранитная каменистая осыпь. Зеленомошный лиственнично-кедрово-еловый лес с подлеском из L. caerulea subsp. altaica, Betula fruticosa, Ribes nigrum, Salix caprea					
Аргут	Плоскогорье Укок, северный макросклон, долина р. Аргут, левый берег, 4 км ниже места слияния рек Джазатор и Ак-Алаха, 1597–1618 м над ур. м.	Прирусловая нижняя часть крутого северо-восточного склона, сланцевая осыпь. Зеленомошный лиственнично-еловый лес (кедр единичный) с подлеском из L. caerulea subsp. altaica, Ribes atropurpureum, Ribes nigrum, Salix caprea, Atragene sibirica					

Для изучения внутрипопуляционной изменчивости плодов жимолости на каждом участке случайным образом отбирали по 20-40 растений. У каждого образца оценивали вкусовые качества и морфометрические признаки плодов. Вкус плодов оценивали органолептическим методом, по 5-балльной шкале вкусовых вариаций, основанной на степени горечи в плодах. Описание формы плодов проводили согласно Классификатору М.Н. Плехановой [9]. Для оценки амплитуды изменчивости использовали унифицированную шкалу уровней изменчивости, разработанную С.А. Мамаевым [10]. Согласно этой шкале, амплитуда изменчивости оценивается по величине коэффициента вариации (V). Уровень изменчивости считается очень низким при V < 7%, низким при V = 8-12%, средним при V = 13--20%, повышенным при V = 21-30%, высоким при V = = 31-40% и очень высоким при V > 40%.

Статистическую обработку результатов морфометрии проводили согласно методическим рекомендациям [11] и [12] с использованием Microsoft Excel.

При анализе распределения растений жимолости в микропопуляцииях: по вкусовым формам плодов было выявлено, что по всей долине р. Джазатор процент встречаемости образцов с безгоречными плодами довольно высокий – от 25 до 66% у subsp. *altaica* (рис. 3) и от 12 до 91% у subsp. *pallasii* (рис. 4). Как уже отмечалось раньше [6], это явление довольно редкое для Горного Алтая. В большинстве изученных ранее популяций доля растений с безгоречными плодами составляла 0–30%, причем плоды образцов subsp. *pallasii* характеризовались наиболее горьким вкусом.

Массовое проявление рецессивного признака (отсутствие горечи в плодах) было отмечено у обоих подвидов жимолости на участке, расположенном в 0,5 км от устья р. Тюнь (Тюнь 2) и в микропопуляции L. caerulea subsp. altaica — в устье р. Ильдыгем. Геоморфологические, магнитометрические и радиометрические исследования в этом районе показали локализацию этих микропопуляций в узлах пересечения тектонических разломов. На участке Тюнь-2 были выявлены геомагнитные аномалии, связанные с локальными зонами трещинноватости (рис. 2), которые территориально совпадают с участками массового проявления рецессивного признака жимолости; здесь же отмечалось увеличение естественного уровня радиоактивности в зоне на 5–10 мкР/час.

Согласно геоморфологическим исследованиям вблизи аномальной зоны разлома находится и смешанная микропопуляция Беляши, где также отмечается увеличение частоты встречаемости безгоречных образцов выше среднего значения по популяции.

Анализ изменчивости вкусовых вариаций плодов вне зоны активного разлома на участках по рр. Аргут и Ак-Алаха показал снижение (до 10%) проявления безгоречности и резкое увеличение (до 54 и 67%) соответственно доли растений с плодами горького и хинногорького вкуса (рис. 3).

Дать сравнительную оценку изменчивости морфометрических признаков плодов достаточно сложно, поскольку на морфометрию может оказывать влияние комплекс экологических условий: влажность, микро- и макроэлементный состав почвы, освещенность и др. Исследуемые популяции расположены в различных по этим параметрам условиях (см. табл. 1) за исключением участков Тюнь-1 и Тюнь-2, которые находятся в экологически сравнимых условиях, поэтому их можно принять как эталонные, различающиеся только по магнитометрическим и радиометрическим показателям.

Для популяции Тюнь-2, расположенной в узле пересечения двух разломов, характерно наличие плодов более крупных размеров. У представителей *L. caerulea* subsp. *pallasii* разница достоверна на 0,001–0,01 уровнях значимости соответственно для длины и ширины плодов, у *L. caerulea* subsp. *altaica* различие достоверно на 0,1–0,02 уровнях значимости. Для первого подвида характерно также повышение уровня изменчивости от низкого до повышенного (табл. 2), что указывает на включение рекомбинационного механизма у этого подвида, обеспечивающего более высокий уровень полиморфизма для естественного отбора.

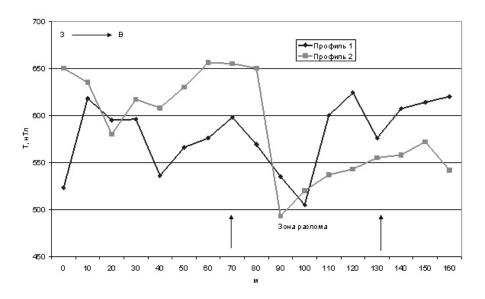


Рис. 2. Результаты профильных магнитометрических исследований на участке Тюнь-2. Профиль 1 и профиль 2 отстоят друг от друга на 10 м

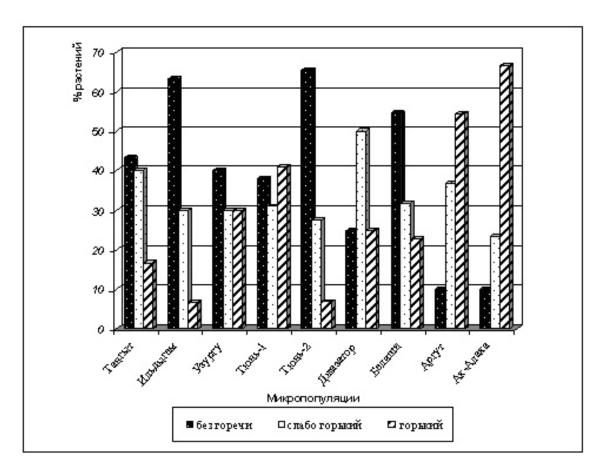


Рис. 3. Распределение растений *L. caerulea* subsp. altaica в микропопуляциях бассейна р. Джазатор по вкусовым формам плодов

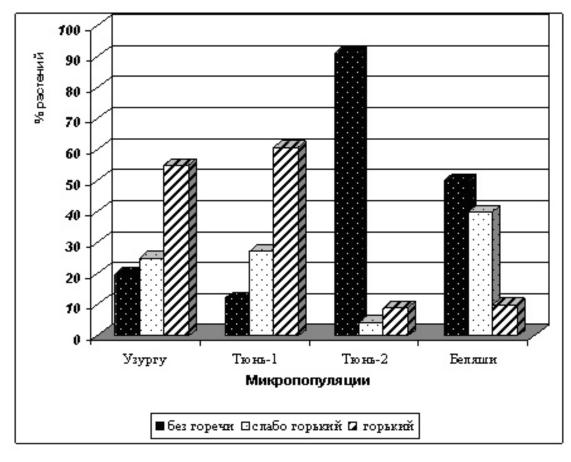


Рис. 4. Распределение растений *L. caerulea* subsp. *pallasii* в микропопуляциях бассейна р. Джазатор по вкусовым формам плодов

No	Название	Число растений	Длина плода		Ширина плода			Индекс плода						
п/п	популяции		Среднее,	(min-max),	V, %	Среднее,	(min-max),	V, %	Среднее,	(min-max),	V, %			
11/11	популяции		MM	MM		MM	MM		MM	MM				
L. caerulea subsp. altaica														
1	Тангыт	30	14,7±0,56	10,0-20,0	20,8	$8,8\pm0,25$	5,0-12,0	15,6	1,7±0,06	1,1-2,4	20,7			
2	Ильдыгем	30	13,0±0,41	10,0-17,0	17,3	8,1±0,23	5,0-12,0	15,7	1,6±0,06	1,11-2,2	19,6			
3	Узургу	40	15,5±0,35	11,0-21,0	14,2	$9,4\pm0,2$	6,0-12,0	13,8	1,7±0,05	1,2-2,71	20,2			
4	Тюнь-1	29	13,5±0,37	10,0-19,0	14,7	8,5±0,32	5,0-11,0	17,6	1,60±0,07	1,0-2,6	21,5			
5	Тюнь-2	29	14,9±0,36	10,0-19,0	12,9	9,2±0,32	6,0-14,0	18,7	1,7±0,07	1,07-2,83	22,6			
6	Джазатор	24	14,8±0,5	11,0-19,0	16	8,6±0,2	6,0-11,0	12	1,74±0,07	1,22-2,5	19			
7	Беляши	22	14,8±0,41	12,0-20,0	13,5	$7,6\pm0,25$	6,0-10,0	15,6	1,9±0,07	1,44-2,86	16,2			
8	Ак-Алаха	30	15,1±0,54	9,0-22,0	19,5	8,6±0,26	6,0-11,0	16,3	1,8±0,07	1,0-2,5	21,6			
9	Аргут	30	12,9±0,42	8,0-16,0	18	$7,7\pm0,23$	6,0-10,0	16	1,7±0,07	1,0-2,5	21,4			
Среднее по популяции		264	14,3±0,15	8,0-22,0	17,5	8,6±0,09	5,0-14,0	17,3	1,7±0,02	1,0-2,86	20,6			
L. caerulea subsp. pallasii														
1	Тюнь-1	33	10,0±0,18	8,0-12,0	10,2	7,30±0,15	6,0-9,0	11,5	1,4±0,04	1,0-1,83	14,8			
2	Тюнь-2	22	12,7±0,56	8,0-19,0	20,7	8,5±0,38	6,0-12,0	20,9	1,50±0,06	1,08-2,14	18,9			
3	Узургу	20	13,6±0,65	10,0-22,0	21,6	8,5±0,24	6,0-10,0	12,4	1,60±0,07	1,1-2,44	20,7			
4	Беляши	20	11,7±0,52	8,0-15,0	20,6	7,8+0,34	5,0-10,0	19,3	1,50±0,08	1,0-2,0	23			
Среднее по популяции		95	11,6±0,27	8,0-22,0	22,4	7,9±0,14	5,0-12,0	17,5	1,5±0,03	1,0-2,44	19,7			

Известно, что активные зоны тектонических разломов являются каналами, по которым происходит подъем глубинных жидкостей и газов, включая радон, на поверхность земли [5]. Они изменяют химический состав почв и приземной атмосферы вдоль разломов, могут оказывать мутагенное воздействие на биоту, а также влиять на проявление азональности в распределении растительности [13].

Поскольку русло р. Джазатор проходит по подновляющемуся тектоническому разлому, вся долина реки является геоактивной зоной, оказывающей влияние на растения. Однако на отдельных участках в узлах пересечения разломных зон процессы геохимического и геофизического воздействия могут идти активней, обусловливая тем самым появление микропопуляций с высокой дисперсией морфологических и биохимических признаков. Уровень варьирования признаков находится в зависимости от нормы реакции каждого подвида на литосферные воздействия.

Увеличение размеров плодов в зоне пересечения разломов (Тюнь 2) позволяет предположить, что характер и уровень литосферного воздействия в данной зоне является благоприятным для изучаемого вида растений. Согласно исследованиям, проведенным ранее в долине р. Ак-Туру, аномальные зоны разлома оказывали угнетающее влияние на жимолость [6].

По всей видимости, в зависимости от элементного химического состава литосферных газов и комплекса геофизических характеристик влияние разломов на растения может быть различным: как угнетающим, так и благоприятным. Но в любом случае оно способствует увеличению полиморфизма и популяции, ценных для введения в культуры растений, находящихся в этих зонах, которые могут служить источниками богатого генофонда.

ЛИТЕРАТУРА

- 1. Скворцов А.К., Куклина А.Г. Голубые жимолости: Ботаническое изучение и перспективы культуры в средней полосе России. М.: Наука, 2002. 160 с.
- 2. Плеханова М.Н. Возможности и перспективы гибридизации жимолости // Селекция и сортоизучение ягодных культур. Мичуринск: ВНИИС, 1987. С. 162–167.
- 3. *Боярских И.Г.* Результаты эколого-географического испытания сортообразцов Lonicera caerulea // Сибирский вестник сельскохозяйственной науки. 2006. Вып. 165. С. 32–38.
- 4. Коропачинский И.Ю., Скворцова А.В. Деревья и кустарники Тувинской АССР. М.: Наука, 1966. 184 с.
- 5. Трифонов В.Г., Караханян А.С. Геодинамика и история цивилизаций. М.: Наука, 2004. 668 с.
- 6. Боярских И.Г., Шитов А.В. Особенности внутрипопуляционной изменчивости Lonicera caerulea L. жимолости синей в условиях активных геодинамических прцессов Горного Алтая // Материалы Междунар. конф. «Биоразнообразие, проблемы экологии Горного Алтая и сопредельных регионов: настоящее, прошлое, будущее». Горно-Алтайск: Горно-Алтайск. гос. ун-т, 2008. Т. 8. С. 19–25.
- 7. Новиков И.С., Еманов А.А., Лескова Е.В. и др. Система новейших разрывных нарушений Юго-Восточного Алтая: данные об их морфологии и кинематике // Геология и Геофизика. 2008. № 11, т. 49. С. 1139–1149.
- 8. Магниторазведка. Справочник геофизика / Под ред. В.Е. Никитского, Ю.С. Глебовского. М.: Недра, 1980. 367 с.
- 9. Плеханова М.Н. Классификатор рода Lonicera L. подсекции Caeruleae Rehd. (Жимолость). Л.: ВИР, 1988. 25 с.
- 10. Мамаев С.А. Формы внутривидовой изменчивости древесных растений. М.: Наука, 1973. 283 с.
- 11. Доспехов Б.А. Методика полевого опыта. М.: Агропромиздат, 1985. 351 с.
- 12. Лакин Г.Ф. Биометрия. М.: Высш. школа, 1980. 293 с.
- 13. Бгатов В.И., Лизалек Н.А., Кужельный Н.М., Шаламов И.В. Геологическая среда и наземная растительность (на примере Сибири). Новосибирск: СНИИГГиМС, 2007. 174 с.

Статья представлена научной редакцией «Биология» 26 февраля 2010 г.