ОБ ОДНОЙ МОДИФИКАЦИИ ПОНЯТИЯ *u*-ЭКВИВАЛЕНТНОСТИ ТОПОЛОГИЧЕСКИХ ПРОСТРАНСТВ

Вводится понятие fu-эквивалентности топологических пространств, являющееся частным случаем понятия u-эквивалентности. Доказано, что любые два счётные отрезка ординалов fu-эквивалентны.

Известно, что гомеоморфизм пространств $C_p(X)$ и $C_p(Y)$ порождает многозначное отображение пространства Х в У. Такое отображение, называемое носителем, часто используется при доказательстве теорем об инвариантности различных топологических свойств. Так, в [1] использовались носители линейных гомеоморфизмов пространств функций. О. Окунев в [2] ввёл понятие є-носителя для произвольных гомеоморфизмов пространств функций. Особый интерес в данном контексте представляют носители равномерных гомеоморфизмов этих пространств. Использование многозначных отображений в некоторых случаях является основным приёмом в доказательстве. Примером является аналог носителя, введённый С.П. Гулько в [3]. Носитель равномерных гомеоморфизмов, рассматриваемый в этой статье, аналогичен носителю, построенному в [2], однако в отличие от него обладает рядом новых свойств, например полунепрерывностью. Значениями носителя в общем случае являются счётные множества. Добавив дополнительное условие конечнозначности носителя, получаем модификацию понятия и-эквивалентности топологических пространств – *fu*-эквивалентность, которая является промежуточным понятием между *l*- и *u*-эквивалентностью. Основным результатом статьи является теорема 8, дающая пример *fu*-эквивалентных пространств, не являющихся І-эквивалентными, что позволяет различать эти понятия.

ОБОЗНАЧЕНИЯ И ТЕРМИНОЛОГИЯ

Все рассматриваемые ниже топологические пространства предполагаются вполне регулярными, а отображения — непрерывными. Пространства X и Y называем u-эквивалентными (l-эквивалентными), если $C_p(X)$ и $C_p(Y)$ равномерно гомеоморфны (линейно гомеоморфны). Если X и Y — нормированные топологические пространства, для которых существует линейный гомеоморфизм h: $X \rightarrow Y$, сохраняющий норму, то будем отождествлять их и писать $X \approx Y$.

Символы $X \oplus Y$, $\bigoplus_{s \in S} X_s$ означают прямую сумму то-

пологических пространств, c_0 — пространство всех сходящихся к нулю последовательностей, наделённое нормой $\|\{x_n\}_{n\in N}\|=\max\{|x_n|:n\in N\}$, где $\{x_n\}_{n\in N}\in c_0$. Если $(E_n;\|\cdot\|)$ — нормированные пространства, $n\in N$, то c_0 -произведением $E=\left(\prod_{n\in N}E_n\right)_{C_0}$ мы будем называть множе-

ство всех последовательностей $x=(x_1, x_2,...), x_n \in E_n,$ $\lim_{n\to\infty} \lVert x_n\rVert_n = 0.$ Само c_0 -произведение наделяется нормой $\lVert x\rVert = \sup_{n\in\mathbb{N}} \lVert x_n\rVert_n.$ $C_p(X|F)$ — пространство всех непрерыв-

ных функций на X, равных нулю на множестве F, наделённое топологией поточечной сходимости, где F — некоторое подмножество пространства X. Буквой ω обозначаем первый бесконечный ординал, буквой ω_1 — первый несчётный ординал. Если f — отображение с областью определения X и $F \subset X$, то через $f|_F$ обозначается сужение f на F.

ПОНЯТИЕ НОСИТЕЛЯ И ЕГО СВОЙСТВА

Определение 1. Пусть X — топологическое пространство. Линейное подпространство $A \subset R^X$ будем называть достаточным, если для любой точки $y \in X$, любой её открытой окрестности O_y и любых двух функций $f_1, f_2 \in A$ существует функция $f_3 \in A$, такая, что $f_3(x) = f_1(x)$ для всех $x \in X \setminus O_y$ и $f_3(y) = f_2(y)$.

Примерами достаточных линейных подпространств являются $C_p(X) \subset R^X$, $C_p(X|F) \subset R^X$, где F — некоторое подмножество пространства X.

Определение 2. Пусть X, Y — топологические пространства; A, B — достаточные линейные подпространства пространств R^X и R^Y соответственно; $h: B \rightarrow A$ — равномерный гомеоморфизм, переводящий нулевую функцию $O_y \in B$ в нулевую функцию $O_x \in A$. Зафиксируем точку $x \in X$ и $\varepsilon > 0$. Точку $y \in Y$ будем называть ε -существенной для x (относительно гомеоморфизма h), если для любой окрестности O_y точки y существуют функции $g_1, g_2 \in B$, совпадающие на множестве $Y \mid O_y$, для которых выполняется неравенство $|h(g_1)(x) - h(g_2)(x)| > \varepsilon$.

Точку y, не являющуюся ε -существенной для x, будем называть ε -несущественной для x. Множество всех ε -существенных точек для точки x будем называть ε -носителем точки x (относительно гомеоморфизма h) и будем обозначать его $\sup_{\varepsilon}^h x$. Объединение всех ε -носителей точки x (относительно гомеоморфизма h) по всем $\varepsilon > 0$ будем называть носителем точки x (относительно гомеоморфизма h) и будем обозначать его $\sup_{\varepsilon}^h x$. Если известно, о каком гомеоморфизме h идёт речь, будем писать просто $\sup_{\varepsilon} x$ или $\sup_{\varepsilon} x$.

Очевидно, что если $\varepsilon < \delta$, то $\operatorname{supp}_\delta x \subset \operatorname{supp}_\varepsilon x$, поэтому $\sup x = \bigcup_{n \in N} \operatorname{supp}_{1/n} x$.

В предыдущей работе [4] было доказано, что носитель обладает следующими свойствами:

- (i) для любого $x \in X$, для любого $\varepsilon > 0$ $\mathrm{supp}_{\varepsilon} x$ конечное подмножество из Y;
- (ii) $supp: X \to Y$ есть многозначное полунепрерывное снизу отображение;
- (iii) если $A = C_p(X)$, $B = C_p(Y)$, то для любого $x \in X$, для любого $\varepsilon > 0$ $\sup_{\varepsilon} x$ непустое множество.

В общем случае мощность носителя не более чем счётна. Особый интерес представляет случай, когда носитель конечен, поэтому имеет смысл выделить в классе u-эквивалентных пространств подкласс, любые два пространства X и Y из которого допускают равномерный гомеоморфизм $h: C_p(X) \to C_p(Y)$ с конечным носителем.

Определение 3. Пусть X, Y — топологические пространства; A, B — достаточные линейные подпространства пространств $C_p(X)$ и $C_p(Y)$ соответственно, и пусть

 $h: B \to A$ — равномерный гомеоморфизм. Будем называть отображение h fu-гомеоморфизмом, если $\operatorname{supp}^h x$ — конечное множество для любого $x \in X$ и $\operatorname{supp}^{h^{-1}} y$ — конечное множество для любого $y \in Y$. В этом случае пространства A и B будем называть fu-гомеоморфными и писать $A \cong B$.

Определение 4. Пусть X, Y — топологические пространства. Будем называть их fu-эквивалентными ($X \sim Y$), если существует fu-гомеоморфизм $h: C_p(X) \to C_p(Y)$.

Для того чтобы введённое понятие fu-эквивалентности на самом деле являлось отношением эквивалентности, оно должно быть рефлексивным, симметричным и транзитивным. Первые два свойства очевидны, для доказательства транзитивности потребуются некоторые факты, доказанные в [4].

Пусть X, Y - u-эквивалентные топологические пространства; A, B — достаточные линейные подпространства пространств $C_p(X)$ и $C_p(Y)$ соответственно, и пусть $h: B \rightarrow A$ - равномерный гомеоморфизм, переводящий нулевую функцию $0_Y \in B$ в нулевую функцию $0_X \in A$. Зафиксируем точку $x \in X$, $\delta > 0$ и некоторое конечное подмножество $K \subset Y$ и определим $a(x, K, \delta) = \sup |h(g_1)(x) - h(g_2)(x)|$, где супремум берётся по всем $g_1, g_2 \in B$, таким, что $|g_1(y) - g_2(y)| < \delta$ для всех $y \in K$. Это определение было введено С.П. Гулько в [3]. Также определим a(x, K, 0) = $= \sup |h(g_1)(x) - h(g_2)(x)|$, где супремум берётся по всем g_1, g_2 ∈ B , совпадающим на множестве K (если K – пустое множество, то супремум берётся по всем $g_1, g_2 \in B$). Очевидно, что если $0 \le \delta_1 \le \delta_2$, то $a(x,K,\delta_1) \le a(x,K,\delta_2)$, и если $K_1 \subset K_2 \subset Y$, то $a(x,K_2,\delta) \leq a(x,K_1,\delta)$ для любоσ δ ≥ 0.

Теорема 1 [4]. Если $a(x,K,0)<\infty$, то для любого $\varepsilon>0$ существует $\delta>0$, такое, что $a(x,K,\delta)\leq a(x,K,0)+\varepsilon$.

Теорема 2 [4]. Для любого $x \in X$, для любых $\varepsilon > 0$, $\delta \ge 0$ $a(x, \operatorname{supp}_{\varepsilon} x, \delta) < \infty$.

Далее, зафиксируем точку $x \in X$, $\varepsilon > 0$ и определим множество $K_{\varepsilon}(x)$ следующим образом. Так как h – равномерный гомеоморфизм, то существует $\delta > 0$ и конечное подмножество $K \subset Y$, такие, что $a(x,K,\delta) \leq \varepsilon$, а следовательно, и $a(x,K,0) \leq \varepsilon$. Выберем подмножество $M \subseteq K$, такое, что $a(x,M,0) \leq \varepsilon$, а для любого собственного подмножества $M' \subset M, M' \neq M$ выполняется неравенство $a(x,M',0) > \varepsilon$. Такое множество может оказаться не единственным, тогда возьмём любое из них и обозначим его $K_{\varepsilon}(x)$. Итак, для $K_{\varepsilon}(x)$ справедливы неравенства: $a(x,K_{\varepsilon}(x),0) \leq \varepsilon$, $a(x,K',0) > \varepsilon$ для каждого $K' \subset K_{\varepsilon}(x)$, $K' \neq K_{\varepsilon}(x)$.

Теорема 3 [4]. Для любого $x \in X$ и любого $\varepsilon > 0$ $\operatorname{supp}_{\varepsilon} x \subset K_{\varepsilon}(x).$

Теорема 4 [4]. Для любого $x \in X$ и любого $\varepsilon > 0$ существует $\delta > 0$, такое, что $K_{\varepsilon}(x) \subset \operatorname{supp}_{\delta} x$.

Следствие **5** [4]. Для любого $x \in X$, для любого $\varepsilon > 0$ существует $\delta > 0$, такое, что $a(x, \operatorname{supp}_{\delta} x, 0) \le \varepsilon$.

Теперь сформулируем и докажем теорему, из которой следует транзитивность отношения *fu*-эквивалентности.

Теорема 6. Пусть X, Y, Z — топологические пространства; A, B, C — достаточные линейные подпространства пространств $C_p(X), C_p(Y)$ и $C_p(Z)$ соответственно; $\phi_1:B\to A$ и $\phi_2:C\to B$ — равномерные гомеоморфизмы, и пусть $\phi_0=\phi_1\circ\phi_2:C\to A$ — их композиция. Тогда $\sup_{\phi_0} x \subset \bigcup_{\phi_0} y \in \sup_{\phi_0} y \in \sup_{\phi_0} x$ для любого $x\in X$.

Доказательство. Возьмём точку $z \notin \bigcup \{ \sup^{\varphi_2} y : y \in \varphi \}$ $\in \operatorname{supp}^{\varphi_1} x \subset Z$ и покажем, что $z \notin \operatorname{supp}^{\varphi_0} x$. Для произвольного $\varepsilon>0$ зафиксируем $K_{\varepsilon/2}(x)\subset X$ (относительно гомеоморфизма $\,\phi_1:B o A\,$). По теореме 4 найдётся $\,\delta>0,\,\,$ такое, что $K_{\varepsilon/2}(x) \subset \operatorname{supp}_{\delta}^{\varphi_1} x$, поэтому $a(x, \operatorname{supp}_{\delta}^{\varphi_1} x, 0) \le \varepsilon/2$. По теореме 1 найдётся $\varepsilon_1 > 0$, такое, что $a(x, \operatorname{supp}_{\delta}^{\varphi_1} x, \varepsilon_1) \le$ $\leq \varepsilon/2 + \varepsilon/2 = \varepsilon$. Если $\operatorname{supp}_{\delta}^{\varphi_1} x \subset \operatorname{supp}^{\varphi_1} x$ и $z \notin \bigcup \{\operatorname{supp}^{\varphi_2} y :$ $: y \in \operatorname{supp}^{\varphi_1} x \}$, то $z \notin \operatorname{supp}^{\varphi_2}_{\varepsilon_1} y$ для каждого $y \in \operatorname{supp}^{\varphi_1}_{\delta} x$, т.е. для каждого $y \in \operatorname{supp}_{\delta}^{\varphi_1} x$ найдётся окрестность $O_{\nu}(z)$ точки z (зависящая от y), такая, что для любых h_1 , $h_2 \in C$, совпадающих на множестве $Z | O_y(z)$, выполняется неравенство $| \varphi_2(h_1)(y) - \varphi_2(h_2)(y) | \le \varepsilon_1$. Возьмём открытую окрестность $O(z) = \bigcap \{O_v(z) : y \in \operatorname{supp}_{\delta}^{\varphi_1} x\}$ (так как множество $\operatorname{supp}_{\delta}^{\varphi_1} x$ – конечно). Тогда для любых $h_1, h_2 \in C$, совпадающих на множестве Z | O(z), неравенство $| \phi_2(h_1)(y) - \phi_2(h_2)(y) | \le \varepsilon_1$ выполняется для всех $y \in \operatorname{supp}_{s}^{\varphi_{1}} x$, ho, tak kak $a(x, \operatorname{supp}_{s}^{\varphi_{1}} x, \varepsilon_{1}) \leq \varepsilon$, to

$$|\varphi_1 \circ \varphi_2(h_1)(x) - \varphi_1 \circ \varphi_2(h_2)(x)| \leq \varepsilon$$
,

следовательно, $z \notin \operatorname{supp}_{\varepsilon}^{\varphi_0} x$ для любого $\varepsilon > 0$, поэтому $z \notin \operatorname{supp}^{\varphi_0} x$. Теорема доказана.

Следствие 7. Пусть X, Y, Z — топологические пространства, A, B, C — достаточные линейные подпространства пространств $C_p(X), C_p(Y)$ и $C_p(Z)$ соответственно, такие, что $A \cong B$, $B \cong C$. Тогда $A \cong C$.

Доказательство. Пусть $\varphi_1: B \to A$ и $\varphi_2: C \to B$ — равномерные гомеоморфизмы с конечными носителями и пусть $\varphi_0 = \varphi_1 \circ \varphi_2: C \to A$ — их композиция, тогда по предыдущей теореме $\operatorname{supp}^{\varphi_0} x \subset \bigcup \{\operatorname{supp}^{\varphi_2} y: y \in \operatorname{supp}^{\varphi_1} x\}$ для любого $x \in X$, т.е. содержится в конечном множестве. Следовательно, он сам конечен. Аналогично доказывается, что носитель $\operatorname{supp}^{\varphi_0^{-1}} z$ для каждого $z \in Z$ коне-

чен. Следовательно, $A \cong C$. Следствие доказано. Из доказанного следует транзитивность отношения fu-эквивалентности:

$$X \stackrel{\mathit{fu}}{\sim} Y, Y \stackrel{\mathit{fu}}{\sim} Z \Rightarrow C_p(X) \stackrel{\mathit{fu}}{\cong} C_p(Y), C_p(Y) \stackrel{\mathit{fu}}{\cong} C_p(Z) \Rightarrow$$
$$\Rightarrow C_p(X) \stackrel{\mathit{fu}}{\cong} C_p(Z) \Rightarrow X \stackrel{\mathit{fu}}{\sim} Z$$

fu-ЭКВИВАЛЕНТНЫЕ ПРОСТРАНСТВА

Понятие fu-эквивалентности является промежуточным понятием между l- и u-эквивалентностями (носители линейных гомеоморфизмов C_p -пространств конечны, см. [1]). Естественно возникает вопрос о различении этих отношений эквивалентности. В этом параграфе приведён пример fu-эквивалентных пространств, не являющихся l-эквивалентными. Центральной теоремой параграфа является

Теорема 8. Пусть α , β — счётные ординалы. Тогда $C_p([1,\alpha]) \cong C_p([1,\beta])$).

Теорема основывается на леммах, доказанных С.П. Гулько. Для её доказательства потребуются результаты из [5].

Лемма 9[5]. Пусть R^2 — евклидова плоскость с нормой $\|(x_1,x_2)\|=\max\{|x_1|,|x_2|\}$ и пусть $\epsilon>0$. Тогда существуют функции $\phi_\epsilon:R^2\to R$ и $\psi_\epsilon:R^2\to R$, такие, что:

- (а) функции φ_{ε} и ψ_{ε} являются липшицевыми с константами $A(\varepsilon)$ и $B(\varepsilon)$ соответственно, т.е. $|\varphi_{\varepsilon}(x) \varphi_{\varepsilon}(y)| \le \le A(\varepsilon) \|x y\|$, $|\psi_{\varepsilon}(x) \psi_{\varepsilon}(y)| \le B(\varepsilon) \|x y\|$ для любых $x, y \in R^2$;
- (б) отображение $(x_1, x_2) \to (x_1, \varphi_{\varepsilon}(x_1, x_2))$ есть равномерный гомеоморфизм евклидовой плоскости R^2 на себя, и обратное к нему отображение имеет вид $(x_1, x_2) \to (x_1, \psi_{\varepsilon}(x_1, x_2))$;
 - (в) $\varphi_{\varepsilon}(x_1, x_2) = 0$ при $x_1 = x_2$;
- $(\Gamma) (1+\varepsilon)^{-1} \|(x_1,x_2)\| \le \|(x_1,\phi_\varepsilon(x_1,x_2))\| \le \|(x_1,x_2)\|$ для каждого $(x_1,x_2) \in \mathbb{R}^2$.

Лемма 10 [5]. Для любого псевдокомпактного пространства X, для любого $x_0 \in X$ и любого $\varepsilon > 0$ отображение $S_\varepsilon: C_p(X) \to R \times C_p(X \mid \{x_0\})$, определённое формулой $S_\varepsilon(f) = (f(x_0), \phi_\varepsilon(f(x_0), f(\cdot)))$ есть равномерный гомеоморфизм, такой, что

$$(1+\varepsilon)^{-1}\big\|f\big\|\leq \big\|S_\varepsilon(f)\big\|\leq \big\|f\big\|,\, f\in C_p(X)\,,$$
 где $\big\|f\big\|=\sup_{x\in X} \big|f(x)\big|\,.$

Следствие 11. Отождествим пространство $R \times C_p(X \mid \{x_0\})$ из предыдущей леммы с пространством $C_p(X \oplus \{a\} \mid \{x_0\})$, где a — точка, не принадлежащая X. Тогда отображение S_{ε} из леммы 10 $S_{\varepsilon}: C_p(X) \to C_p(X \oplus \{a\} \mid \{x_0\})$ есть fи-гомеоморфизм.

Доказательство. Имеем $S_{\epsilon}(g)(x)=g(x_0)$, если x=a и $S_{\epsilon}(g)(x)=\varphi_{\epsilon}(g(x_0),g(x))$, если $x\neq a$, где $g\in C_p(X)$, $S_{\epsilon}^{-1}(f)(x)=f(a)$, если $x=x_0$ и $S_{\epsilon}^{-1}(f)(x)=\psi_{\epsilon}(f(a),f(x))$, если $x\neq x_0$, где $f\in C_p(X\oplus\{a\}\mid\{x_0\})$.

Обозначим отображение S_{ε} за h_1 , отображение S_{ε}^{-1} за h_2 и покажем, что $\operatorname{supp}^{h_1}x\subseteq \{x_0,x\}$ для любого $x\in X\oplus \{a\}$ и $\operatorname{supp}^{h_2}x\subseteq \{a,x\}$ для любого $x\in X$.

Рассмотрим отображение h_1 . Заметим, что $\ \operatorname{supp}^{h_1} x_0 -$ пустое множество, так как для любых $\ g_1, g_2 \in C_p(X)$ выполнено

$$\begin{aligned} \left| h_1(g_1)(x_0) - h_1(g_2)(x_0) \right| &= \\ &= \left| \phi_{\varepsilon}(g_1(x_0), g_1(x_0)) - \phi_{\varepsilon}(g_2(x_0), g_2(x_0)) \right| &= 0. \end{aligned}$$

Скажем, что $K_\delta(a)\subseteq\{x_0\}$ для любого $\delta>0$. Действительно, если $g_1(x_0)=g_2(x_0)$, где $g_1,g_2\in C_p(X)$, то $\left|h_1(g_1)(a)-h_1(g_2)(a)\right|=\left|g_1(x_0)-g_2(x_0)\right|=0<\delta$ для любого $\delta>0$, а так как $\operatorname{supp}_\delta^{h_1}a\subset K_\delta(a)$ (теорема 3), то $\operatorname{supp}^{h_1}a\subseteq\{x_0\}$. Возьмём теперь $x\in X\setminus\{x_0\}$ и покажем что $K_\delta(x)\subseteq\{x,x_0\}$ для любого $\delta>0$. Действительно, если $g_1(x_0)=g_2(x_0)$ и $g_1(x)=g_2(x)$, где $g_1,g_2\in C_p(X)$, то

 $\begin{array}{c} \left|h_{1}(g_{1})(x)-h_{1}(g_{2})(x)\right|=\\ =\left|\phi_{\varepsilon}(g_{1}(x_{0}),g_{1}(x))-\phi_{\varepsilon}(g_{2}(x_{0}),g_{2}(x))\right|\leq\\ \leq A(\varepsilon)\max\{\left|g_{1}(x_{0})-g_{2}(x_{0})\right|,\left|g_{1}(x)-g_{2}(x)\right|\}=0<\delta\\ \text{для любого }\delta>0\ ,\ \text{следовательно},\ K_{\delta}(x)\subseteq\{x_{0},x\}\ \ \text{для любого }\delta>0\ ,\ \text{поэтому }\sup b_{\delta}^{h_{1}}x\subseteq\{x_{0},x\}\ \ \ \text{для любого }\delta>0\ ,\ \text{и, окончательно},\ \sup b_{\delta}^{h_{1}}x\subseteq\{x_{0},x\}\ .\end{array}$

Рассмотрим отображение h_2 . Покажем, что $K_\delta(x_0)\subseteq \{a\}$ для любого $\delta>0$. Действительно, если $f_1(a)=f_2(a)$, где $f_1,f_2\in C_p(X\oplus\{a\}\,|\,\{x_0\})$, то $\big|h_2(f_1)\big(x_0\big)-h_2\big(f_2\big)\big(x_0\big)\big|=$ $=\big|f_1(a)-f_2(a)\big|=0<\delta$ для любого $\delta>0$, следовательно, $\sup_{b^2}x_0\subseteq\{a\}$.

Возьмём $x\neq x_0$ и покажем, что $K_\delta(x)\subseteq\{a,x\}$ для любого $\delta>0$. Действительно, если $f_1(a)=f_2(a)$ и $f_1(x)=f_2(x)$, где $f_1,f_2\in C_p(X\oplus\{a\}\,|\,\{x_0\})$, то

$$|h_{2}(f_{1})(x) - h_{2}(f_{2})(x)| =$$

$$= |\psi_{\varepsilon}(f_{1}(a), f_{1}(x)) - \psi_{\varepsilon}(f_{2}(a), f_{2}(x))| \le$$

 $\leq B(\varepsilon)\max\{|f_1(a)-f_2(a)|,|f_1(x)-f_2(x)|\}=0<\delta$ для любого $\delta>0$, следовательно, $K_\delta(x)\subseteq\{a,x\}$ для любого $\delta>0$, поэтому $\sup_{\delta}^{h_2}x\subseteq\{a,x\}$ для любого $\delta>0$, и, окончательно, $\sup_{\delta}^{h_2}x\subseteq\{a,x\}$. Итак, отображение S_ε есть fu-гомеоморфизм. Следствие доказано.

Лемма 12. Пусть имеется два семейства $\{X_s\}_{s\in S}$ и $\{Y_s\}_{s\in S}$ топологических пространств и для каждого $s\in S$ существуют достаточные линейные подпространства $A_s\subset C_p(X_s)$ и $B_s\subset C_p(Y_s)$ и равномерный гомеоморфизм $h_s:B_s\to A_s$. Обозначим $X=\bigoplus_{s\in S}X_s$, $Y=\bigoplus_{s\in S}Y_s$ и определим множества $A=\{f\in C_p(X): f|_{X_s}\in A_s\}\subset C_p(X)$ и $B=\{g\in C_p(Y): g|_{Y_s}\in B_s\}\subset C_p(Y)$. Отображение $h:B\to A$, определённое формулой $h(g)|_{X_s}=h_s(g|_{Y_s})$, где $g\in B$, является равномерным гомеоморфизмом, причём $\sup^h x=\sup^h x$ для любой точки $x\in X$, где s — индекс пространства S_s , содержащего точку s.

Доказательство. Очевидно, что h является равномерным гомеоморфизмом пространства B на A. Покажем, что $\operatorname{supp}^h x \supset \operatorname{supp}^{h_s} x$. Возьмём $\varepsilon > 0$, точку $y \in \operatorname{supp}_{\varepsilon}^{h_s} x \subset Y_s$ и произвольную окрестность O_y точки y. Тогда существуют $g_s', g_s'' \in B_s$ такие, что $g_s' = g_s''$ на

множестве $Y_s \backslash O_y$ и $\left|h_s(g_s')(x) - h_s(g_s'')(x)\right| > \varepsilon$. Определим функции $g',g'' \in C_p(Y)$: $g'(y) = \begin{cases} g_s'(y), y \in Y_s \\ 0, y \in Y \setminus Y_s \end{cases}$,

$$g''(y) = \begin{cases} g''_s(y), y \in Y_s \\ 0, y \in Y \setminus Y_c. \end{cases} g'(y) = g''(y)$$

для любого $y \in Y \setminus O_v$,

$$|h(g')(x) - h(g'')(x)| = |h_s(g'_s)(x) - h_s(g''_s)(x)| < \varepsilon,$$

следовательно, $y \in \operatorname{supp}^h x \subset \operatorname{supp}^h x$ и $\operatorname{supp}^{h_x} x \subset \operatorname{supp}^h x$.

Докажем обратное включение: $\operatorname{supp}^h x \subset \operatorname{supp}^{h_s} x$. Возьмём $\varepsilon > 0$ и точку $y \notin \operatorname{supp}^{h_s} x$. Возможны два случая:

(а) — $y \in Y_t, t \neq s$. В качестве окрестности O_y точки y можно взять Y_t , тогда для любых $g', g'' \in C_p(Y)$, совпадающих на множестве $Y \setminus O_y$, выполняется равенство $\left|h(g')(x) - h(g'')(x)\right| = \left|h_s(g'\mid_{Y_s})(x) - h_s(g''\mid_{Y_s})(x)\right| = 0$, следовательно, $y \notin \operatorname{supp}_{\varepsilon}^h x$.

(б) — $y \in Y_s$. Существует окрестность O_y точки y в пространстве Y такая, что для любых $g_s', g_s'' \in B_s$, совпадающих на множестве $Y_s \backslash O_y$, выполняется неравенство $\left|h_s(g_s')(x) - h_s(g_s'')(x)\right| \le \varepsilon$. Тогда для любых $g', g'' \in C_p(Y)$, совпадающих на множестве $Y \backslash O_y$, выполняется неравенство

$$|h(g')(x) - h(g'')(x)| = |h_s(g'|_{Y_s})(x) - h_s(g''|_{Y_s})(x)| \le \varepsilon,$$

следовательно, $y \notin \operatorname{supp}_{\varepsilon}^h x$. Получаем, что $\operatorname{supp}_{\varepsilon}^h x \subset \operatorname{supp}_{\varepsilon}^{h_s} x$ для любого $\varepsilon > 0$, следовательно, $\operatorname{supp}^h x \subset \operatorname{supp}_{\varepsilon}^{h_s}$. Лемма доказана.

Следствие 13. Если в условии леммы каждый равномерный гомеоморфизм $h_s:B_s \to A_s$ является fu-гомеоморфизмом, то $h:B \to A$ также является fu-гомеоморфизмом.

Определение 5. Пусть X_n — псевдокомпактное пространство, $n \in N$. Определим норму на $C_p(X_n)$: $\left\|f\right\|_{X_n} = \sup_{x \in X_n} \left|f(x)\right|$, где $f \in C_p(X)$. Будем обозначать

$$C_{p}igg(igoplus_{n\in N}X_{n}igg)_{0}=\left\{f\in C_{p}igg(igoplus_{n\in N}X_{n}igg)\colon \lim_{n o\infty}\left\|f\mid_{X_{n}}
ight\|_{n}=0
ight\}.$$
 Оче-

видно, что $C_p \left(\bigoplus_{n \in N} X_n\right)_0$ — достаточное линейное под-

пространство пространства $C_p \left(\bigoplus_{n \in \mathbb{N}} X_n \right)$.

Следствие 14. Пусть имеется две последовательности $\{X_n\}_{n\in\mathbb{N}}$ и $\{Y_n\}_{n\in\mathbb{N}}$ псевдокомпактных топологических пространств и для каждого $n\in\mathbb{N}$ существуют достаточные линейные подпространства $A_n\subset C_p(X_n)$ и $B_n\subset C_p(Y_n)$, fu-гомеоморфизм $h_n:B_n\longrightarrow A_n$ и положительные числа a,b, такие, что $a\|g_n\|_{Y_n}\leq \|h_n(g_n)\|_{X_n}\leq b\|g_n\|_{Y_n}$ для каждого $g_n\in B_n, n\in\mathbb{N}$. (i)

Определим множества
$$A = \left\{ f \in C_p \left(\bigoplus_{n \in N} X_n \right) \colon f \mid_{X_n} \in A_n \right\}$$

$$B = \left\{ g \in C_p \left(\bigoplus_{N \in N} Y_n \right) \colon g \mid_{Y_n} \in B_n \right\}, \quad \text{и} \quad \text{отображение}$$

$$\begin{split} h: B \cap C_p \bigg(\bigoplus_{n \in N} Y_n \bigg)_0 &\to A \text{ , заданное формулой } h(g) \mid_{X_n} = \\ &= h_n(g \mid_{Y_n}), \quad \text{где} \quad g \in B \text{ . Тогда} \quad h \bigg(B \cap C_p \bigg(\bigoplus_{n \in N} Y_n \bigg)_0 \bigg) = \\ &= A \cap C_p \bigg(\bigoplus_{n \in N} X_n \bigg)_0 \quad \text{(ii) и отображение } h \text{ является } \text{\it fu-го-} \\ &\text{меоморфизмом из } B \cap C_p \bigg(\bigoplus_{n \in N} Y_n \bigg) \text{ на } A \cap C_p \bigg(\bigoplus_{n \in N} X_n \bigg) \text{ .} \end{split}$$

Доказательство. Очевидно, что $A \cap C_p \left(\bigoplus_{n \in N} X_n\right)_0$ и

 $B \cap C_p \left(\bigoplus_{n \in N} Y_n \right)_0$ являются достаточными линейными под-

пространствами пространств $C_p \left(\bigoplus_{n \in N} X_n\right)$ и $C_p \left(\bigoplus_{n \in N} Y_n\right)$

соответственно. Равенство (ii) следует из условия (i), остальная часть доказательства дословно повторяет доказательство леммы 12.

Доказательство теоремы 8. Для счётного ординала α рассмотрим следующее индуктивное предположение (a_a) : для любого $\varepsilon>0$ существует fu -гомеоморфизм $T_\varepsilon: C_p([1,\alpha]) \to C_p([1,\omega] | \{\omega\})$, такой, что

$$(1+\varepsilon)^{-1} ||f|| \le ||T_{\varepsilon}(f)|| \le ||f||, \quad f \in C_p([1,\alpha]).$$

Для $\alpha=\omega$ по следствию 11 существует fu-гомеоморфизм $S_{\varepsilon}:C_{p}([1,\omega])\to R\times C_{p}([1,\omega]|\{\omega\})\approx C_{p}([0,\omega]|\{\omega\}).$

Очевидно, что $C_p([0,\omega]|\{\omega\})$ можно линейно топологически отождествить с пространством $C_p([1,\omega]|\{\omega\})$ без изменения норм элементов $C_p([0,\omega]|\{\omega\})C_p([1,\omega]|\{\omega\})$, а поскольку линейный гомеоморфизм является fu -гомеоморфизмом, то по следствию 7 композиция fu -гомеофизмов $T_\varepsilon: C_p([1,\omega]) \to C_p([1,\omega]|\{\omega\})$ также будет fu -гомеоморфизмом, что доказывает утверждение (a_ω) .

Если $\alpha = \beta + 1$, то $C_p([1,\alpha]) \approx C_p([1,\beta])$, поэтому (a_α) следует из (a_β) .

Пусть α — предельный ординал и пусть $\alpha = \sup_{n \in \mathbb{N}} \alpha_n$, где $0 = \alpha_0 < \alpha_1 < \alpha_2 < \dots$ — возрастающая последовательность счётных ординалов. Возьмём $\delta > 0$ так, чтобы $(1+\delta)^2 \le 1+\epsilon$. По следствию 11 существует fu-гомеомор-

физм $S_{\delta}: C_p([1,\alpha]) \to C_p([1,\alpha] | \{\alpha\})$ (так как $C_p([1,\alpha]) \stackrel{\mathit{fu}}{\cong} R \times C_p([1,\alpha] | \{\alpha\}) \approx C_p([1,\alpha] | \{\alpha\})$, такой, что

$$(1+\delta)^{-1} ||f|| \le ||S_{\delta}(f)|| \le ||f||, f \in C_{p}([1,\alpha]).$$
 (1)

Легко видеть, что $C_p([1,\alpha]|\{\alpha\}) \approx C_p \left(\bigoplus_{n \in \mathbb{N}} (\alpha_{n-1},\alpha_n]\right)_0$, а

каждый полуинтервал $(\alpha_{n-1}, \alpha_n]$ гомеоморфен некоторому сегменту $[1, \beta_n]$, причём $\beta_n < \alpha$. Обозначим $X_n = [1, \omega]$,

$$Y_n=[1,eta_n], n\in N,$$
 тогда $C_p([1,lpha]\,|\,\{lpha\})pprox C_piggl(igoplus_{n\in N}Y_niggr)_0$. Так

как $\beta_n < \alpha$, то по индуктивному предположению для каждого $n \in N$ существует fu-гомеоморфизм $h_n : C_p(Y_n) \to$

 $\to C_p([1,\omega] \,|\, \{\omega\})\,$ такой, что для каждого $\,g_{\scriptscriptstyle n} \in C_p(Y_{\scriptscriptstyle n})\,$ выполнено неравенство

$$(1+\delta)^{-1} \big\| g_n \big\|_{Y_n} \leq \big\| h_n(g_n) \big\|_{X_n} \leq \big\| g_n \big\|_{Y_n}. \tag{2}$$
 Обозначим $A_n = C_p([1,\omega] \mid \{\omega\}) \subset C_p(X_n), B_n = C_p(Y_n).$ Определим множества

$$\begin{split} A &= \left\{ f \in C_p \bigg(\bigoplus_{n \in N} X_n \bigg) \colon f \mid_{X_n} \in A_n \right\}; \\ B &= \left\{ g \in C_p \bigg(\bigoplus_{n \in N} Y_n \bigg) \colon g \mid_{Y_n} \in B_n \right\} = C_p \bigg(\bigoplus_{n \in N} Y_n \bigg) \end{split}$$

и отображение
$$h:B\cap C_pigg(\bigoplus_{n\in N}Y_nigg)_0=C_pigg(\bigoplus_{n\in N}Y_nigg)_0 o A$$
 , оп-

ределённое формулой $h(g)|_{X_n}=h_n(g|_{Y_n})$, где $g\in B$. Таким образом, мы находимся в условиях следствия 14, откуда получаем, что h является fu -гомеоморфизмом из $C_p\Big(\bigoplus_{n\in N}Y_n\Big)_0$ на $A\cap C_p\Big(\bigoplus_{n\in N}X_n\Big)_0$. Из формулы (2) следу-

ет также неравенство

$$(1+\delta)^{-1} \|g\|_{Y} \le \|h(g)\|_{X} \le \|g\|_{Y}, \quad g \in C_{p} \left(\bigoplus_{n \in N} Y_{n}\right). \quad (3)$$

Ясно, что
$$A \cap C_p \bigg(\bigoplus_{n \in N} X_n\bigg)_0 pprox \bigg(\prod_{n \in N} A_n\bigg)_{C_0}$$
 и $A_n pprox c_0$, $n \in N$.

Таким образом,
$$A \cap C_p \left(\bigoplus_{n \in N} X_n\right)_0 \approx \left(c_0 \times c_0 \times ...\right)_{C_0}$$
,
$$\left(c_0 \times c_0 \times ...\right)_{C_0} \approx c_0 \approx C_p\left([1,\omega] \mid \{\omega\}\right)$$
. Учитывая это замеча-

ние, можно считать, что построенное выше отображение h является fu—гомеоморфизмом из $C_p\Big(\bigoplus_{n\in N}Y_n\Big)_0$ на $C_p([1,\omega]\mid\{\omega\})$. Композиция $T=h\circ S_\delta$ по следствию 7 является fu-гомеоморфизмом пространства $C_p([1,\alpha])$ на $C_p([1,\omega]\mid\{\omega\})$. Из формул (1) и (3) следует, что выполнено неравенство $(1+\delta)^{-2}\|f\|\leq \|T(f)\|\leq \|f\|, \ f\in C_p([1,\alpha])$. Полагая $T_\epsilon=T$, мы получаем утверждение (a_α) . Индукция полная. Итак,

$$C_p([1,\alpha]) \stackrel{fu}{\cong} C_p([1,\omega] | \{\omega\})$$

И

$$C_p([1,\beta]) \stackrel{fu}{\cong} C_p([1,\omega] | \{\omega\})$$

для любых двух счётных ординалов α и β , следовательно, $C_p([1,\alpha])\stackrel{\mathit{fu}}{\cong} C_p([1,\beta])$. Теорема доказана.

Ч. Бессага и А. Пелчинский [6] установили, что для счётных ординалов α и β , $\alpha \leq \beta$ пространства $C_p([1,\alpha])$ и $C_p([1,\beta])$ линейно гомеоморфны тогда и только тогда, когда $\alpha \leq \beta < \alpha^{\infty}$. Следовательно, отрезки ординалов $[1,\omega^{\omega^{\gamma}}]$ при $0 \leq \gamma < \omega_1$ будут попарно не l-эквивалентны между собой.

Следствие 15. Существуют счётные fu -эквивалентные компакты X и Y, не являющиеся l -эквивалентными.

Вопрос о различении u- и fu-эквивалентных пространств пока остаётся открытым.

ЛИТЕРАТУРА

- 1. Velichko N.V. The Lindelof property is l-invariant // Topol. and its Appl. 1998. Vol. 89. P. 277–283.
- 2. Okunev O. Homeomorphisms of function spaces and hereditary cardinal invariants // Topol. and its Appl. 1997. Vol. 80. P. 177-188.
- 3. *Гулько С.П.* О равномерных гомеоморфизмах пространств непрерывных функций // Труды матем. ин-та им. В.А.Стеклова АН СССР. 1992. Т. 193. С. 82–88.
- 4. *Арбит А.В.* О многозначных отображениях, порождаемых равномерными гомеоморфизмами пространств непрерывных функций.// Международная конференция по математике и механике: Избранные доклады / Под общ. ред. Н.Р.Щербакова. Томск: Томский государственный университет, 2003. С. 45–49.
- 5. Gul'ko'S.P. The space $C_p(X)$ for countable infinite compact X is uniformly homeomorphic to c_0 // Bull. Acad. Polon. Sci. ser. Math. 1990.
- 6. Bessaga C., Pelezynski A. Spaces of continuous functions (IV). On isomorphic classification of spaces of continuous functions // Studia math. 1960. V. 19. P. 53-62.

Статья представлена кафедрой теории функций механико-математического факультета Томского государственного университета, поступила в научную редакцию «Математика» 11 июня 2004 г.