О НЕКОТОРЫХ СВОЙСТВАХ СИММЕТРИЧЕСКОГО МНОГОЧЛЕНА

Рассматривается однородный симметрический многочлен вида $\sigma_k(z_0,...,z_n) = \sum z_0^{j_0}...z_n^{j_n}$ комплексных переменных $z_0,...,z_n$, где $j_0+...+j_n=k,j_0\geq 0,...,j_n\geq 0$ и k – целое неотрицательное число. Рассматриваются свойства такого многочлена, часть из которых, по нашему мнению, могут представлять интерес и иметь приложения в различных вопросах анализа.

Пусть F(z) — однозначная аналитическая в области D функция. Определим разделенную разность n-го порядка функции F(z) в попарно различных точках $z_0,...,z_n \in D$ следующей рекуррентной формулой:

$$z_n \in D$$
 следующей рекуррентной формулой:
$$[F(z); z_0,..., z_n] = \frac{[F(z); z_0,..., z_{n-1}] - [F(z); z_1,..., z_n]}{z_0 - z_n},$$

$$[F(z); z_0] = F(z_0).$$

Разделенная разность функции F(z) является аналитической по любому из своих аргументов. Это позволяет доопределить n—ю разделенную разность нашей функции F(z) в том случае, когда среди точек z_0 ,..., $z_n \in D$ есть совпадающие между собой точки. Например, если $z_0 = z_1 = \xi_0$, то полагаем $[F(z); \xi_0, \xi_0] = F'(\xi_0)$.

Вообще, если точки $\xi_0,...,\,\xi_s$ \in D и попарно различны, то полагаем [1]

$$\begin{bmatrix} F(z); \underline{\xi_0, ..., \xi_0, ..., \xi_s, ..., \xi_s} \\ = \frac{1}{(p_0 - 1)!...(p_s - 1)!} \frac{\partial^{n-s} [F(z); \xi_0, ..., \xi_s]}{\partial \xi_0^{p_0 - 1}... \partial \xi_s^{p_s - 1}},$$

где $p_0+...+p_s=n+1$. В частности, если $z_0=...=z_n=\xi$, то $\left\lceil F(z);\underbrace{\xi,...,\xi}_{n+1}\right\rceil = \frac{1}{n!}F^{(n)}(\xi).$

Таким образом, разделенная разность является в некотором смысле обобщением производной и обладает многими замечательными свойствами, часть из которых можно найти в [1, 2].

Сформулируем несколько простейших свойств симметрического однородного многочлена.

Свойство 1. Пусть l и n — целые неотрицательные числа. Для функции $F(z)=z^l$, где $l\geq n\geq 0$, справедливо равенство $\sigma_{l-n}(z_0,...,z_n)=[z^l;z_0,...,z_n]$.

Свойство 2. При любых комплексных $z_0,...,z_n$ справедливо равенство $\sigma_k(z_0,...,z_n) = \sum_{m=0}^k \sigma_m(z_1,...,z_n) z_0^{k-m}$.

Свойство 3. Справедливо равенство $\sigma_{k\!-\!1}(z_0,\,z_1,\!...,\,z_{n\!-\!1})= \frac{\sigma_k \left(z_0,z_1,\!...,z_n\right) - \sigma_k \left(z_1,\!...,z_{n\!+\!1}\right)}{z_0-z_{n\!+\!1}},$ если $z_0\neq z_{n\!-\!1},$ и равен-

ство
$$\sigma_{k-1} (z_0,...,z_n,z_0) = \frac{\partial \sigma_k (z,z_1,...,z_n)}{\partial z}|_{z=z_0}$$
, если $z_0 = z_{n+1}$.

Заметим, что в вышеуказанных формулах аргументы перестановочны. Этим замечанием мы пользуемся и в дальнейшем.

Свойство 4. Пусть $\zeta_0,...,\zeta_s$ и $\xi_0,...,\xi_p$ – два множества комплексных чисел. Тогда справедливо равенство

$$\sigma_{k}(\zeta_{0},...,\zeta_{s},\xi_{0},...,\xi_{p}) = \sum_{m=0}^{k} \Delta_{k,m}(\zeta_{0},...\zeta_{s},\xi_{0},...,\xi_{p}), \quad (1)$$
 где $\Delta_{k,m}(\zeta_{0},...,\zeta_{s},\xi_{0},...,\xi_{p}) = \sigma_{k-m}(\zeta_{0},...,\zeta_{s}) \cdot \sigma_{m}(\xi_{0},...,\xi_{p}).$

Доказательство. Согласно свойству 2 при любых фиксированных $\xi_0,...,\xi_p$ справедливо тождество по ζ :

$$\sigma_{k+s}(\zeta, \xi_0, ..., \xi_p) = \sum_{m=0}^{k+s} \zeta^{k+s-m} \sigma_m(\xi_0, ..., \xi_p).$$
 (2)

Пользуясь элементарными свойствами разделенных разностей, возьмем от обеих частей тождества (2) разделенную разность s—го порядка по точкам $\zeta_0,...,\zeta_s$:

$$\begin{bmatrix} \sigma_{k+s}(\zeta, \xi_0, ..., \xi_p), \zeta_0, ..., \zeta_s \end{bmatrix} = \sum_{m=0}^k \sigma_{k-m}(\zeta_0, ..., \zeta_s) \cdot \sigma_m(\xi_0, ..., \xi_p).$$

С другой стороны,

$$\begin{split} & \left[\sigma_{k+s}(\zeta, \xi_{0}, ..., \xi_{p}), \zeta_{0}, ..., \zeta_{s}\right] = \\ & = \left[\left[\zeta^{k+s+p+1}; \zeta, \xi_{0}, ..., \xi_{p}\right] \zeta_{0}, ..., \zeta_{s}\right] = \\ & = \left[\zeta^{k+s+p+1}; \zeta_{0}, ..., \zeta_{s}, \xi_{0}, ..., \xi_{p}\right] = \sigma_{k}(\zeta_{0}, ..., \zeta_{s}, \xi_{0}, ..., \xi_{p}). \end{split}$$

Отсюда следует наше утверждение.

Последовательность положительных чисел a_0 , a_1 , ..., a_k назовем χ -последовательностью, если для ее членов выполняются неравенства

$$a_m^2 \ge a_{m+1}a_{m-1}, \quad m = 1, ..., k-1.$$
 (3)

Если последовательность a_0 , a_1 , ..., a_k такова, что a_0 = a_1 = ... = a_k , то она называется тривиальной χ -последовательностью. Простейшим примером χ -последовательности является геометрическая прогрессия. Тривиальную χ -последовательность не будем причислять к геометрической прогрессии. Заметим, что из (3) следует

$$\ln a_m \ge \frac{\ln a_{m+1} + \ln a_{m-1}}{2}.$$

Это означает, что χ -последовательность является логарифмически выпуклой вверх числовой последовательностью. Из (3) также следует, что

$$\frac{a_0}{a_1} \le \frac{a_1}{a_2} \le \dots \le \frac{a_{m-1}}{a_m}.$$

С х-последовательностями можно познакомиться также в [3]. Из сказанного сразу следует справедливость следующих лемм.

Лемма 1. Если последовательность $a_0, a_1, ..., a_k$ есть χ -последовательность, то она может быть только следующих двух типов:

- 1. Монотонной (возрастающей, убывающей, тривиальной).
- 2. Возрастающе-убывающей, т.е. найдется такое число l, что сначала $a_0 \le a_1 \le \dots a_l$, а затем $a_l \ge a_{l+1} \ge \dots \ge a_k$, где среди чисел a_0, a_1, \dots, a_k есть хотя бы два числа, не равных между собой.

Лемма 2. Пусть

$$a_0, a_1, ..., a_k;$$
 (4)

$$b_0, b_1, ..., b_k$$
 (5)

есть две χ -последовательности. Тогда последовательность

$$a_0b_0,...,a_kb_k (6$$

также есть х-последовательность.

Для того чтобы χ-последовательность (6) была геометрической прогрессией, необходимо и достаточно, что-

бы х-последовательности (4) и (5) были геометрическими прогрессиями с произведением знаменателей, не равным единице, либо одна из них была бы геометрической прогрессией, а другая была бы тривиальной. Для того чтобы х-последовательность (6) была тривиальной необходимо и достаточно, чтобы обе у-последовательности (4) и (5) были тривиальными или обе у-последовательности (4) и (5) были бы геометрическими прогрессиями с произведением знаменателей, равным единице.

Лемма 3. Если последовательность $c_0,..., c_k$ есть χ -последовательность, то и последовательность $c_k,...,\ c_0$ есть также у-последовательность.

Следующие две теоремы связывают х-последовательности и однородные симметрические многочлены.

Теорема 1. Пусть $\upsilon_0,...,\,\upsilon_s$ – неотрицательные числа и $\upsilon_0 > 0,...,\ \upsilon_s$. Тогда при любых $s \ge 0$ и $l \ge 0$ последовательность симметрических многочленов

 $\sigma_{l}(v_{0},...,v_{s}), \ \sigma_{l+1}(v_{0},...,v_{s}), \ \sigma_{l+2}(v_{0},...,v_{s}),...,$ имеющая не менее трех членов есть у-последовательность. При любом фиксированном m, где $m \ge l$, тройка многочленов

 $\sigma_{m}(v_{0},...,v_{s}), \ \sigma_{m+1}(v_{0},...,v_{s}), \ \sigma_{m+2}(v_{0},...,v_{s})$ может быть геометрической прогрессией или тривиальной последовательностью лишь в том случае, если она имеет вил

$$v_0^m, v_0^{m+1}, v_0^{m+2}.$$
 (9)

Доказательство. Обозначим для краткости $\sigma_{m.s}$ = $=\sigma_m(v_0,...,v_s)$. Установим, что

$$\sigma_{m,s}^2 \ge \sigma_{m+1,s} \cdot \sigma_{m-1,s} \tag{10}$$

при любом $m \ge l + 1$ и любом $s \ge 0$. Для этого воспользуемся индукцией по *s*. При s = 0 имеем $\sigma_{m,0}(v_0) = v_0^m$. Значит, при s=0 и любом $m \ge 1$ неравенство (10), как следует из (9), будет справедливо. Пусть неравенство (10) справедливо при некотором s = p и любом $m \ge l + 1$. Докажем справедливость неравенства (10) при s = p + 1 и любом $m \ge l + 1$. Имеем

$$\sigma_{m,p+1} = \upsilon_{p+1}^m + \sigma_{1,l} \cdot \upsilon_{p+1}^{m-1} + \ldots + \sigma_{m-1,p} \cdot \upsilon_{p+1} + \sigma_{m,p}. \eqno(11)$$

Отсюда $\sigma_{m,p+1} = \upsilon_{p+1} \sigma_{m-1,p+1} + \sigma_{m,p}$. Вычисления показывают, что

$$\begin{split} & \sigma_{m,p+1}^2 - \sigma_{m+1,p+1} \cdot \sigma_{m-1,p+1} = \sigma_{m,p} \cdot \upsilon_{p+1}^m + \\ & + \sum_{i=0}^{m-1} \Bigl(\sigma_{m,p} \cdot \sigma_{m-j,p} - \sigma_{m+1,p} \cdot \sigma_{m-j-1,p} \Bigr) \cdot \upsilon_{p+1}^j. \end{split}$$

Докажем, что при любом $m \ge l + j + 1$ будут выполняться неравенства

$$\sigma_{m,p}\cdot\sigma_{m-j,p}-\sigma_{m+1,p}\cdot\sigma_{m-j-1,p}\geq0,\ j=0,1,...,m-l-1.$$
 (12) Действительно, по предположению при $s=p$ и любом $m\geq l+j+1$ имеем

$$\begin{split} \sigma_{m,p}^2 &\geq \sigma_{m+1,p} \cdot \sigma_{m-1,p}, \\ \sigma_{m-1,p}^2 &\geq \sigma_{m,p} \cdot \sigma_{m-2,p}, \\ &\cdots \\ \sigma_{m-j,p}^2 &\geq \sigma_{m-j+1,p} \cdot \sigma_{m-j-1,p}. \end{split}$$

Перемножая эти неравенства, получим

$$\begin{split} & \sigma_{m,p}^2 \cdot \sigma_{m-l,p} \cdot \ldots \cdot \sigma_{m-j,p} \geq \\ & \geq \sigma_{m+l,p} \cdot \sigma_{m-l,p} \cdot \ldots \cdot \sigma_{m-j+l,p} \cdot \sigma_{m-j-l,p}. \end{split}$$

Деля обе части последнего неравенства на общие множители, придем к (12). Из (11) и (12) и того, что $\sigma_{mp} > 0$ и υ_{p+1} , заключаем, что неравенство (10) справедливо при s== p + 1. Пользуясь индукцией по s, убеждаемся в том, что неравенство (10) имеет место при любом $s \ge 0$ и любом $m \ge l + 1$. Это означает, что последовательность (7) есть х-последовательность. Таким образом, первая часть теоремы 1 доказана. Докажем вторую часть. Пусть $\upsilon_0 > 0$, $\upsilon_0 \neq 1$, s = 0 или $\upsilon_0 > 0$, $\upsilon_0 \neq 1$, s > 0, $\upsilon_1 = \upsilon_2 = ... = \upsilon_s = 0$, тогда для любого $m \ge 0$ имеем

$$\sigma_m(v_0) = \sigma_m\left(v_0, \underbrace{0, \dots, 0}_{s}\right) = v_0^m,$$

что приводит нас к геометрической прогрессии. Может случиться, что $v_0 = 1$ и тогда мы получим тривиальную последовательность, образованную из единиц. В остальных случаях, т.е. если среди чисел $\upsilon_0,...,$ υ_s есть хотя бы два числа, не равные нулю, то тройка чисел (8) не образует геометрической прогрессии, а также тривиальной последовательности. В самом деле, в силу симметрического свойства многочленов $\sigma_m(v_0,...,v_s)$ относительно переменных $\upsilon_0,...,\ \upsilon_s$ можно считать, что $\upsilon_0 > 0$ и $\upsilon_s > 0$. Опираясь на формулу (11), имеем для любого $m \ge l + 1$ равенство

$$\begin{split} & \sigma_{m,s}^2 - \sigma_{m+1,s} \cdot \sigma_{m-1,s} = \\ = & \sigma_{m,s-1} \cdot \upsilon_s^m + \sum_{j=0}^{m-1} \left(\sigma_{m,s-1} \cdot \sigma_{m-j,s-1} - \sigma_{m+1,s-1} \cdot \sigma_{m-j-1,s-1} \right) \cdot \upsilon_s^j, \end{split}$$

причем, согласно формуле (12), справедливо неравенство $\sigma_{m,s-1} \cdot \sigma_{m-j,s-1} - \sigma_{m+1,s-1} \cdot \sigma_{m-j-1,s-1} \ge 0; \quad j = 0,1,...,m-l-1.$

Так как $\sigma_{m,s-1} > 0$ и $\upsilon_s > 0$, то $\sigma_{m,s}^2 - \sigma_{m+1,s} \cdot \sigma_{m-1,s} > 0$ при любом $m \ge l + 1$. Значит, тройка чисел (8) не образует геометрической прогрессии и не может быть тривиальной последовательностью.

Теорема 2. Пусть $\upsilon_0,...,\upsilon_s$ и $r_0,...,r_p$ – два множества неотрицательных чисел и $v_0 > 0$, $r_0 > 0$. Тогда последо-

$$\Delta_{k,m}(\upsilon_0,...,\upsilon_s,r_0,...,r_p), \ m=0,1,...,k,$$
 где $k\geq 2$, (13) является χ -последовательностью. Эта χ -последовательность будет геометрической прогрессией или триви-

ность будет геометрической прогрессией или тривиальной последовательностью лишь тогда, когда она приводится к виду

$$\upsilon_0^k, \upsilon_0^{k-1} r_0, ..., \upsilon_0 r_0^{k-1}, r_0^k. \tag{14}$$

Доказательство. По теореме 1 и лемме 3 последовательности

$$\sigma_0(r_0,...,r_p), \sigma_1(r_0,...,r_p),...,\sigma_k(r_0,...,r_p);$$
 (15)

$$\sigma_{k}(r_{0},...,r_{p}), \sigma_{k-1}(r_{0},...,r_{p}),....,\sigma_{0}(r_{0},...,r_{p})$$
 (16)

являются у-последовательностями. Перемножая их и пользуясь леммой 2, получим последовательность

$$\sigma(\upsilon_0,...,\upsilon_s)\sigma_k(r_0,...,r_p), \sigma_1(\upsilon_0,...,\upsilon_s)\sigma_{k-1}(r_0,...,r_p),..., \\ \sigma_1(\upsilon_0,...,\upsilon_s)\sigma_{k-1}(r_0,...,r_p),$$

которая также будет у-последовательностью. Вспоминая формулу 1 из свойства 4, получим, что (13) есть у-последовательность. Это доказывает первую часть теоремы 2. Докажем вторую часть 2. Если s+p=0 или s+p>0 и $v_1=...$... = $v_s = r_1 = ... = r_p = 0$, то в обоих случаях получим последовательность

$$\Delta_{k,m}(\upsilon_0,r_0) = \Delta_{k,m}\left(\upsilon_0,\underbrace{0,...,0}_{s},\underbrace{0,...,0}_{p}\right) = \upsilon_0^{k-m}r_0^m,$$

m=0,1,...,k, вида (14), которая будет геометрической прогрессией или тривиальной последовательностью. Остается показать, что в остальных случаях χ -последовательность (13) не будет геометрической прогрессией или тривиальной последовательностью. Действительно, пусть вопреки нашему утверждению χ -последовательность (13) является геометрической проследовательность (13)

грессией или тривиальной χ -последовательностью. Тогда по лемме 2 последовательности (15) и (16) будут геометрическими прогрессиями или тривиальными последовательностями. Так как среди чисел $\upsilon_0,...,\,\upsilon_s,\,r_0,...,\,r_p$ есть хотя бы три числа, отличные от нуля, то в одной из последовательностей (15), (16) есть хотя бы два числа, отличные от нуля. Согласно теореме 1, одна из этих последовательностей не будет геометрической прогрессией и не будет тривиальной последовательностью. Получаем противоречие.

ЛИТЕРАТУРА

- 1. Голузин А.О. Исчисление конечных разностей. М.: Гостехиздат, 1952. 478 с.
- 2. Ибрагимов И.И. Методы интерполирования функций и их применения. М.: Наука, 1971. 510 с.
- 3. Полиа Г., Сеге Г. Задачи и теоремы из анализа. Часть первая. М.: Гостехиздат, 1956. 396 с.

Статья представлена кафедрой математического моделирования факультета фундаментальных наук Вильнюсского технического университета им. Гедиминаса, поступила в научную редакцию «Математика» 14 сентября 2004 г.