ОЦЕНИВАНИЕ ДЛИТЕЛЬНОСТИ МЕРТВОГО ВРЕМЕНИ И ПАРАМЕТРОВ АСИНХРОННОГО АЛЬТЕРНИРУЮЩЕГО ПОТОКА СОБЫТИЙ С ИНИЦИИРОВАНИЕМ ЛИШНЕГО СОБЫТИЯ

Рассматривается задача об оценке параметров асинхронного альтернирующего дважды стохастического потока событий с инициированием лишнего события, являющегося математической моделью информационных потоков заявок (событий), циркулирующих в системах и сетях массового обслуживания, а также математической моделью потоков элементарных частиц (фотонов, электронов и т. д.), поступающих на регистрирующую аппаратуру. Условия наблюдения за потоком таковы, что каждое зарегистрированное событий порождает период мёртвого времени, в течение которого другие события потока недоступны наблюдению. Исследуется случай непродлевающегося мёртвого времени, при этом длительность мёртвого времени — детерминированная величина. Находится плотность вероятностей интервала между соседними событиями в наблюдаемом потоке. Отыскивается, при известных параметрах потока событий, оценка максимального правдоподобия длительности мёртвого времени. При неизвестных параметрах потока событий (с использованием метода моментов) находятся явные выражения для оценок этих параметров и выписывается уравнение для определения оценки длительности мёртвого времени.

Системы и сети массового обслуживания (СМО, СеМО) являются широко применяемой математической моделью реальных физических, технических, экономических и других объектов и систем. Случайные потоки событий, являющиеся основными элементами СМО и СеМО, в свою очередь, широко применяются в качестве математической модели реальных процессов. В частности, информационные потоки заявок, циркулирующие в системах и сетях связи, в цифровых сетях интегрального обслуживания, в измерительных системах, потоки элементарных частиц (фотонов, электронов и т.д.), поступающие на регистрирующие приборы в физических экспериментах, достаточно адекватно описываются случайными потоками событий. Задачи по оценке состояний и параметров случайных потоков событий возникают в оптических и лазерных системах, функционирующих в режиме счёта фотонов, например, при лазерном зондировании высотных слоёв атмосферы, в оптических системах обнаружения, распознавания и сопровождения, работающих через атмосферу на предельно больших расстояниях, а также в оптических системах загоризонтной связи.

Условия функционирования реальных объектов и систем таковы, что если в отношении параметров обслуживающих устройств можно сказать, что они известны и с течением времени не меняются, то в отношении интенсивностей входящих потоков этого сказать во многих случаях нельзя. Более того, интенсивности входящих потоков событий обычно меняются со временем, часто эти изменения носят случайный характер, что приводит к рассмотрению математических моделей дважды стохастических потоков событий. С другой стороны, режимы функционирования СМО и СеМО непосредственно зависят от интенсивностей входящих потоков событий. Вследствие этого важной задачей является задача оценки в произвольный момент времени состояния и параметров потока событий по наблюдениям за этим потоком.

Одними из первых работ по оценке состояний дважды стохастических потоков событий, по-видимому, являются работы [1–4], в которых рассматривается асинхронный дважды стохастический поток событий с двумя состояниями (МСпоток событий или поток с переключениями). Дальнейшие исследования по оценке состояний дважды стохастических потоков событий, функционирующих в различных условиях, проведены в работах [5–9].

В большинстве публикаций авторы рассматривают математические модели потоков событий, когда события потока доступны наблюдению. Однако на практике возникают ситуации, когда наступившее событие может повлечь за собой не-

наблюдаемость последующих событий. Одним из искажающих факторов при оценке параметров потока событий выступает мёртвое время регистрирующих приборов [10, 11], которое порождается зарегистрированным событием. Другие же события, наступившие в течение периода мёртвого времени, недоступны наблюдению (теряются). По этой причине счётчик событий показывает, как правило, не истинную картину, а несколько искажённый ход явлений. В конкретных устройствах регистрации величина и характер мёртвого времени зависят от многих факторов. В первом приближении можно считать, что этот период продолжается некоторое определённое (фиксированное) время T. Все устройства регистрации можно разделить на две группы. Первую группу составляют устройства с непродлевающимся мёртвым временем, которое не зависит от наступления других событий в пределах его действия. Ко второй группе относятся устройства регистрации с продлевающимся мёртвым временем. В последнем случае мёртвое время возникает после любого события, поступившего на вход устройства, вне зависимости от факта его регистрации, что приводит к увеличению общего периода ненаблюдаемости и, следовательно, к ещё большей потере информации.

Задачи по оценке параметров потока событий и оценке длительности мёртвого времени рассматривались в работах [12–19; 20. С. 18–23, С. 24–29; 21–23]. При этом в [12, 13, 15] получены результаты для пуассоновского потока событий, в [14, 22] — для синхронного альтернирующего дважды стохастического потока событий, в [20. С. 18–23] — для синхронного дважды стохастического потока событий, в [20. С. 18–23; 21] — для полусинхронного дважды стохастического потока событий, в [16, 17] — для асинхронного альтернирующего дважды стохастического потока событий, в [18, 19, 23] — для асинхронного дважды стохастического потока событий. В [13, 14, 18, 20. С. 18–23, С. 24–29] исследования проведены в условиях отсутствия мёртвого времени; в [12, 16, 19, 21, 22] исследования проведены для непродлевающегося мёртвого времени, в [15, 17, 23] — для продлевающегося мёртвого времени.

Настоящая статья посвящена оценке длительности мёртвого времени и параметров асинхронного альтернирующего дважды стохастического потока с инициированием лишнего события (далее – поток с инициированием лишнего события) для случая непродлевающегося мёртвого времени. Подчеркнём, что рассматриваемый поток событий достаточно адекватен при описании цифровых сетей интегрального обслуживания и относится к классу МАР-потоков [25, 26].

ПОСТАНОВКА ЗАДАЧИ

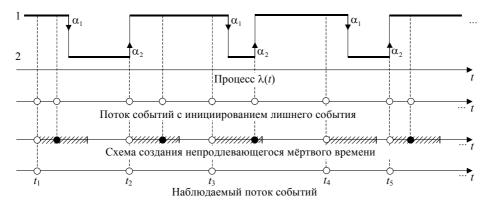
Рассматривается поток с инициированием лишнего события, интенсивность которого есть кусочно-постоянный стационарный случайный процесс $\lambda(t)$ с двумя состояниями: $\lambda(t) = \lambda$, $\lambda(t) = 0$. Будем говорить, что имеет место пер-

вое состояние процесса (потока), если $\lambda(t) = \lambda$, и, наоборот, имеет место второе состояние процесса (потока), если $\lambda(t) = 0$. Если имеет место первое состояние процесса $\lambda(t)$, то в течение временного интервала, когда $\lambda(t) = \lambda$, имеет

место пуассоновский поток событий с интенсивностью λ. Длительность пребывания процесса $\lambda(t)$, в первом состоянии есть случайная величина, распределённая по экспоненциальному закону $F_1(t) = 1 - e^{-\alpha_1 t}$, где α_1 – интенсивность перехода из первого состояния процесса $\lambda(t)$ во второе. Если имеет место второе состояние процесса $\lambda(t)$, то генерация событий в этом состоянии не производится. Длительность пребывания процесса $\lambda(t)$ во втором состоянии есть также экспоненциально распределённая случайная величина с функцией распределения $F_2(t) = 1 - e^{-\alpha_2 t}$, где α_2 – интенсивность перехода из второго состояния процесса $\lambda(t)$ в первое. Возможная интерпретация этого следующая: момент перехода процесса $\lambda(t)$ из первого состояния во второе «отключает» источник событий от их генерации (другими словами, источник событий в этот момент времени «ломается», выходит из строя, и необходимо некоторое случайное время на его восстановление либо на замену). При этом переход из второго состояния в первое инициирует наступление лишнего события (т.е.

источник событий восстановился и в момент восстановления сгенерировал лишнее событие потока). Так как переходы из состояния в состояние не связаны с наступлением событий исходного потока, то поток называется асинхронным. В сделанных предпосылках нетрудно показать, что $\lambda(t) = \lambda$, $\lambda(t)$ — марковский процесс.

После каждого зарегистрированного в момент времени t_i события наступает время фиксированной длительности T (мёртвое время), в течение которого другие события исходного потока с инициированием лишнего события недоступны наблюдению. Будем считать, что события, наступившие в течение мёртвого времени, не вызывают продление его периода. По окончании мёртвого времени первое наступившее событие снова создаёт период мёртвого времени длительности T и т.д. Вариант возникающей ситуации показан на рисунке, где 1 и 2 — состояния случайного процесса $\lambda(t)$; штриховкой обозначены периоды мёртвого времени длительности T; t_1 , t_2 ,... — моменты наступления событий в наблюдаемом потоке.



Рассматривается установившийся (стационарный) режим функционирования потока событий, поэтому переходными процессами на интервале наблюдения (t_0,t) , где t_0 — начало наблюдений, t — окончание, пренебрегаем. Тогда без потери общности можно положить $t_0=0$. Так как процесс $\lambda(t)$ является ненаблюдаемым, а на-

блюдаемыми являются только временные моменты t_1 , t_2 ,... наступления событий в наблюдаемом потоке, то необходимо по этим наблюдениям оценить (в момент t окончания наблюдений) параметры λ , α_1 , α_2 случайного процесса $\lambda(t)$ и длительность мёртвого времени T.

ПЛОТНОСТЬ ВЕРОЯТНОСТЕЙ ИНТЕРВАЛА МЕЖДУ СОСЕДНИМИ СОБЫТИЯМИ В АСИНХРОННОМ АЛЬТЕРНИРУЮЩЕМ ПОТОКЕ С ИНИЦИИРОВАНИЕМ ЛИШНЕГО СОБЫТИЯ

Исследуем сначала случай отсутствия мёртвого времени, т.е. T=0. Рассмотрим временной отрезок (t_0,t) и обозначим $\pi_j(t_0,t)$ — вероятность того, что процесс $\lambda(t)$ в момент времени t находится в j-м состоянии, j=1,2 $(\pi_1(t_0,t)+\pi_2(t_0,t)=1)$. Тогда для введённых вероятностей справедлива следующая система дифференциальных уравнений:

$$\begin{aligned} \pi_1'(t_0,t) &= -\alpha_1 \pi_1(t_0,t) + \alpha_2 \pi_2(t_0,t), \\ \pi_2'(t_0,t) &= \alpha_1 \pi_1(t_0,t) - \alpha_2 \pi_2(t_0,t), \end{aligned}$$

решая которую вместе с начальными условиями $\pi_1(t_0,t=t_0)=\pi$, $\pi_2(t_0,t=t_0)=1-\pi$, ($0\le\pi\le 1$), находим

$$\begin{split} &\pi_1(t_0,t) = \frac{\alpha_2}{\alpha_1 + \alpha_2} + \left(\pi - \frac{\alpha_2}{\alpha_1 + \alpha_2}\right) e^{-\left(\alpha_1 + \alpha_2\right)\left(t - t_0\right)}, \\ &\pi_2(t_0,t) = \frac{\alpha_1}{\alpha_1 + \alpha_2} - \left(\pi - \frac{\alpha_2}{\alpha_1 + \alpha_2}\right) e^{-\left(\alpha_1 + \alpha_2\right)\left(t - t_0\right)}. \end{split}$$

Устремляя здесь t к бесконечности ($t \to \infty$) либо t_0 к минус бесконечности ($t_0 \to -\infty$), получаем финальные априорные вероятности состояний процесса $\lambda(t)$ в виде

$$\pi_1 = \frac{\alpha_2}{\alpha_1 + \alpha_2}, \ \pi_2 = \frac{\alpha_1}{\alpha_1 + \alpha_2}, \ \pi_1 + \pi_2 = 1.$$
(1)

Заметим, что апостериорные вероятности $\widetilde{\pi}_1$ и $\widetilde{\pi}_2$ состояний процесса $\lambda(t)$ в момент наступления события (в силу определения потока с инициированием лишнего события), очевидно, есть $\widetilde{\pi}_1=1$, $\widetilde{\pi}_2=0$.

Покажем, что рассматриваемый поток обладает марковским свойством, если его эволюцию рассматривать начиная с момента t_i (момента наступления события). Подчеркнём, что поток с инициированием лишнего события, по определению, обладает свойствами стационарности и ординарности, поэтому он является потоком с ограниченным последействием (потоком Паль-

ма) [26]. Итак, пусть момент времени t_i — момент наступления события в рассматриваемом потоке. Тогда процесс $\lambda(t)$, по определению, находится в первом состоянии. Покажем, что дальнейшая эволюция потока с инициированием лишнего события полностью определяется состоянием процесса $\lambda(t)$ в момент времени t_i и не зависит от предыстории. Зарегистрированное в момент времени t_i событие может быть либо событием, наступившим внутри временного интервала, когда имеет место первое состояние процесса $\lambda(t)$ (событие 1-го типа), либо лишним событием, сынициированным в первом состояния в момент перехода процесса $\lambda(t)$ из второго состояния в первое (событие 2-го типа). Пусть наступившее событие есть событие 1-го типа. Тогда эволюция потока после момента t_i определяется:

- 1) числом событий, которые наступят после момента t_i ; но это число не зависит от того, как наступали события до момента t_i , так как в первом состоянии поток событий пуассоновский с параметром λ ;
- 2) временем пребывания потока в первом состоянии после наступления события в момент времени t_i ; но длительность пребывания потока в первом состоянии распределена по экспоненциальному закону и не зависит от того, сколько времени находился поток (процесс $\lambda(t)$) в первом состоянии до момента t_i ; переход же из первого состояния во второе определяет начало временного участка второго состояния потока (процесса $\lambda(t)$), т.е. начало временного участка второго состояния также не зависит от предыстории. Пусть наступившее событие есть событие 2-го типа. Тогда момент наступления события 2-го типа определяет начало временного участка первого состояния потока (процесса $\lambda(t)$), в теение которого имеет место пуассоновский поток событий с параметром λ ; но длительность пребывания потока (процесса $\lambda(t)$) во втором состоянии распределена по экспоненциальному закону, обладающему свойством отсутствия последействия, поэтому эволюция потока после момента t_i в этом случае не зависит от предыстории.

Таким образом, поток с инициированием лишнего события обладает марковским свойством в моменты t_i наступления событий. Тогда моменты наступления событий t_i , t_{i+1} , ... не зависят от моментов t_{i-1} , t_{i-2} , Отсюда следует, в силу произвольности i, что временные интервалы $\tau_i = t_{i+1} - t_i$ будут взаимно независимыми для любых i. Кроме того, в силу исходных предпосылок (стационарность функционирования потока событий и стационарность процесса $\lambda(t)$) следует, что плотность вероятностей интервала между соседними событиями потока $p(\tau_i) = p(\tau)$ для любых i. Всё это означает, что асинхронный альтернирующий поток с инициированием лишнего события, с другой стороны, является рекуррентным потоком.

Перейдём к нахождению плотности вероятностей $p(\tau)$. Отметим, что моменты времени $t_1, t_2, ...,$ в которые рассматриваемый поток обладает марковским свойством, образуют однородную цепь Маркова (вложенную цепь) [27]. Рассмотрим событие потока, наступившее в произвольный момент времени t_i . Так как исследуется стационарный режим функционирования потока, то, не нарушая общности, припишем моменту наступления этого события момент $\tau = 0$. Наступившее событие при

этом может быть либо событием 1-го типа, либо событием 2-го типа. Если в момент $\tau=0$ произошло событие потока, то возможны два варианта дальнейшей эволюции потока:

- 1) процесс $\lambda(t)$ остаётся в первом состоянии и на полуинтервале $[\tau, \tau + \Delta \tau]$ наступает событие 1-го типа;
- 2) процесс $\lambda(t)$ на интервале $(0, \tau_1)$ переходит во второе состояние, пребывает в этом состоянии в течение временного интервала (τ_1, τ) и на полуинтервале $[\tau, \tau + \Delta \tau]$ переходит в первое состояние с одновременным инициированием события 2-го типа в первом состоянии.

Для первого варианта длительность интервала между соседними событиями потока есть экспоненциально распределённая случайная величина с плотностью вероятностей

$$p_1(\tau) = (\lambda + \alpha_1) e^{-(\lambda + \alpha_1)\tau}, \qquad (2)$$

для второго варианта — сумма двух экспоненциально распределённых случайных величин ($\tau = \tau_1 + \tau_2$, τ_1 — длительность пребывания процесса $\lambda(t)$ в первом состоянии, ($\tau_2 = \tau - \tau_1$ — длительность пребывания процесса $\lambda(t)$ во втором состоянии) с плотностью вероятностей

$$p_2(\tau) = \alpha_2(\lambda + \alpha_1) \frac{e^{-\alpha_2 \tau} - e^{-(\lambda + \alpha_1)\tau}}{\lambda + \alpha_1 - \alpha_2}.$$
 (3)

Первый вариант эволюции потока заканчивается в момент τ наступлением события 1-го типа, второй вариант – наступлением события 2-го типа. Тогда

$$p(\tau) = q_1 p_1(\tau) + q_2 p_2(\tau),$$
 (4)

где q_i — финальная вероятность того, что наступившее событие есть событие i-го типа (i = 1,2), $q_1 + q_2 = 1$.

Так как моменты наступления событий образуют вложенную цепь, то для финальных вероятностей q_1, q_2 имеют место следующие уравнения:

 $q_1=q_1\pi_{11}+q_2\pi_{21};\ q_2=q_2\pi_{222}+q_1\pi_{122};\ q_1+q_2=1\ ,\ (5)$ где π_{i1} — вероятность того, что за время, которое пройдёт от момента $\tau=0$, в который наступило событие i-го типа, поведение потока будет таковым, что следующим событием потока будет событие 1-го типа $(i=1,2);\ \pi_{i22}$ — вероятность того, что за время, которое пройдёт от момента $\tau=0$, в который наступило событие i-го типа, поведение потока будет таковым, что следующим событием потока будет событие 2-го типа, при этом процесс $\lambda(t)$ перейдёт сначала из первого состояния во второе, а затем из второго состояния в первое с одновременным инициированием лишнего события.

Пусть теперь $[0, \tau)$ — некоторый временной полуинтервал. Введём в рассмотрение вероятности: $\pi_{i1}(\tau)$ — условная вероятность того, что на интервале $(0, \tau)$ нет событий потока и в момент времени τ имеет место первое состояние процесса $\lambda(t)$ при условии, что в момент времени $\tau = 0$ имело место событие потока i-го типа (i= 1, 2); $\pi_{i22}(\tau)$ — условная вероятность того, что на интервале $(0, \tau)$ нет событий потока и в момент времени τ имеет место второе состояние процесса $\lambda(t)$ при условии, что в момент времени $\tau = 0$ имело место событие потока i -го типа, i = 1, 2 (при этом процесс $\lambda(t)$ перейдёт на интервале $(0, \tau)$ из первого состояния во второе).

Тогда $\pi_{i1}(\tau)\lambda\Delta\tau + o(\Delta\tau)$ – совместная условная вероятность отсутствия событий потока на интервале (0, т) и наступления события потока 1-го типа на полуинтервале $[\tau, \tau + \Delta \tau]$, где $\Delta \tau$ – достаточно малый интервал времени, при условии, что в момент времени $\tau = 0$ имело место событие *i*-го типа (i = 1, 2); $\pi_{i22}(\tau)\alpha_2\lambda\Delta\tau + o(\Delta\tau)$ – совместная условная вероятность отсутствия событий потока на интервале (0, т) и наступления события потока 2-го типа на полуинтервале $[\tau, \tau + \Delta \tau]$ при условии, что в момент времени $\tau = 0$ имело место событие i-го типа, i = 1, 2 (при этом процесс $\lambda(t)$ на интервале $(0, \tau)$ сначала перейдёт из первого состояния во второе, а затем при переходе из второго состояния в первое сынициируется лишнее событие). Соответствующие условные плотности вероятностей при этом примут вид $\widetilde{\pi}_{i1}(\tau) = \lambda \pi_{i1}(\tau), \ \widetilde{\pi}_{i22}(\tau) = \alpha_2 \pi_{i22}(\tau), \ i = 1, 2.$ Tak kak τ произвольный момент времени, то для нахождения вероятностей π_{i1} , π_{i22} (i=1,2), введённых в (5), необходимо проинтегрировать соответствующие условные плотности вероятностей $\widetilde{\pi}_{i1}(\tau)$, $\widetilde{\pi}_{i22}(\tau)$, i=1,2, по τ от нуля до бесконечности:

$$\pi_{i1} = \int_{0}^{\infty} \widetilde{\pi}_{i1}(\tau) d\tau = \lambda \int_{0}^{\infty} \pi_{i1}(\tau) d\tau,$$

$$\pi_{i22} = \int_{0}^{\infty} \widetilde{\pi}_{i22}(\tau) d\tau = \alpha_{2} \int_{0}^{\infty} \pi_{i22}(\tau) d\tau,$$

$$\pi_{i1} + \pi_{i22} = 1 \ (i = 1, 2).$$
(6)

Для вероятностей $\pi_{i1}(\tau)$, $\pi_{i22}(\tau)$, i=1,1 справедлива следующая система дифференциальных уравнений:

$$\pi'_{i1}(\tau) = -(\lambda + \alpha_1)\pi_{i1}(\tau), \ \pi'_{i22}(\tau) = -\alpha_2\pi_{i22}(\tau) + \alpha_1\pi_{11}(\tau)$$
 с граничными условиями $\pi_{i1}(0), \ \pi_{i22}(0), \ i = 1,1$, решая которую, находим

$$\pi_{i1}(\tau) = e^{-(\lambda + \alpha_1)\tau}, \ \pi_{i22}(\tau) = \frac{\alpha_1}{\lambda + \alpha_1 - \alpha_2} \left[e^{-\alpha_2 \tau} - e^{-(\lambda + \alpha_1)\tau} \right] (i = 1, 2).$$
 (7)

Подставляя выражения (7) в формулы (6), получаем

$$\pi_{i1} = \frac{\lambda}{\lambda + \alpha_1}, \ \pi_{i22} = \frac{\alpha_1}{\lambda + \alpha_1}, \ \pi_{i1} + \pi_{i22} = 1 \ (i = 1, 2).$$
 (8)

Подставляя выражения (8) в систему уравнений (5), находим финальные вероятности q_i (i = 1,1) в виде

$$q_1 = \frac{\lambda}{\lambda + \alpha_1}, q_2 = \frac{\alpha_1}{\lambda + \alpha_1}, q_1 + q_2 = 1.$$
 (9)

Наконец, подставляя выражения (2), (3), (9) в формулу (4), выписываем выражение для плотности вероятностей интервала между соседними событиями потока с инициированием лишнего события:

$$p(\tau) = \gamma(\lambda + \alpha_1)e^{-(\lambda + \alpha_1)\tau} + (1 - \gamma)\alpha_2e^{-\alpha_2\tau}, \tau \ge 0,$$
 (10)
где $\gamma = (\lambda - \alpha_2)/(\lambda + \alpha_1 - \alpha_2), \lambda > 0, \alpha_1 > 0, \alpha_2 > 0.$

Отметим, что величина γ в (10) может быть как положительной, так и отрицательной, при этом возможны три случая:

- 1) $\lambda > \alpha_2$, $\lambda + \alpha_1 > \alpha_2$, тогда $0 < \gamma < 1$ и плотность вероятностей (10) убывающая функция переменной τ ($\tau \ge 0$) с точкой максимума $\tau^0 = 0$;
- 2) $\lambda < \alpha_2, \lambda + \alpha_1 < \alpha_2,$ тогда $\gamma > 1,$ при этом плотность вероятностей (10) убывающая функция переменной τ ($\tau \geq 0$) с точкой максимума $\tau^0 = 0,$ если величина

$$\alpha = \frac{\alpha_1}{\alpha_2 - \lambda} \left(\frac{\alpha_2}{\lambda + \alpha_1}\right)^2 \le 1$$
, и плотность вероятностей (10)

при $\tau \ge 0$ имеет единственный максимум в точке

$$\tau^{0} = \frac{1}{\alpha_{2} - \lambda - \alpha_{1}} \ln \left| \frac{\alpha_{1}}{\alpha_{2} - \lambda} \left(\frac{\alpha_{2}}{\lambda + \alpha_{1}} \right)^{2} \right| > 0, \quad (11)$$

если $\alpha > 1$;

3) $\lambda < \alpha_2$, $\alpha_2 < \lambda + \alpha_1$, тогда $\gamma < 0$, при этом плотность вероятностей (10) — убывающая функция переменной τ ($\tau \ge 0$) с точкой максимума $\tau^0 = 0$, если $\alpha > 1$, и плотность вероятностей (10) при $\tau \ge 0$ имеет единственный максимум в точке $\tau^0 > 0$, определённой формулой (11), если $\alpha < 1$.

Подчеркнём, что если $\alpha_2 = \lambda$, то рассматриваемый поток, как следует из (10), вырождается в пуассоновский с параметром λ . Наконец, если $\alpha_2 = \lambda + \alpha_1$, то плотность вероятностей (10) приобретает вид

$$p(\tau) = [\lambda + \alpha_1(\lambda + \alpha_1)\tau]e^{-(\lambda + \alpha_1)\tau}, \ \tau \ge 0.$$
 (12)

Если $\lambda \geq \alpha_1$, то плотность вероятностей (12) — убывающая функция переменной τ ($\tau \geq 0$) с точкой максимума $\tau^0 = 0$; если $\lambda < \alpha_1$, то плотность вероятностей (12) при $\tau \geq 0$ имеет единственный максимум в точке $\tau^0 = (\alpha_1 - \lambda)/\alpha_1(\lambda + \alpha_1) > 0$.

ПЛОТНОСТЬ ВЕРОЯТНОСТЕЙ ИНТЕРВАЛА МЕЖДУ СОСЕДНИМИ СОБЫТИЯМИ В НАБЛЮДАЕМОМ ПОТОКЕ

Рассмотрим теперь случай, когда при регистрации событий потока с инициированием лишнего события присутствует мёртвое время длительности T (см. рисунок). В силу того, что мёртвое время привязано к моментам наступления событий в исходном потоке, марковское свойство остаётся присущим и для моментов наступления событий в наблюдаемом потоке. Припишем, не нарушая общности, моменту t_i наступления события в наблюдаемом потоке момент $\tau=0$. Обозначим через $\pi_j(\tau)$ условную вероятность того, что в момент времени τ процесс $\lambda(t)$ будет находиться в состоянии j (j=1,2) при условии, что в момент времени $\tau=0$ событие наступило. Тогда для введённых вероятностей справедлива следующая система дифференциальных уравнений:

$$\pi'_1(\tau) = -\alpha_1 \pi_1(\tau) + \alpha_2 \pi_2(\tau),$$

 $\pi'_2(\tau) = \alpha_1 \pi_1(\tau) - \alpha_2 \pi_2(\tau),$

решая которую, находим

$$\pi_1(\tau) = A_1 + A_2 e^{-(\alpha_1 + \alpha_2)\tau},$$

$$\pi_2(\tau) = \frac{\alpha_1}{\alpha_2} A_1 - A_2 e^{-(\alpha_1 + \alpha_2)\tau}.$$
(13)

В (13) A_1 , A_2 — некоторые константы, которые определяются из граничных условий:

$$\pi_1(0) = A_1 + A_2, \ \pi_2(0) = \frac{\alpha_1}{\alpha_2} A_1 - A_2,$$
 (14)

где $\pi_j(0)$ — условная (финальная) вероятность того, что процесс $\lambda(t)$ в момент времени $\tau=0$ находится в состоянии j (j=1,2) при условии, что в этот момент времени событие наступило ($\pi_1(0)+\pi_2(0)=1$). Так как рассматриваемый поток является асинхронным альтернирующим потоком с инициированием лишнего события, то события наступают (наблюдаются) только в первом состоянии процесса $\lambda(t)$, поэтому $\pi_1(0)=1$, $\pi_2(0)=1$. Тогда из (14) находим $A_1=\alpha_2(\alpha_1+\alpha_2)^{-1}$, $A_2=\alpha_1(\alpha_1+\alpha_2)^{-1}$. Полученные выражения для констант A_1 , A_2 совпадают с формулами (1) для финальных априорных вероятностей состояний процесса $\lambda(t)$. Так что окончательно выражения (13) примут вид

$$\pi_{1}(\tau) = \pi_{1} + \pi_{2}e^{-(\alpha_{1} + \alpha_{2})\tau},$$

$$\pi_{2}(\tau) = \pi_{2} - \pi_{2}e^{-(\alpha_{1} + \alpha_{2})\tau},$$
(15)

где π_1 , π_2 определены формулами (1).

Рассмотрим теперь временной интервал длительностью $\tau = T + t$, состоящий из двух смежных интервалов: первый – длительностью T, второй – длительностью t. Началом первого интервала является момент наступления события в наблюдаемом потоке, началом второго интервала – момент окончания мёртвого времени. Обозначим $P_i(t)$ – вероятность того, что в момент времени tпроцесс $\lambda(t)$ будет находиться в *j*-м состоянии (j = 1, 2) и на интервале (0, t) событий наблюдаемого потока не произойдёт. Обозначим A — событие, заключающееся в том, что на интервале (0, t) событий наблюдаемого потока не произойдёт и на полуинтервале $[t, t + \Delta t)$, где Δt - достаточно малый интервал времени, произойдёт событие наблюдаемого потока. Тогда вероятность события A запишется в виде $P(A) = P_1(t)\lambda \Delta t + P_2(t)\alpha \Delta t +$ + $o(\Delta t)$. Здесь подчеркнём, что если процесс $\lambda(t)$ в момент времени t находится во втором состоянии, то на полуинтервале $[t, t + \Delta t)$ процесс $\lambda(t)$ с вероятностью $\alpha_2(\Delta t) + o(\Delta t)$ переходит в первое состояние, при этом инициируется лишнее событие в первом состоянии. С другой стороны, если p(t) – плотность вероятностей длительности интервала между моментом окончания мёртвого времени и следующим событием наблюдаемого потока, то $P(A) = p(t)\lambda \Delta t + o(\Delta t)$. Из сравнения этих формул следует, что

$$p(t) = \lambda P_1(t) + \alpha_2 P_2(t). \tag{16}$$

Для вероятностей $P_j(t)$, j=1,2, имеет место следующая система дифференциальных уравнений:

$$P_{1}^{'}\left(t\right)$$
 = $-\left(\lambda+\alpha_{1}\right)P_{1}\left(t\right),\ P_{2}^{'}\left(t\right)$ = $-\alpha_{2}P_{2}\left(t\right)+\alpha_{1}P_{1}\left(t\right),$ решая которую, получаем

$$P_{1}(t) = P_{1}(0)e^{-(\lambda + \alpha_{1})t},$$

$$P_{2}(t) = \left[P_{2}(0) + \frac{\alpha_{1}}{\lambda + \alpha_{1} - \alpha_{2}}P_{1}(0)\right]e^{-\alpha_{2}t} - (17)$$

$$-\frac{\alpha_{1}}{\lambda + \alpha_{1} - \alpha_{2}}P_{1}(0)e^{-(\lambda + \alpha_{1})t},$$

где $P_j(0)$ — вероятность того, что процесс $\lambda(t)$ в момент времени t=0 находится в j-м состоянии (j=1, 2). С другой стороны, момент времени t=0 является моментом окончания мёртвого времени длительности T, поэтому $P_j(0)$ — вероятность того, что в момент окончания

мёртвого времени (в момент $\tau = T$) процесс $\lambda(t)$ будет находиться в j-м состоянии (j = 1, 2). Таким образом, для определения вероятностей (17) необходимо найти явный вид $P_i(0)$, j = 1,2.

Введём в рассмотрение вероятность $q_i(T)$ – финальную вероятность того, что наступившее событие в наблю-даемом потоке есть событие i-го типа, i=1,2 ($q_1(T)+q_2(T)=1$). Подчеркнём, что вероятности $q_i(T)$ отличаются от вероятностей q_i , определённых в (9), так как при формировании наблюдаемого потока часть событий исходного потока с инициированием лишнего события теряется из-за присутствия мёртвого времени (см. рисунок). Найдём явный вид вероятностей $q_i(T)$, i=1,2. Так как моменты наступления событий в наблюдаемом потоке образуют вложенную цепь Маркова, то для финальных вероятностей $q_i(T)$ справедливы следующие уравнения:

$$q_{1}(T) = q_{1}(T)\pi_{11} + q_{2}(T)\pi_{21} ,$$

$$q_{2}(T) = q_{1}(T)\pi_{122} + q_{2}(T)\pi_{222} ,$$

$$q_{1} + q_{2} = 1,$$
(18)

где вероятности π_{i1} , π_{i22} , i=1,2 имеют тот же смысл, что и в (5), но для наблюдаемого потока событий. Таким образом, для определения вероятностей $q_i(T)$, i=1,2, из уравнений (18) необходимо найти явный вид вероятностей π_{i1} , π_{i22} , i=1,2.

Введём в рассмотрение условные вероятности $q_{ij}(T)$ – вероятность того, что процесс $\lambda(t)$ в момент времени $\tau=T$ (в момент окончания мёртвого времени) находится в j-м состоянии при условии, что в момент $\tau=0$ имеет место событие i-го типа (i,j=1,2). Пусть $0 \le \tau \le T$. Тогда для введённых вероятностей $q_{ij}(\tau)$ имеет место следующая система дифференциальных уравнений:

$$q'_{i1}(\tau) = -\alpha_1 q_{i1}(\tau) + \alpha_2 q_{i2}(\tau), q'_{i2}(\tau) = \alpha_1 q_{i1}(\tau) - \alpha_2 q_{i2}(\tau), i = 1,2,$$

с граничными условиями $q_{11}(0) = q_{21}(0) = 1$, $q_{12}(0) = q_{22}(0) = 0$, решая которую, находим

$$q_{11}(\tau) = q_{21}(\tau) = \pi_1 + \pi_2 e^{-(\alpha_1 + \alpha_2)\tau},$$

$$q_{12}(\tau) = q_{22}(\tau) = \pi_2 - \pi_2 e^{-(\alpha_1 + \alpha_2)\tau},$$
(19)

где π_1 , π_2 определены формулами (1). Отметим, что $q_{21}(0)=1$, $q_{22}(0)=1$, так как события (и 1-го, и 2-го типов) наступают только в первом состоянии процесса $\lambda(t)$.

Припишем теперь моменту окончания мёртвого времени, по-прежнему, момент времени t = 0. Тогда на полуинтервале $[t, t + \Delta t)$, где Δt — достаточно малый интервал времени, с вероятностью $\lambda(\Delta t) + o(\Delta t)$ произойдёт событие 1-го типа либо с вероятностью $\alpha_2(\Delta t) + o(\Delta t)$ произойдёт событие 2-го типа. Обозначим через $p_{ii}(t)$ условную вероятность того, что на полуинтервале [0, t) нет событий наблюдаемого потока и в момент времени t имеет место j-e состояние процесса $\lambda(t)$ при условии, что в момент времени t = 0 имеет место *i*-е состояние процесса $\lambda(t)$ (i, j = 1,2). Тогда $p_{i1}(t)\lambda \Delta t + o(\Delta t)$ — совместная вероятность наступления события 1-го типа на полуинтервале $[t, t + \Delta t]$ и перехода процесса $\lambda(t)$ из i-го состояния в первое за время t $(i = 1,2); p_{i2}(t)\alpha_2 \Delta t + o(\Delta t) = p_{i22}(t)\alpha_2 \Delta t + o(\Delta t)$ — совместная вероятность перехода процесса $\lambda(t)$ из i-го состояния во второе за время t с последующим переходом в первое состояние на полуинтервале $[t, t + \Delta t)$ и инициированием

события 2-го типа на этом полуинтервале (i=1,2). Соответствующие плотности вероятностей (вывод аналогичен выводу формулы (16)) при этом определятся в виде $\widetilde{p}_{i1}(t) = \lambda p_{i1}(t)$, $\widetilde{p}_{i22}(t) = \alpha_2 p_{i22}(t)$, i=1,2. Так как t – произвольный момент времени, то вероятности перехода процесса $\lambda(t)$ из состояния i в состояние j (i, j=1,2) за время от момента окончания мёртвого времени до момента наступления следующего события наблюдаемого потока запишутся в виде

$$p_{i1} = \int_{0}^{\infty} \widetilde{p}_{i1}(t) dt = \lambda \int_{0}^{\infty} p_{i1}(t) dt,$$

$$p_{i22} = \int_{0}^{\infty} \widetilde{p}_{i22}(t) dt = \alpha_{2} \int_{0}^{\infty} p_{i22}(t) dt, i = 1, 2.$$
(20)

Интегрирование в (20) производится по бесконечному интервалу времени, так как момент наступления события в наблюдаемом потоке (после момента времени t=0) может, в принципе, быть равным бесконечности. Таким образом, чтобы выписать переходные вероятности (20), необходимо найти явный вид вероятностей $p_{i1}(t), p_{i22}(t), i=1,2$. Для этих вероятностей справедливы следующие дифференциальные уравнения:

$$p_{i1}'(t) = -(\lambda + \alpha_1)p_{i1}(t), \ i = 1,2,$$

$$p_{222}'(t) = -\alpha_2p_{222}(t), \ p_{122}'(t) = -\alpha_2p_{122}(t) + \alpha_1p_{11}(t)$$
 с граничными условиями $p_{11}(0) = p_{22}(0) = 1, \ p_{21}(0) = -p_{122}(0) = 0$, решая которые, находим

$$p_{11}(t) = e^{-(\lambda + \alpha_1)t}, p_{21}(t) = 0,$$

$$p_{122}(t) = \frac{\alpha_1}{\lambda + \alpha_1 - \alpha_2} \left[e^{-\alpha_2 t} - e^{-(\lambda + \alpha_1)t} \right], \quad (21)$$

$$p_{222}(t) = e^{-\alpha_2 t}.$$

Подставляя (21) в (20), получаем переходные вероятности в виде

$$p_{11} = \frac{\lambda}{\lambda + \alpha_1}, \ p_{21} = 0, \ p_{122} = \frac{\alpha_1}{\lambda + \alpha_1}, \ p_{222} = 1.$$
 (22)

В силу марковости процесса $\lambda(t)$ полученные переходные вероятности (19) и (22) позволяют (по известной формуле [26]) выписать выражения для переходных вероятностей π_{ij} в виде $\pi_{ij} = q_{i1}(T)p_{1j} + q_{i2}(T)p_{1j}$ (i, j = 1,2), где $q_{ij}(T)$ определены формулами (19), в которых $\tau = T$; p_{ij} определены формулами (22); $\pi_{i2} = \pi_{i22}$; $p_{i2} = p_{i22}$, i = 1,2. Осуществляя подстановку в эту формулу выражений (19) и (22) (для соответствующих i, j), находим явный вид переходных вероятностей π_{ij} :

$$\pi_{11} = \pi_{21} = \frac{\lambda}{\lambda + \alpha_1} \left[\pi_1 + \pi_2 e^{-(\alpha_1 + \alpha_2)T} \right],$$

$$\pi_{122} = \pi_{222} = \frac{\pi_2}{\lambda + \alpha_1} \left[\alpha_1 + \alpha_2 + \lambda \left(1 - e^{-(\alpha_1 + \alpha_2)T} \right) \right],$$

$$\pi_{i1} + \pi_{i22} = 1, i = 1, 2,$$

где π_1 , π_2 определены в (1). Наконец, подставляя π_{i1} ,

 π_{i22} , i = 1,2, в (18), получаем явный вид финальных вероятностей $q_1(T)$, $q_2(T)$:

$$q_{1}(T) = \frac{\lambda}{\lambda + \alpha_{1}} \left[\pi_{1} + \pi_{2} e^{-(\alpha_{1} + \alpha_{2})T} \right],$$

$$q_{2}(T) = \frac{\pi_{2}}{\lambda + \alpha_{1}} \left[\alpha_{1} + \alpha_{2} + \lambda \left(1 - e^{-(\alpha_{1} + \alpha_{2})T} \right) \right], \quad (23)$$

где π_1 , π_2 определены в (1). Подставляя в (23) T=0, получаем выражения (9) для случая отсутствия мёртвого времени.

Вероятностное поведение процесса $\lambda(t)$ в течение мёртвого времени описывается формулами (15). Так как события в наблюдаемом потоке делятся на события 1-го и 2-го типов, то вероятности $P_i(0)$, i=1,2, в выражениях (17) запишутся в виде

$$P_1(0)=q_1(T)\pi_1(au=T)+q_2(T)\pi_1(au=T)=\pi_1(au=T),$$
 $P_2(0)=q_1(T)\pi_2(au=T)+q_2(T)\pi_2(au=T)=\pi_2(au=T),$ (24) где $\pi_i(au=T), i=1,2$, определены формулами (15) при $au=T$.

Подставляя (24) в (17), а затем (17) в (16) производя при этом необходимые преобразования и учитывая, что длительность τ интервала между соседними событиями в наблюдаемом потоке есть сумма длительности мёртвого времени T (T — детерминированная величина) и длительности интервала между моментом окончания мёртвого времени и наступлением следующего события в наблюдаемом потоке t ($\tau = T + t$), находим плотность вероятностей p(τ) в виде

$$p(\tau) = \begin{cases} 0, & \text{если } 0 \le \tau \le T, \\ \gamma(\lambda + \alpha_1) e^{-(\lambda + \alpha_1)(\tau - T)} + \\ + (1 - \gamma)\alpha_2 e^{-\alpha_2(\tau - T)}, & \text{если } \tau \ge T, \end{cases}$$

$$\lambda > 0, \alpha_1 > 0, \alpha_2 > 0,$$

$$\gamma = \frac{\lambda - \alpha_2}{\lambda + \alpha_1 - \alpha_2} \left[\pi_1 + \pi_2 e^{-(\alpha_1 + \alpha_2)T} \right],$$
(25)

где π_1 , π_2 определены в (1). Положив в (25) T=0, приходим к формуле (10), т.е. к формуле для плотности вероятностей интервала между соседними событиями в асинхронном альтернирующем потоке с инициированием лишнего события.

Подчеркнём, что если $\alpha_2 = \lambda$, то рассматриваемый поток, как следует из (25), вырождается в пуассоновский с мёртвым временем [12]. Если $\alpha_2 = \lambda + \alpha_1$, то плотность вероятностей (25) приобретает вид

$$p(\tau) = \begin{cases} 0, & \text{если } \tau < T, \\ \frac{1}{\lambda + 2\alpha_1} \left\{ (\lambda + \alpha_1)^2 \left[1 + \alpha_1 (\tau - T) \right] - \\ -\alpha_1^2 \left[1 - (\lambda + \alpha_1) (\tau - T) \right] e^{-\left(\lambda + 2\alpha_1\right)T} \right\} \times \\ \times e^{-\left(\lambda + \alpha_1\right) \left(\tau - T\right)}, & \text{если } \tau \ge T. \end{cases}$$

Положив здесь T = 0, приходим к формуле (12).

ПОСТРОЕНИЕ ОЦЕНКИ ДЛИТЕЛЬНОСТИ МЁРТВОГО ВРЕМЕНИ МЕТОДОМ МАКСИМАЛЬНОГО ПРАВДОПОДОБИЯ

Пусть наблюдаются n+1 событий наблюдаемого потока в моменты времени $t_1,...,\ t_{n+1}.$ Рассмотрим величины $\tau_i=t_{i+1}-t_i$, $i=\overline{1,n}$. Так как наблюдаемый поток

событий – рекуррентный, то величины τ_i являются взаимно независимыми и одинаково распределёнными. Будем полагать, что параметры λ , α_1 , α_2 случайного процесса $\lambda(t)$ известны. Тогда на основании выборки наблюдений $\tau_1,...,\tau_n$ необходимо оценить длительность мёртвого времени T. Оценку осуществим методом максимального правдоподобия [28]. С учётом формулы (25) функция правдоподобия запишется в виде [28]

$$L(T \mid \tau_{1},...,\tau_{n}) = \prod_{i=1}^{n} p(T \mid \tau_{i}) =$$

$$= \prod_{i=1}^{n} \left[\gamma(T) (\lambda + \alpha_{1}) e^{-(\lambda + \alpha_{1}) (\tau_{i} - T)} + (1 - \gamma(T)) \alpha_{2} e^{-\alpha_{2} (\tau_{i} - T)} \right], \ \tau_{i} > T,$$
(26)

где $\gamma(T)$ определена в (25); в обозначениях $p(T|\tau_i)$, $\gamma(T)$ подчёркивается, что $p(T|\tau_i)$, $\gamma(T)$ являются функциями переменной T.

Упорядочим наблюдения $p(T|\tau_i)$, по возрастанию: $\tau_{\min} = \tau^{(1)} > \tau^{(2)} < ... < \tau^{(n)}$. Тогда оценкой максимального правдоподобия \hat{T} длительности мёртвого времени T будет являться решение следующей оптимизационной задачи [28]:

$$L(T \mid \tau^{(1)},...,\tau^{(n)}) =$$

$$= \prod_{i=1}^{n} \left[\gamma(T) (\lambda + \alpha_1) e^{-(\lambda + \alpha_1) (\tau^{(i)} - T)} + \left(1 - \gamma(T) \right) \alpha_2 e^{-\alpha_2 (\tau^{(i)} - T)} \right] \Rightarrow \max_{0 < T \le \tau_{\min}}.$$
 (27)

Рассмотрим функцию

$$p(T \mid \tau^{(i)}) = \gamma(T)(\lambda + \alpha_1)e^{-(\lambda + \alpha_1)(\tau^{(i)} - T)} + \\ + (1 - \gamma(T))\alpha_2e^{-\alpha_2(\tau^{(i)} - T)}, \ 0 < T \le \tau_{\min}, \ i = \overline{1,n} \ ,$$
 (28) где $\gamma(T)$ определена в (25). Нетрудно показать, что функция (28) является возрастающей функцией переменной T для любых $i, \lambda > 0, \alpha_1 > 0, \alpha_2 > 0$. Если это так, то функция правдоподобия (26) также является возрастающей функцией переменной T для любых $\lambda > 0, \alpha_1 > 0, \alpha_2 > 0$. Отсюда следует, что решением оптимизационной задачи (27) является $\hat{T} = \tau_{\min}$. Таким образом, $\hat{T} = \tau_{\min}$ есть оценка максимального правдоподобия длительности мёртвого времени T при любых $\lambda > 0, \alpha_1 > 0, \alpha_2 > 0$. Аналогичный результат имеет место и для случая $\alpha_2 = \lambda + \alpha_1$.

ПОСТРОЕНИЕ ОЦЕНОК ПАРАМЕТРОВ И ДЛИТЕЛЬНОСТИ МЁРТВОГО ВРЕМЕНИ МЕТОДОМ МОМЕНТОВ

Вид плотности вероятностей (25) позволяет сделать вывод о том, что возможна оценка (например, методом максимального правдоподобия либо методом моментов) неизвестных параметров распределения $\lambda_1 = \lambda + \alpha_1$, α2, γ, Т. Это означает, что имеется возможность оценить три неизвестных параметра λ , α_1 , α_2 процесса $\lambda(t)$ и оценить неизвестную длительность мёртвого времени Т. Применение метода максимального правдоподобия при оценке параметров λ , α_1 , α_2 (оценка максимального правдоподобия длительности мёртвого времени T, как показано выше, есть $\hat{T} = \tau_{\min}$ для любых $\lambda > 0$, $\alpha_1 > 0$, $\alpha_2 > 0$) влечёт за собой очевидные трудности, связанные с видом функции правдоподобия (26). Вследствие этого для оценки неизвестных параметров λ , α_1 , α_2 , T используем метод моментов, дающий оценки, обладающие достаточно хорошими свойствами при больших выборках наблюдений [28]

Рассмотрим статистики
$$C_k = \frac{1}{n} \sum_{i=1}^n \tau_i^k$$
, где

 $au_i = t_{i+1} - t_i$, $i = \overline{1,n}$, k = 1,2,..., т.е. наблюдаются n+1 событий потока. В силу взаимной независимости величин au_i и их одинаковой распределённости имеет место $M(C_k) = M(au^k)$, где M — оператор математического ожидания. Более того, статистика C_k , k = 1,2,..., сходится почти наверное при $n \to \infty$ к $M(au^k)$. Тогда для оценки неизвестных параметров $\lambda_1 = \lambda + \alpha_1$, α_2 , γ , T распределения (25) необходимо иметь четыре уравнения

$$M(\tau^{k}) = C_{k}, k = \overline{1,4},$$
где $M(\tau^{k}) = \int_{T}^{\infty} \tau^{k} p(\tau) d\tau = T^{k} + \sum_{i=1}^{k} \frac{k!}{(k-i)!} T^{k-i} \left(\frac{\gamma}{\lambda_{1}^{i}} + \frac{1-\gamma}{\alpha_{2}^{i}} \right).$

В результате достаточно трудоёмких преобразований из системы (29) получаем уравнение для определения оценки длительности мёртвого времени:

$$T^{6} - 6C_{1}T^{5} + 3(6C_{1}^{2} - C_{2})T^{4} + 4(C_{3} - 6C_{1}^{3})T^{3} +$$

$$+ 3(C_{4} + 12C_{1}^{2}C_{2} - 8C_{1}C_{3})T^{2} +$$

$$+ 6(4C_{1}^{2}C_{3} - 6C_{1}C_{2}^{2} - C_{1}C_{4} + 2C_{2}C_{3})T +$$

$$+ 4C_{3}^{2} - 24C_{1}C_{2}C_{3} + 18C_{3}^{3} - 3C_{2}C_{4} + 6C_{1}^{2}C_{4} = 0.$$
 (30)

Очевидно, что решение уравнения (30) возможно только численно. В качестве оценки \hat{T} естественно выбрать корень уравнения (30) из полуинтервала (0, τ_{\min}], где $\tau_{\min} = \min \tau_i$ ($i = \overline{1,n}$). При этом возможны варианты:

- 1) если корень, попавший в полуинтервал (0, τ_{min}], единственный, то тогда этот корень и есть \hat{T} ;
- 2) если ни один из корней не попал в полуинтервал $(0, \tau_{\min}]$, то тогда оценка $\hat{T} = \tau_{\min}$;
- 3) если в полуинтервал $(0, \tau_{\min}]$, попадает более одного корня, то тогда для того, чтобы сделать оценку \hat{T} , необходима некоторая дополнительная информация либо, скажем, в качестве оценки \hat{T} выбирать среднеарифметическое этих корней.

Оценки $\hat{\lambda}_1$ и $\hat{\alpha}_2$ при этом выражаются в виде

$$\begin{split} \hat{\lambda}_1 &= \frac{1}{2} \bigg(-b + \sqrt{b^2 - 4c} \hspace{1mm} \bigg), \; \hat{\alpha}_2 = \frac{1}{2} \bigg(-b - \sqrt{b^2 - 4c} \hspace{1mm} \bigg), \\ b &= \bigg\{ 2 \left(2\hat{T}^3 - 6C_1\hat{T}^2 + 6C_1^2\hat{T} + C_3 - 3C_1C_2 \right) \bigg\} \times \\ &\times \bigg\{ \hat{T}^4 - 4C_1\hat{T}^3 + 6C_1^2\hat{T}^2 - \\ &- 6C_1C_2\hat{T} + 2C_3\hat{T} - 2C_1C_3 + 3C_2^2 \bigg\}^{-1}, \\ c &= \bigg\{ 6 \left(\hat{T}^2 - 2C_1\hat{T} - C_2 + 2C_1^2 \right) \bigg\} \times \end{split}$$

$$\times \left\{ \hat{T}^4 - 4C_1\hat{T}^3 + 6C_1^2\hat{T}^2 - 6C_1C_2\hat{T} + 2C_3\hat{T} - 2C_1C_3 + 3C_2^2 \right\}^{-1}.$$
 (31)

При этом должны выполняться следующие неравенства: $b^2-4c>0$, b<0, c>0, так как оценки $\hat{\lambda}_1$ и $\hat{\alpha}_2$ должны быть положительными. Кроме того, так как оценки $\hat{\lambda}_1$, $\hat{\alpha}_2$, как видно из (31), являются корнями соответствующего квадратного уравнения, то при выборе корней принято, что $\lambda+\alpha_1>\alpha_2$ (в реальных ситуациях величины α_1 и α_2 обычно сравнимы между собой, а исходный поток событий достаточно интенсивен); если же имеется другая априорная информация о соотношении параметров процесса $\lambda(t)$, то нужно в (31) просто поменять местами $\hat{\lambda}_1$ и $\hat{\alpha}_2$. Оценка $\hat{\gamma}$ выражается в виде

$$\hat{\gamma} = \frac{\hat{\lambda}_1 \hat{\alpha}_2}{\hat{\alpha}_2 - \hat{\lambda}_1} \left(C_1 - \hat{T} - \frac{1}{\hat{\alpha}_2} \right). \tag{32}$$

Если найдены (по формулам (30)–(32)) оценки $\hat{\gamma}$, $\hat{\lambda}_1$, $\hat{\alpha}_2$, \hat{T} , то имеется возможность найти оценку $\hat{\alpha}_1$ с использованием формулы (25) для γ :

$$[(\hat{\lambda}_1 - \hat{\alpha}_2)\hat{\gamma} + \hat{\alpha}_2]\alpha_1 + (\alpha_1 + \hat{\alpha}_2 - \hat{\lambda}_1)\alpha_1 e^{-(\alpha_1 + \hat{\alpha}_2)\hat{T}} + \hat{\alpha}_2(\hat{\lambda}_1 - \hat{\alpha}_2)(\hat{\gamma} - 1) = 0.$$
(33)

В уравнении (33) оценки \hat{T} , $\hat{\lambda}_1$, $\hat{\alpha}_2$, $\hat{\gamma}$ определяются выражениями (30) — (32) соответственно. Наконец, оценка параметра λ находится в виде

$$\hat{\lambda} = \hat{\lambda}_1 - \hat{\alpha}_1 \,. \tag{34}$$

ЗАКЛЮЧЕНИЕ

Полученные результаты показывают возможность оценивания длительности мёртвого времени по результатам текущих наблюдений (в течение некоторого временного интервала) за потоком событий для регистрирующих приборов первого рода (приборов с непродлевающимся мёртвым временем), а также возможность оценки параметров исходного асинхронного альтернирующего потока с инициированием лишнего события.

Выражения (31), (32), (34) для оценок параметров распределения (25) получены в явном виде как функции статистик C_k и оценки \hat{T} , являющейся корнем полинома (30), что позволяет производить вычисления без привлечения численных методов решения уравнений (29).

Рассматриваемый случай характерен тем, что оценивание производится в условиях отсутствия априорной информации о параметрах потока событий. Однако если имеется дополнительная информация о параметрах потока событий (граничный случай — известны все параметры λ , α_1 , α_2), то качество оценки длительности мёртвого времени будет только улучшаться. В частности, для граничного случая оценка \hat{T} находится из уравнений (29) для k=1 (т.е. система (29) вырождается в одно уравнение) либо в качестве оценки длительности мёртвого времени можно взять оценку максимального правдоподобия $\hat{T}=\tau_{\min}$, хотя она заведомо будет смещённой оценкой.

ЛИТЕРАТУРА

- 1. Горцев А.М., Нежельская Л.А. Статистическое оценивание состояний дважды стохастического пуассоновского процесса // Тез. докл. III Всесоюзной конференции «Перспективные методы планирования и анализа экспериментов при исследовании случайных полей и процессов». Ч. 1. М. 1988. С. 124–125.
- 2. *Горцев А.М., Нежельская Л.А.* Оптимизация параметров адаптера при наблюдениях за МС-потоком // Стохастические и детерминированные модели сложных систем. Новосибирск: Изд-во ВЦ СО АН СССР, 1988. С. 20–32.
- 3. *Горцев А.М., Нежельская Л.А.* Алгоритм оценивания состояний МС-потока // Сетеметрия, анализ и моделирование информационновычислительных сетей. М.: Изд-во АН СССР. Научный совет по комплексной проблеме «Кибернетика», 1988. С. 28–38.
- 4. *Горцев А.М., Нежельская Л.А.* Оптимальная нелинейная фильтрация марковского потока событий с переключениями // Техника средств связи. Серия: Системы связи. 1989. Вып. 7. С. 46–54.
- Горцев А.М., Нежельская Л.А., Шевченко Т.И. Оценивание состояний МС-потока событий при наличии ошибок измерений // Изв. вузов. Физика. 1993. № 12. С. 67–85.
- 6. *Горцев А.М., Куснатдинов Р.Т.* Оценивание состояний МС-потока событий при его частичной наблюдаемости // Изв. вузов. Физика. 1998. № 4. С. 22–30.
- 7. *Горцев А.М., Шмырин И.С.* Оптимальный алгоритм оценки состояний МС-потока событий при наличии ошибок в измерениях моментов времени // Оптика атмосферы и океана. 1998. Т. 11. № 4. С. 419–429.
- 8. *Горцев А.М., Шмырин Й.С.* Оптимальная оценка состояний дважды стохастического потока событий при наличии ошибок в измерениях моментов времени // Автоматика и телемеханика. 1999. № 1. С. 52–66.
- 9. *Горцев А.М., Бушланов И.В.* Алгоритм оптимальной оценки состояний синхронного дважды стохастического потока событий // Вестник Томского гос. ун-та. Приложение. 2003. № 6. С. 220–224.
- 10. Курочкин С.С. Многомерные статистические анализаторы. М.: Атомиздат, 1968.
- 11. Апанасович В.В., Коляда А.А., Чернявский А.Ф. Статистический анализ случайных потоков в физическом эксперименте. Минск: Университетское 1988.
- 12. *Горцев А.М., Климов И.С.* Оценка интенсивности пуассоновского потока событий в условиях частичной его ненаблюдаемости // Радиотехника. 1991. № 12. С. 3–7.
- 13. Горцев А.М., Климов И.С. Оценивание параметров знакопеременного пуассоновского потока событий // Радиотехника. 1994. № 8. С. 3-9.
- 14. *Горцев А.М., Нежельская Л.А.* Оценка параметров синхронно-альтернирующего пуассоновского потока событий методом моментов // Радиотехника. 1995. № 7–8. С. 6-10.
- Горцев А.М., Климов И.С. Оценивание периода ненаблюдаемости и интенсивности пуассоновского потока событий // Радиотехника. 1996.
 № 2. С. 8–11
- 16. Горцев А.М., Завгородняя М.Е. Оценка параметров альтернирующего потока событий при условии его частичной наблюдаемости // Оптика атмосферы и океана. 1997. Т. 10. № 3. С. 273–280.
- 17. *Горцев А.М., Паршина М.Е.* Оценка параметров альтернирующего потока событий в условиях «мёртвого» времени // Изв. вузов. Физика. 1999. № 4. С. 8–13.
- 18. *Горцев А.М., Шмырин И.С.* Оптимальная оценка параметров дважды стохастического пуассоновского потока событий при наличии ошибок в измерениях моментов наступления событий // Изв. вузов. Физика. 1999. № 4. С. 19–27.

- 19. *Васильева Л.А., Горцев А.М.* Оценивание параметров дважды стохастического потока событий в условиях его неполной наблюдаемости // Автоматика и телемеханика. 2002. № 3. С. 179–184.
- 20. *Горцев А.М., Нежельская Л.А.* Оценивание параметров полусинхронного дважды стохастического потока событий методом моментов // Вестник Томского гос. ун-та. Приложение. 2002. № 1 (I). С. 18–23.
- 21. Горцев А.М., Нежельская Л.А. Оценивание периода мёртвого времени и параметров полусинхронного дважды стохастического потока событий // Измерительная техника. 2003. № 6. С. 7–13.
- 22. Горцев А.М., Нежельская Л.А. Оценивание длительности мёртвого времени и параметров синхронного альтернирующего потока событий // Вестник Томского гос. ун-та. Приложение. 2003. № 6. С. 232–239.
- 23. Васильева Л.А., Горцев А.М. Оценивание длительности мёртвого времени асинхронного дважды стохастического потока событий в условиях его неполной наблюдаемости // Автоматика и телемеханика. 2003. № 12. С. 69—79.
- 24. *Lucantoni D.M.* New results on the single server queue with a batch markovian arrival process // Communications in Statistics Stochastic Models. 1991. Vol. 7. P. 1–46.
- 25. Lucantoni D.M., Neuts M.F. Some steady-state distributions for the MAP/SM/1 queue // Communications in Statistics Stochastic Models. 1994. Vol. 10. P. 575–598.
- 26. Хинчин А.Я. Работы по математической теории массового обслуживания. М.: Физматгиз, 1963.
- 27. Ивченко Г.И., Каштанов В.А., Коваленко И.Н. Теория массового обслуживания. М.: Высшая школа, 1982.
- 28. Крамер Г. Математические методы статистики. М.: Мир, 1975.

Статья представлена кафедрой исследования операций факультета прикладной математики и кибернетики Томского государственного университета, поступила в научную редакцию «Кибернетика» 15 мая 2004 г.