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An original non-standard approach to describing the structure of a column stabilizer 
in a group of n × n matrices over a polynomial ring or a Laurent polynomial ring 
of n variables is presented. The stabilizer is described as an extension of a subgroup 
of a rather simple structure using the (n - 1) × (n - 1) matrix group of congruence 
type over the corresponding ring of n - 1 variables. In this paper, we consider cases 
where n ≤ 3. For n = 2, the stabilizer is defined as a one-parameter subgroup, and the 
proof is carried out by direct calculation. The case n = 3 is nontrivial; the approach 
mentioned above is applied to it. Corollaries are given to the results obtained. In par­
ticular, we prove that for the stabilizer in the question, it is not generated by its a finite 
subset together with the so-called tame stabilizer of the given column. We are going 
to study the cases when n ≥ 4 in a forthcoming paper. Note that a number of key 
subgroups of groups of automorphisms of groups are defined as column stabilizers in 
matrix groups. For example, this describes the subgroup IAut(Mr) of automorphisms 
that are identical modulo a commutant of a free metabelian group Mr of rank r. 
This approach demonstrates the parallelism of theories of groups of automorphisms of 
groups and matrix groups that exists for a number of well-known groups. This allows 
us to use the results on matrix groups to describe automorphism groups. In this work, 
the classical theorems of Suslin, Cohn, as well as Bachmuth and Mochizuki are used.

Keywords: matrix group over a ring, elementary matrices, stabilizer of a column, 
ring of polynomials, ring of Laurent polynomials, residue, free metabelian group, au­
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1. Introduction
In the group theory, matrix methods have been used by a number of authors to produce 

new interesting results on endomorphisms and automorphisms of groups. J. S. Birman [1] 
has given a matrix characterization of automorphisms of a free group Fr of rank r with 
basis f1, . . . , fr among arbitrary endomorphisms (the “inverse function theorem”) as follows. 
For an endomorphism φ define the matrix Jφ = (dj∙φ(fi)), 1 ≤ i,j ≤ r (the “Jacobian 
matrix” of φ), where dj denotes partial Fox derivation (with respect to fj) in the free group 
ring Z[Fr] (see [2, 3]). Then φ is an automorphism if and only if the matrix Jφ is invertible.

S. Bachmuth [4] has obtained an inverse function theorem of the same kind on replacing 
the Jacobian matrix Jφ by its image ,Jφ over the abelianized group ring Z[Fr/Fr']. Thus he 
established a matrix characterization of automorphisms of a free metabelian group Mr.
U. U. Umirbaev [5] has generalized Birman's result to primitive systems of free groups,
V. A. Roman'kov [6, 7] and E. I. Timoshenko [8] have characterized primitive systems of free
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metabelian groups. By definition, primitive system is a system of elements of a relatively 
free group that can be a part of some basis of this group.

For any commutative associative ring K with identity, an r × r elementary matrix 
(transvection) Tij(a) over K is a matrix of the form E + aEij where i = j, a ∈ K, Eij is 
the r × r matrix whose (ij) component is 1 and all other components are zero. As usual, 
E denotes the identity matrix. Let SL(r, K) be the group of all the r × r matrices of 
determinant 1 whose entries are elements of K, and let E(r, K) be the subgroup of SL(r, K) 
generated by the elementary matrices. By ΛnKk = K[a1, . . . , ak, ak±+1 1 , . . . , an±1] we denote a 
mixed polynomial ring over K. In particular, ΛnKn = K[a1, . . . , an] is the polynomial ring 
and ΛnK0 = K[a1±1, . . . , an±1] is the Laurent polynomial ring in n variables over K.

Then the famous Suslin's Stability theorem [9] implies that for any r ≥ 3 and any 
ring ΛFnk, where F is an arbitrary field, SL(r, ΛFnk) = E(r, ΛFnk).

By GE(r, K) we denote the subgroup of GL(r, K) generated by E(r, K) and all diagonal 
matrices. It follows that for any r ≥ 3 and any ring A^k, GL(r, Λnk) = GE(r, Λnk).

In contrast, GL(2, ΛFnk) has a number of specific properties. In [10], P. M. Cohn proved 
that

1 + a1a2 —a21

a22 1 — a1a2

In [11], S. Bachmuth and H. Y. Mochizuki proved that if n ≥ 2 then

∈ GL(2, Λ2F2) \ GE(2, Λ2F2).

GL(2, ΛnZ0) = GE(2, ΛnZ0).

In passing, we note that the coincidence of GL(2, Λ1Z0) with GE(2, Λ1Z0) is still an open 
problem.

Let Mr be the free metabelian group of rank r with basis {x1,..., xr}, and Ar = Mr/MT 

be the abelianization of Mr, the free abelian group with the corresponding basis {a1, . . . , ar}. 
The group ring Z[Ar] can be considered as a Laurent polynomial ring Λr0.

For any group G, IAut(G) denotes the subgroup of the automorphism group Aut(G) 
consisting of all automorphisms that induce the identity map on the abelianization 
Gab = G/G'. In the similar way the subsemigroup IEnd(G) of the endomorphism semigroup 
End(G) is defined too.

In [4], S. Bachmuth introduced the following embedding:

β : IAut(Mr) — GL(r,Λz0), β : φ — Jφ, φ ∈ IAut(Mr).

This embedding is called Bachmuth's embedding.
The image β(IAut(Mr)) in GLr(ΛrZ0) consists of all matrices A such that

Aar = ar for ar

a1 —
a2 —

1
1

ar — 1

In other words, IAut(Mr) = StabGL(r,ΛZ,)(ar) (the stabilizer of ar in GL(r,Λz0)). Thus, 
this is an example showing that key subgroups can act as column stabilizers in matrix 
groups. In [12], V. Shpilrain obtained a matrix characterization of IA-endomorphisms with 
non-trivial fixed points (“eigenvectors”) which, although is similar to the corresponding 
well-known characterization in linear algebra, also reveals a subtle difference. All these and 
some other results show a remarkable parallelism between the theory of automorphisms and
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endomorphisms of a free (or a free metabelian) group and the theory of linear operators in 
a vector space.

The main goal of this paper and a forthcoming paper is to present an original non­
standard approach to the description of column stabilizers in matrix groups over rings. 
We consider matrix groups over mixed polynomial rings ΛnKk, where K is an arbitrary 
commutative domain with identity element. For simplicity, we formulate some of statements 
only in the following important cases: K = Z or F, where F is an arbitrary field.

In this paper we consider only 2 × 2 matrices over Λ2Kk and 3 × 3 matrices over Λ3Kk. 
The case n = 3 is the first non-trivial in the subject. In the forthcoming paper we will 
extend our method to the description of column stabilizers for the cases n ≥ 4. We restrict 
ourselves to considering columns with components of the following form: for i ≤ k this 
is ai, for i ≥ k + 1 it is ai — 1. In particular we consider either columns of variables for 
rings of polynomials, or columns with components of the form “a variable minus 1” for 
rings of Laurent polynomials. The proofs are independent of the particular choice of mixed 
polynomial ring Λnk.

For the case n = 2, we give an exhaustive description of the stabilizer of a column as a 
one-parameter subgroup. For n = 3, we describe a stabilizer of a column as extension of a 
clear subgroup by a concrete group of 2 × 2 matrices over ring on 2 variables. The idea of 
such description was originated in [13, 14]. Such a description was successfully used in [14] 
to prove that every automorphism of Mr, r ≥ 4, is induced by an automorphism of Fr, i.e., 
is tame. This description was also used in [7] to prove that M3 contains primitive elements 
that are not images of the primitive elements of F3.

At the last Section 3, we derive a number of consequences of the obtained results about 
stabilizers of columns in case n = 3.

Remark 1. The column stabilizer in a n × n matrix group over a field F can be 
described as follows. Having included the stabilized column as the last element of a basis of 
the corresponding linear space, we get each of the stabilizer matrices in the half-expanded 
form when the last row is of the form (0, . . . , 0, 1). The considering stabilizer consists of 
all matrices of the such form. It has as a homomorphic image the corresponding group of 
(n — 1) × (n — 1) matrices over F with the kernel isomorphic to the direct sum of n — 1 terms 
F φ ... φ F. A similar description for a matrix group over a ring is possible if at least one 
component of the stabilized column is invertible. Our approach is useful for other cases.

• ∙ ?

n

2. Preliminaries
Let K be an arbitrary commutative associative domain with identity. For any n ∈ N, 

let ΛnK denotes a mixed polynomial ring ΛnKk. Let ∆nK stays for id(a1, . . . , ak, ak+1 — 1, 
an — 1) of ΛnKk (the augmentation ideal of ΛnK). Denote ci = ai for i = 1, . . . , k and

ci = ai — 1 for i = k + 1, . . . , n. Further in the paper, we will omit k and K for brevity and 
simply write Λ

Each element g ∈ Λl, l ≤ n, has for every t ≥ 1 the unique expression of the form
t 

g = gicli,
i=0

where gi ∈ Λl-1 for i = 0, . . . , t — 1, and gt ∈ Λl. Since every ring Λl embeds into a field of 
fractions, we can consider a Λl-submodule Λl(-) = Λl + cl-1Λl, and each element of Λl(-) has 
for each t ≥ 0 the unique expression of the form

t 

g = gicli,
i=-1

(1)
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where gi ∈ Λl-1 for i = -1, . . . , t - 1, and gt ∈ Λl.
Denote

/

cn 

c1

c2

∖ cn

All along the paper we assume n = 3 (with one small exception for n = 2 at the beginning 
of the next Section 2). Let G = Stab(c3) be the subgroup of GL(3,Λ3) consisting of all 
matrices g such that

gc3 = c3,

in other words, G is the stabilizer of the column C3 in GL(3,Λ3). We will show how to 
construct an explicit matrix group H ≤ GL(2, Λ2) and a homomorphism ρ of G onto H 
for which Ker(ρ) is easily understood as a subgroup of Λ3 Ф Λ3. In other words, we will 
describe G as an extension of Ker(ρ) by Im(ρ) with explicitly desribed factors. We will give 
a number of applications of these results.

3. On the stabilizer of a column in GL(3, Λ3)
Before considering the case of 3 × 3 matrices, we show how the stabilizer of the vector c2 

is arranged in the group of 2 × 2 matrices over Λ2.
Proposition 1. In GL(2, Λ2),

Stab(c2) = 1 + ac1 c2 - ac21

ac22 1 - ac1 c2
(2)

where a ∈ Λ2.
Proof. Obviously, every matrix A in M(2, Λ2) such that Ac2 = c2 has the form

1 + ac2 - ac1

bc2 1 - bc1
(3)

A matrix of the form (3) is invertible if and only if its determinant is 1. By direct 
computation we obtain that this happens if and only if this matrix has the form (2). ■

From (1) follows that each element g ∈ Λ(3-) can be uniquely expressed in the form

2
g = gici3,

i=-1
(4)

where g-1,g0,g1 ∈ Λ2 and g2 ∈ Λ3. Let G be the stabilizer of the column c3 in the group 
GL(3, Λ3). Denote

1 0 c1
C = I 0 1 C2 ) .

0 0 c3

For E + A ∈ G, A = (aij), we have the following equality

(
1 + aιι - a3icιc3 1 

a21 - a31c2c3-1 

a31c3-1

a12 - a32c1c3-1

1 + a22 - a32c2c3-1 

a32c3-1

0)
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Denote
R(A) = 1 + a11 — a31c1c3-1
R(A) = a21 — a31c2c3-1

a12 — a32c1c3-1 .
1 + a22 — a32c2c3-1

Each element of R(A) belongs to Λ(3- ) . Then we have a homomorphism θ of G onto a group 
of matrices over Λ(3-) defined by the map

θ : E + A → R(A).

Using (4), we obtain a unique decomposition of the form

R(A) = E + c32A2 + c3A1 + A0 + c3-1A-1, (5)

where A1, A0, A-1 ∈ M2(Λ2), A2 ∈ M2(Λ3). It follows, that for each pair of matrices E + A, 
E + B ∈ G, one has A-1B-1 = 0. We put

X = cc122c2
—cc21c

—c1c2

Note that X2 = 0.
The following lemma is proved by direct calculation.
Lemma 1. For each A ∈ M(2, Λ2), if AX = XA = 0, then A = αX for some α ∈ Λ2.
Theorem 1. In the above notation, there exist elements α, β, γ, δ ∈ Λ2 such that for 

each E + A ∈ G,

A-1 = αX, A0X = βX, XA0 = γX, XA1X = δX.

Proof. Let T = —c2E31 + c1E32. Then E + T ∈ G and R(T) = E + c3-1X, T-1 = X. 
Then A-1X = XA-1 = 0. By Lemma 1, there is α ∈ Λ2 for which A-1 = αX.

Next-, θ(E + A)-θ(E + T) = R(A)R(T) has the (—1)-componen-t X + A0X + A-1 = 
= (1+α)X+A0X and so A0X = βX, β ∈ Λ2. Similarly, R(T)R(A) has the (—1)-component 
X + XA0 + A-1 = (1 + α)X + XA0, hence A0 = γX, γ ∈ Λ2.

Note, that

XE11X = c1c2X, XE12X = c22X, XE21X = —c12X, XE22X = —c1c2X.

It follows that for every B ∈ M(2, Λ2), B = (bij),

XBX = δX,

where δ = C1C2(b11 — b22) + c2b21 — c2bi2 ∈ Λ2. ■

Thus, we can associate the elements α, β, γ, δ ∈ Λ2 with the matrix E + A ∈ G. These 
elements are called residues of E + A with respect to c3 Now we give explicit formulas for 
the residues in terms of the elements of the matrices Ai, і = 1, 0, —1. These formulas are 
obtained by direct computations:

α = —(a31)0c2-1 = (a32)0c1-1, β = —(a31)1c1 — (a32)1c2, γ = (a11)0 — (a21)0c1c2-1, 
δ = —(a21)1c21 + (a12)1c22 + (a11)1 — (a22)1)c1c2.

(6)
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Theorem 2. The map

ρ : G → GL-(Λ-),A → δ 1 + γ
ia a homomorphism.

Proof. Let E + A' ∈ G and let R(A^) = E + c-A- + c3A'1 + AQ + c-1A-1 be decomposition 
of the form (5). Let α', β', γ', δ' be the residues of E + A' with respect to c3.

Then (E + A)(E + A') = E + √4, where √4 = A + A' + AA', and

R(^A) — E + C-Ai- + C3 √4-ι + √4q + C31^4-ι

be a decomposition of the form (5).
Here √4-1 = A-1+A'-1+A0A'-1+A-1AQ = (α+α'+α'β+αγ')X. Hence the corresponding 

residue is
α — α + α + αβ + αγ .

Further, √4o = E + Aq + AQ + AqAQ + AιA'-ι + A-ιA'ι. Hence

t4qX =(1 + β + β' + ββ' + αδ')X : Xt4q = 1 + α + α' + γγ' + δα'. (7)

Hence ,β=1 + β + β' + ββ' + αδ' and γ = 1+ γ + γ' + γγ' + δα'. Then

^4ι — Ai + A'ι + AiAQ + AqA'i + A-A-1 + A-ι A-.

Hence δ = 1 + δ + δ' + δβ' + γδ'. Consequently,

1 + β4 α4
δ4 1 + Y4

1+β
δ

α
1+γ

1 + β' α' λ
δ' 1 + Y J ,

ρ(G). Let GL(2, Λ2, ∆2) denote the congruence 
the augmentation ideal ∆2 of Λ2. We denote by

is equivalent to ρ(AA') = ρ(A)ρ(A'). ■
Now we are to compute Im(ρ) = 

subgroup of GL(2, Λ-) with respect to 
GL(2, Λ-, ∆-, ∆--) the subgroup of GL(2, Λ-) consisting of the matrices corresponding to 
the following inclusion scheme:

1 + ∆ - Λ -
∆-- 1 + ∆-

(8)

Theorem 3. Im(ρ) = GL(2, Λ-, ∆-, ∆--).

Proof. Let
B = 1 + β α
B = δ 1 + Y

be an invertible matrix corresponding to the inclusion scheme (8). Then we have the 
following decompositions:

β = β1c1 + β-c2, γ = Ylc1 + γ-c2, δ = δ11c- + δ12c1c2 + δl2c1c2 + δ22c2,

where β1, . . . , δ22 ∈ Λ2.
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First we define a matrix that stabilizes the column c3 such that ρ(C) = B subject to its 
invertibility:

(
1 + Y2c2 + δ12c3 

—Y1C2 — δ11c3 

— αc2 — β1 c3

— Y2c1 + δ22c3

1 + γ1c1 — δ12c3 

αc1 — β2c3

—δ12c1 — δ22c2 ∖ 

δ11c1 + δ12 c2 I
1 + β1c1 + β2c2

(9)

Obviously, Cc = c. By direct computation we obtain that det(C) = det(B) + r,

+β2δl 2 c2c3

r = δl 2c3 + Y1δl 2c1c3 — δ12c3 — δl 2δ12c3 — Y2δ12c2c3 +
— β1δ12c1c3 — β1δ22c2c3 + γ1δ22c2c3 — γ2δ11c1c3 + δ11δ22c23 + β2δ11c1c3.

∈ GL(2,Λ1), then β2, γ2, δ'2, δ12,δ22 = 0, hence r = 0, and C ∈ G. Similarly 
C ∈ G if B does not depend of c1. Since B = B1 B' where B1 does not

Suppose, that B 
we obtain, that 
depend of c2 and B' lies in the congruence subgroup with respect to c2, i.e • ∙)

B' Ч1 ∆Λ22c2 Λ2c2

1 + Λ2c2

Both matrices, B1 and B' are invertible, and B1 

which β1,γ1,δ11 = 0. Note that transvection t = t21((—δ12 

preimage in G. Then

∈ Im(G). There are decompositions (6) in
— δ'2)c1c2 lies in B and has a

1 + Λ2c2

Λ2c22
B'' = B't ∈ Λ2c2 .

1 + Λ2c2 .

The elements of B'' are decompositions (6) such that β1, γ1, δ'2, δ12, δ11 = 0. The corresponding 
matrix C'' defined in the form (9) is invertible because its determinant is equal to det(B''). 
Hence B'' ∈ Im(ρ), and B ∈ Im(ρ). ■

Then G is an extension of Ker(ρ), that is described by formulas (6), by Im(ρ), that is 
consisting of all invertible matrices corresponding to (3). By the way, we note, that Ker(ρ) 
contains the subgroup H of all matrices in G of the form

1 + c23 Λ3 

c23Λ3 

c23Λ3

c23Λ3

1 + c23Λ3 

c23Λ3

c3Λ3

c3Λ3

1 + c3Λ3

The quotient Im(ρ)∕H is easily understood.

4. On the tame stabilizer of a column in GL(3, Λ3)
In general, the stabilizer G of Cn in GL(n,K) for any commutative associative ring K 

with identity contains each matrix of the form

Ti,j,k(a) = E + ackEij — acjEik, for i = j, к; j < к; a ∈ K.

Also, given the Proposition 1, G contains each matrix of the form

Si,j(a) = E + acicjEii — aci2Eij + a cj2 Eji — acicjEjj, for i < j, a ∈ K

(10)

(11)

(see (2)).
We denote by Gt (the tame stabilizer) the subgroup of G generated by all matrices 

Ti,j,k(a) and Si,j(a) defined by (10) and (11), respectively. A question arises: Does Gt



On the stabilizer of a column in a matrix group over a polynomial ring 41

coincides with G? For n = 2, the answer “Yes” is obvious by Proposition 1. We will show 
below that the answer for n = 3 is “No”.

Now, let G ≤ GL(3, Λ3) be the stabilizer of c3 and let Gt ≤ G be the corresponding 
tame stabilizer. As above, Λ3 denotes Λ3F0, Λ3Z0, or Λ3Z0.

We exlude Laurent polynomial rings Λ3F3 over a field. The following results show a 
connection between Gt and GE(2, Λ2), that allows to show that Gt is small with respect 
to G.

Proposition 2. Im(Gt) ≤ GL(2,Λ2).
Proof. If the matrix A = (aij) ∈ G has the form E + A', and all rows of the matrix A' 

are zero except for one row, then ρ(A) lies in the subgroup GE(2, Λ2). Indeed, formulas (6) 
show that in this case α = 0 or δ = 0. Then ρ(A) is a triangular matrix. But every triangular 
matrix lies obviously in GE(2, Λ2). This proves the statement for any matrix A = Ti,j,k(a).

By formulas (6) for any matrix Si,j(a), one has α = 0, and we conclude as above. ■

Theorem 4. Let G be the stabilizer of the column c3 in GL(3, Л|0). Then for every 
finite subset L G

gp(L,Gt) =G.

Proof. By Bachmuth and Mochizuki result [11], if n ≥ 2 then GL(2,ЛП0) can not be 
generated by any finite subset together with the subgroup GE(2, ΛnZ0). Hence,

gp(GE(2,Λ2Z2),ρ(L)) = GL(2,Λ2Z2). (12)

Then there is a matrix A that belongs to the difference between the two sides of (12). 
We will show that there is a similar matrix with elements corresponding to the scheme (8). 
To prove this assertion, we define the image E + A0 of A that lies in GL(2, Z) under 
specialization homomorphism GL(2, Λ2Z2)→ GL(2, Z) defined by the map ci → 1, i = 1, 2.

In other words, A0 is the 0 part ofA under the decomposition form (5). Then E+A0 ∈ 
∈ GE(2,Z). We multiply A by (E + A0)-1 and get new matrix √4 with the same property. 
Suppose, that its (21) component a21 = q1c1 + q2c2 + q3, where q1,q2 ∈ Z, q3 ∈ Δz does 
not lie in ∆f2. This means that q1 = 0 or q2 = 0. Then we multiply √4 by t21(—q1c1 — q2c2) 
and obtain matrix √4 that lies in the difference the two sides of (12) and corresponds to the 
scheme (8). Thus √4 ∈ Im(ρ) but has no preimages in gp(GE(2,Λz2),ρ(L)). ■

Conclusion
The main results of this paper were obtained for matrix groups over polynomial rings 

under fairly rigorous assumptions regarding the stabilized vector. The similar results can 
be obtained for some other rings. The main advantage of the proposed method is the fact 
that the homomorphism ρ reduces the group of matrices over the module Λ3 + c3-1Λ3 to 
the group of matrices over Λ2. This process can be considered as an elimination of the 
residue c3-1. Such reducing allows the using of the corresponding induction. This approach 
also demonstrates the parallelism of theories of groups of automorphisms of groups and 
matrix groups that exists for a number of well-known groups. See [15]. This allows us to 
use the results on matrix groups to describe automorphism groups. In the recent paper [16], 
some applications of the method are given.
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