ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И ТЕОРИЯ ПОЛЯ

УДК 530.145, 537.531 DOI: 10.17223/00213411/63/6/123

B. Γ . БA Γ POB l,2 , A.H. KACATKUHA l , A. \mathcal{I} . CA Π PЫКUH l

УГЛОВЫЕ РАСПРЕДЕЛЕНИЯ КОМПОНЕНТ ПОЛЯРИЗАЦИИ ИЗЛУЧЕНИЯ ЗАРЯДА, ДВИЖУЩЕГОСЯ ПО СПИРАЛИ *

Исследуется угловое распределение поляризационных компонент синхротронного излучения при движении излучающего заряда по спирали. Рассмотрение проведено в рамках классической электродинамики.

Ключевые слова: синхротронное излучение, поляризация излучения, угловые распределения излучения.

Ввеление

Теория синхротронного излучения является одной из немногих глубоко развитых разделов теоретической физики. Исходным объектом теории является заряд, совершающий равномерное движение по окружности и излучающий электромагнитные волны. Простейшей моделью такой системы является заряд, помещенный во внешнее однородное магнитное поле. Но в этом случае простым преобразованием Лоренца решается задача об излучении заряда, движущегося по спирали с постоянным шагом и с постоянной по модулю скоростью. Действительно, соответствующие выражения для углового распределения мощности полного излучения при спиральном движении заряда были получены в работах [1–3]. Но эти выражения были проанализированы с точки зрения эффекта самополяризации электронного спина, а само угловое распределение синхротронного излучения при движении заряда по спирали детального анализа не получило.

В данной работе мы проведем в рамках классической электродинамики анализ углового распределения поляризационных компонент синхротронного излучения при спиральном движении заряженной частицы.

Аналитические выражения для поляризационных компонент синхротронного излучения при движении заряда по спирали

Выберем систему координат. Излучающий заряд e с массой покоя m_0 движется по спирали в постоянном и однородном магнитном поле напряженности H, направленном по оси z. Решения уравнений этого движения в декартовых координатах имеют в нашем случае вид (c — скорость света)

$$z = c\beta_3 t + z_0, \quad x = \rho \cos \Theta + x_0, \quad y = \epsilon \rho \sin \Theta + y_0,$$

$$\beta_x = -\frac{\omega_0 \rho}{c} \sin \Theta, \quad \beta_y = \epsilon \frac{\omega_0 \rho}{c} \cos \Theta, \quad \beta_z = \beta_3, \quad \epsilon = -\frac{eH}{|eH|},$$

$$\Theta = \omega_0 t + \varphi_0, \quad \omega_0 = \omega_{\text{cyc}} \sqrt{1 - \beta^2}, \quad \frac{\omega_0 \rho}{c} = \sqrt{\beta^2 - \beta_3^2}, \quad \omega_{\text{cyc}} = \frac{|eH|}{m_0 c}.$$
(1)

В выражении (1) введены следующие обозначения: $v^2 = c^2 \beta^2$ — постоянный квадрат скорости; $c\beta_3$ — постоянная скорость дрейфа вдоль оси z; $\omega_{\rm cyc}$ — циклотронная частота; ρ — радиус орбиты; ω_0 — частота вращения частицы; φ_0, x_0, y_0, z_0 — начальная фаза и начальные координаты частицы.

Будем рассматривать среднюю по времени излучаемую мощность. В этом случае направление излучения будем задавать единичным вектором n, образующим полярный угол θ ($0 \le \theta \le \pi$) с осью z. Зависимость от азимутального угла в средней по времени мощности отсутствует. Существенными параметрами, от которых зависит угловое распределение, являются переменная θ и

^{*} Работа поддержана грантом РФФИ № 18-02-00149 и Программой повышения конкурентоспособности ТГУ среди ведущих мировых научно-образовательных центров.

Уважаемые читатели!

Доступ к полнотекстовой версии журнала «Известия высших учебных заведений. Физика» осуществляется на платформе Научной электронной библиотеки eLIBRARY.RU на платной основе:

https://www.elibrary.ru/contents.asp?titleid=7725