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In the paper, we give a review of metrical properties of the entire set of bent functions
and its significant subclasses of self-dual and anti-self-dual bent functions. We present
results for iterative construction of bent functions in n+ 2 variables based on the con-
catenation of four bent functions and consider related open problem proposed by one
of the authors. Criterion of self-duality of such functions is discussed. It is explored
that the pair of sets of bent functions and affine functions as well as a pair of sets
of self-dual and anti-self-dual bent functions in n > 4 variables is a pair of mutually
maximally distant sets that implies metrical duality. Groups of automorphisms of the
sets of bent functions and (anti-)self-dual bent functions are discussed. The solution to
the problem of preserving bentness and the Hamming distance between bent function
and its dual within automorphisms of the set of all Boolean functions in n variables
is considered.
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1. Introduction
How much do we know about some cryptographic objects? One way to measure it is to

describe what we can do with them. Otherwise, to characterize groups of automorphisms of
these objects — separately for each object or together while they form some special class.
The question about the group of automorphisms of a set in the Boolean cube necessarily
leads us to metrical properties of this set.

That is why we are very interested in metrical properties of distinct cryptographic
Boolean functions.

The term “bent function” was introduced by Oscar Rothaus in the 1960s [1]. It is
known [2], that at the same time Boolean functions with maximal nonlinearity were also
studied in the Soviet Union. The term minimal function, which is actually a counterpart of
a bent function, was proposed by the Soviet scientists Eliseev and Stepchenkov in 1962.

Bent functions have connections with such combinatorial objects as Hadamard matrices
and difference sets. Since bent functions have maximum Hamming distance to linear
structures and affine functions, they deserve attention for practical applications in
symmetric cryptography, in particular for block and stream ciphers. We refer to the
survey [3] and monographies of S. Mesnager [4] and N. Tokareva [2] for more information
concerning known results and open problems related to bent functions. Results regarding
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the study of metrical properties, in particular, distances between bent functions, one can
find in [5].

In this paper we give a review on metrical properties of the entire class of bent
function Bn and its important subclasses — self-dual bent functions SB+(n) (i.e. functions
such that f = f̃) and anti-self-dual bent functions SB−(n) (i.e. functions such that
f ⊕ 1 = f̃), where f̃ is the dual of f . We suppose that the keys to the nontrivial and
important properties of the class of bent functions are in understanding how does the duality
mapping f → f̃ operate with bent functions. Recall that ˜̃f = f for every bent function f .
It is important to note that the duality mapping is the unique known isometric mapping
of the bent functions into themselves that can not be extended to a typical isometry of the
whole set of all Boolean functions that preserves bent functions.

On the other hand, the essence of bent functions is expressed in their metrical properties,
namely in maximizing distances between them and affine functions. Note that this very idea
in more general form is realized in the concept of metrical complement and metrically regular
sets. Recall that X̂ is the metrical complement of the set of functions X if it contains all
Boolean functions that are on the maximal possible distance from X. The set is metrically
regular, if ̂̂X = X. There is a some similarity to the self-duality of bent functions, is not it?

Our attention is drawn to automorphism groups of the sets Bn, An, SB+(n), SB−(n)
and their metrical properties. Previously, we established that the set of all bent functions
Bn and the set of all affine functions An form a pair of metrically regular sets, i.e.̂̂Bn = Ân = Bn. Now, we prove the same fact for the classes of self-dual and anti-
self-dual functions: they form another such pair of metrically complement functions,

i.e.
̂̂

SB+(n) = ŜB−(n) = SB+(n). In both cases for elements in a pair of metrically regular
sets we prove the coincidence of automorphism groups. Thus, Aut (Bn) = Aut (An) and
Aut

(
SB+(n)

)
= Aut

(
SB−(n)

)
. Some other curious properties of bent functions related to

their special constructions are discussed.
The paper has the following structure: notation and definitions are in the Section 2.

In Section 3, the duality of a bent function is described, including some its important
properties and relevant hypothesis proposed by one of the authors (Section 3.1). Some
general and metrical properties of the set of bent functions which coincide with their duals,
namely self-dual bent functions, are given in Section 3.2. In Section 4, we discuss the
iterative construction of bent function in n+ 2 variables based on the concatenation of four
bent functions in n variables. The lower bounds on its cardinality and open problem relevant
for the set of bent function are in Section 4.1. Criterion of self-duality for bent iterative
functions and its corollaries for sign functions together with constructions of self-dual bent
functions are discussed in Sections 4.2 and 4.3. In Section 5, the metrical complement of the
set of bent functions is studied (Section 5.2) and the results regarding metrical regularity of
the set of bent functions and the set of affine functions are given. Metrical complement of the
set of (anti-)self-dual bent functions is in Section 5.3. In Section 6, groups of automorphisms
of considered sets are studied. The group of automorphisms of the set of bent functions is
characterized in Section 6.3 while the (anti-)self-dual case is in Section 6.4. In Section 7,
we consider some relations between isometric mappings and the duality of bent function.
Isometric mappings which define bijections between the sets of self-dual and anti-self dual
bent functions are described in Section 7.1. The Rayleigh quotient of a Boolean function and
description of isometric mappings that perserve it or change it for every Boolean function
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is given in Section 7.2. The meaning of the Rayleigh quotient in a scope of bent functions
is discussed as well.

2. Notation
Let Fn2 be a space of binary vectors of length n. A Boolean function f in n variables is

a map from Fn2 to F2. Its sign function is F (x) = (−1)f(x), x ∈ Fn2 . We will also refer to a
sign function as to a vector from the set {±1}2n :

F = (−1)f =
(
(−1)f0 , (−1)f1 , . . . , (−1)f2n−1

)
∈ {±1}2n ,

where (f0, f1, . . . , f2n−1) ∈ F2n

2 is a truth-table representation of f with arguments given in
the lexicographic order. The set of all Boolean functions in n variables is denoted by Fn.

The algebraic normal form (ANF, Zhegalkin polynomial) of a Boolean function f ∈ Fn
is defined as

f (x1, x2, . . . , xn) =
⊕

(i1,i2,...,in)∈Fn
2

ai1i2...inx
i1
1 x

i2
2 . . . x

in
n ,

where az ∈ F2 for any z ∈ Fn2 (with the convention 00 = 1). The algebraic degree deg(f)
of a Boolean function f is the maximal degree of monomials which occur in its algebraic
normal form with nonzero coefficients.

The Hamming weight wt(x) of the vector x ∈ Fn2 is the number of nonzero coordinates
of x. The Hamming weight wt(f) of the function f ∈ Fn is the Hamming weight of its vector
of values. The Hamming distance dist(f, g) between Boolean functions f, g in n variables is

a cardinality of the set {x ∈ Fn2 : f(x)⊕ g(x) = 1}. For x, y ∈ Fn2 denote 〈x, y〉 =
n⊕
i=1

xiyi.

Boolean functions in n variables of the form f(x) = 〈a, x〉 ⊕ a0, x ∈ Fn2 , where a0 ∈ F2,
a ∈ Fn2 , are called affine functions. The set of all affine functions in n variables is denoted
by An.

The Walsh —Hadamard transform (WHT) of a Boolean function f in n variables is an
integer valued function Wf : Fn2 → Z, defined as

Wf (y) =
∑
x∈Fn

2

(−1)f(x)⊕〈x,y〉, y ∈ Fn2 .

A Boolean function f in an even number n of variables is called bent if

|Wf (y)| = 2n/2

for all y ∈ Fn2 . The set of all bent functions in n variables is denoted by Bn.
A mapping ϕ of the set of all Boolean functions in n variables to itself is called isometric

if it preserves the Hamming distance between functions, that is,

dist(ϕ(f), ϕ(g)) = dist(f, g)

for any f, g ∈ Fn.
Denote, following [6], the orthogonal group of index n over the field F2 as

On =
{
L ∈ GL (n,F2) : LLT = In

}
,

where LT denotes the transpose of L and In is the identical matrix of order n over the
field F2.
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3. The dual of a bent function
From the definition of a bent function it follows that there exists such f̃ ∈ Fn that for

any y ∈ Fn2 we have
Wf (y) = (−1)f̃(y)2n/2.

The Boolean function f̃ defined above is called the dual function of the bent function f .
Thus, for any bent function in n variables its dual Boolean function is uniquely defined.
The duality of bent functions was introduced by Dillon [7].

3.1. P r o p e r t i e s
Some basic known properties of dual functions are the following [8]:

— Every dual function is a bent function.
— If f̃ is dual to f and ˜̃f is dual to f̃ , then ˜̃f = f .
— The mapping f → f̃ which acts on the set of bent functions, preserves the Hamming

distance.
There is the following connection between the algebraic degrees of a bent function and

its dual [9]:

n/2− deg(f) >
n/2− deg

(
f̃
)

deg
(
f̃
)
− 1

.

Some results obtained for dual functions can be used in proving the results concerning
bent functions, in particular, the connection between ANF coefficients of a bent function
and its dual, see [10]:∑

x4y
f(x) = 2wt(y) − 2n/2−1 + 2wt(y)−n/2 ∑

x4y⊕1

f̃(x).

One of the most important problem in bent functions is to find the number of them.
A new approach to this problem was introduced in [11], see Section 4.1, and the following
hypothesis was formulated.

Hypothesis (Tokareva, 2011). Any Boolean function in n variables of degree not more
than n/2 can be represented as the sum of two bent functions in n variables, where n > 2
is an even number.

The review of partial results regarding this problem and also in favour of the Hypothesis
one can find in [12]. It was also proved in [13] that

Theorem 1 [13]. A bent function in n > 4 variables can be represented as the sum of
two bent functions in n variables if and only if its dual bent function does.

So, it follows that the mentioned Hypothesis with the decomposition problem, see
Section 4.1, can not be considered separately for a bent function and its dual.

It is worth noting that this Hypothesis is a counterpart of the Goldbach’s conjecture in
number theory unsolved since 1742: any even number n > 4 can be represented as the sum
of two prime numbers.

Isometric mappings of the set of all Boolean functions in n variables to itself which
preserve bentness and the Hamming distance between every bent function and its dual
were characterized in [14], namely it was proved that
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Theorem 2 [14]. An isometric mapping ϕ of the set of all Boolean functions in n
variables into itself preserves bentness and the Hamming distance between every bent
function and its dual if and only if ϕ has form

f(x) −→ f (L (x⊕ c))⊕ 〈c, x〉 ⊕ d, x ∈ Fn2 , (1)

for some L ∈ On, c ∈ Fn2 , wt(c) is even, d ∈ F2.
3.2. S e l f - d u a l i t y

If a bent function f coincides with its dual it is said to be self-dual, that is, f = f̃ .
A bent function which coincides with the negation of its dual is called an anti-self-dual,
that is, f = f̃⊕1. The set of (anti-)self-dual bent functions in n variables, according to [15],
is denoted by SB+(n)

(
SB−(n)

)
.

Self-dual bent functions were explored in paper of C. Carlet et al. [16] in 2010, where
important properties and constructions were given. All equivalence classes of self-dual bent
functions in 2, 4 and 6 variables and all quadratic self-dual bent functions in 8 variables with
respect to a restricted form of an affine transformation (1), which preserves self-duality, were
also presented. Further, equivalence classes of cubic self-dual bent functions in 8 variables
with respect to the mentioned above restricted form of affine transformation one can find
in [17]. In [15], a classification of quadratic self-dual bent functions was obtained. The
upper bound for the cardinality of the set of self-dual bent functions was given in [18].
In [19, 20], one can find new constructions of self-dual bent functions. In papers [21 – 23],
several families of self-dual bent functions from involutions were presented. A connection of
quaternary self-dual bent functions and self-dual bent Boolean functions was shown in [24].
In [25], it was proved that for n > 4 and any d ∈ {2, 3, . . . , n/2} there exists a self-dual
bent function in n variables of algebraic degree d.

In papers [14, 25, 26], metrical properties of the sets of (anti-)self-dual bent functions
in n variables were studied. Below we briefly discuss some of them.

Recall that bent functions in 2k variables which have a representation

f(x, y) = 〈x, π(y)〉 ⊕ g(y), x, y ∈ Fk2,

where π : Fk2 → Fk2 is a permutation and g is a Boolean function in k variables, form the
well known Maiorana —McFarland class of bent functions [27]. Necessary and sufficient
conditions of (anti-)self-duality of bent functions from Maiorana —McFarland class are
known from [16]. Let the denotion SB+

M(n) stands for the set of self-dual Maiorana —
McFarland bent functions and SB−M(n) for the set of anti-self-dual ones both in n variables.
In [26], the set of possible Hamming distance between such self-dual bent functions was
found.

Theorem 3 [26]. Let n > 4 and f, g ∈ SB+
M(n) ∪ SB−M(n), then

dist(f, g) ∈
{

2n−1, 2n−1

(
1± 1

2r

)
, r = 0, 1, ..., n/2− 1

}
.

Moreover, if either f, g ∈ SB+
M(n) or f, g ∈ SB−M(n), then all distances are attainable, and

for any pair f ∈ SB+
M(n) and g ∈ SB−M(n) it holds dist(f, g) = 2n−1.

By analysis of the set of distances from Theorem 3, the minimal Hamming distance
between considered functions can be obtained.

Corollary 1. Let n > 4, then the minimal Hamming distance between (anti-)self-dual
Maiorana —McFarland bent functions is equal to 2n−2.
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Moreover, since the minimal Hamming distance between quadratic Boolean functions
in n variables (which correspond to codewords of the RM(2, n) code) is at least 2n−2 [28],
the following fact holds.

Corollary 2. Let n > 4, then the minimal Hamming distance between quadratic bent
functions can be attained on (anti-)self-dual Maiorana —McFarland bent functions.

It is known that the minimal Hamming distance between bent functions in n variables
is 2n/2 [5]. In [25], it was proved that this extremal value can be attained on (anti-)self-dual
bent functions.

Theorem 4 [25]. Let n > 4, then the minimal Hamming distance between distinct
(anti-)self-dual bent functions in n variables is equal to 2n/2.

In the case n = 2, there are only two self-dual Maiorana —McFarland bent functions,
namely f1 (x1, x2) = x1x2 and f2 (x1, x2) = x1x2 ⊕ 1, and two anti-self-dual Maiorana —
McFarland bent functions, namely g1 (x1, x2) = x1x2⊕x1⊕x2 and g2 (x1, x2) = x1x2⊕x1⊕
⊕x2⊕1. It is clear that dist (f1, g1) = dist (f2, g2) = 4 = 2n and dist (f1, g2) = dist (f2, g1) =
= 2 = 2n−1.

4. Iterative construction BI
Let f0, f1, f2, f3 be Boolean functions in n variables. Consider a Boolean function g

in n+ 2 variables which is defined as

g(00, x) = f0(x), g(01, x) = f1(x), g(10, x) = f2(x), g(11, x) = f3(x), x ∈ Fn2 .

It is known (Preneel et al., 1991; see also [11, 29]) that under condition f0, f1, f2, f3 ∈ Bn
the mentioned function g is a bent function in n+ 2 variables if and only if

f̃0 ⊕ f̃1 ⊕ f̃2 ⊕ f̃3 = 1,

that gives the construction of a bent function in n+ 2 variables through the concatenation
of vectors of values of four bent functions in n variables [30].

Following N. Tokareva [11], we will refer to bent functions obtained by this construction
as bent iterative functions (BI) and denote the set of such bent functions in n variables
by BIn.

In [31], the comparison of cardinalities of different known iterative constructions of bent
functions in n 6 10 variables was presented and the class BI had the biggest cardinality
among them.

According to [29], there exist bent functions from Maiorana —McFarland class [27]
and from the class PS (Partial Spreads) [7] that can not be represented as bent iterative
functions. Also, from paper [32] on nonnormal bent functions, it follows that there exist
bent functions in BIn that are nonequivalent to Maiorana —McFarland bent functions.

4.1. L o w e r b o u n d s o n t h e c a r d i n a l i t y
a n d r e l a t e d o p e n p r o b l e m

In paper [11], some possible methods for calculating the number of bent iterative
functions were shown.

Theorem 5 [11]. For any even n > 4

|BIn| =
∑

f ′∈Bn−2

∑
f ′′∈Bn−2

|(Bn−2 ⊕ f ′) ∩ (Bn−2 ⊕ f ′′)| .
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Denote Xn = {f ⊕ h : f, h ∈ Bn} and consider the system {Cf : f ∈ Bn} of its subsets
defined as Cf = Bn ⊕ f . So

Xn =
⋃

f∈Bn
Cf .

Let ψ be an element of Xn. The number of subsets Cf that cover ψ, according to [11], is
called multiplicity of ψ and is denoted by m(ψ). One can notice that if ψ is covered by Cf ,
then it is covered by any set Cf ′ , where f ′ is obtained from f by adding an affine function.

In [11], the exact number of bent iterative functions through the multiplicities was
obtained.

Theorem 6 [11]. For any even n > 2,

|BIn+2| =
∑
ψ∈Cf

m2 (ψ) .

So in order to evaluate |BIn+2| (and then |Bn+2|) we have to study the set Xn and the
distribution of multiplicities for its elements. Such an analysis, as shown in [11], gives the
following lower bound.

Theorem 7 [11]. For any even n > 2,

|Bn+2|4

|Xn|
6 |BIn+2| 6 |Bn+2| .

Thus, for calculating the exact number of bent iterative functions, one has to study the
structure of the set Xn. So we come to a new problem statement.

Open problem: bent sum decomposition (Tokareva, 2011). What Boolean
functions can be represented as the sum of two bent functions in n variables? How many
such representations does a Boolean function admit?

The related Hypothesis was previuosly mentioned in the Section 3.1.
4.2. S e l f - d u a l b e n t i t e r a t i v e f u n c t i o n s

The set of (anti-)self-dual bent functions from BIn is further denoted by SB+
BI(n)(

SB−BI(n)
)
.

In paper [25], the necessary and sufficient conditions of self-duality of bent iterative
functions were studied, namely, the following result was obtained: taking constant
function h, we can obtain two constructions of self-dual bent iterative functions in n + 2
variables.

Theorem 8 [25]. Let g ∈ BIn+2. Then g is self-dual bent if and only if there exists
such pair of functions g1, g2 ∈ Bn, that

f0 = (g1 ⊕ g2)h⊕ g1 = g̃2,

f1 = (g1 ⊕ g2)h⊕ g2 = g̃1 ⊕ h,
f2 = (g1 ⊕ g2)h⊕ g2 ⊕ h = g̃1,

f3 = (g1 ⊕ g2)h⊕ g1 ⊕ h⊕ 1 = g̃2 ⊕ h⊕ 1,

where the function h ∈ Fn is uniquely defined by a pair of bent functions g1, g2, namely:

h = g1 ⊕ g̃1 ⊕ g2 ⊕ g̃2.
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Two iterative constructions of self-dual bent functions immeditely follow from Theorem 8,
as it was shown in [25].

Corollary 3. Functions

f ′ (y1, y2, x) = (y1 ⊕ y2)
(
f(x)⊕ f̃(x)

)
⊕ f(x)⊕ y1y2,

f ′′ (y1, y2, x) = (y1 ⊕ y2) (ϕ(x)⊕ ω(x))⊕ ϕ(x)⊕ α1y1 ⊕ α2y2 ⊕ y1y2,

where y1, y2, α1, α2 ∈ F2, α1 ⊕ α2 = 1, x ∈ Fn2 , f ∈ Bn, ϕ ∈ SB+(n), ω ∈ SB−(n), are
self-dual bent functions in n+ 2 variables.

The first construction (for f ′) was earlier presented in [16] as an example of the
construction which uses the indirect sum of bent functions, see [8]. It is worth noting that
the second construction (for f ′′) can also be obtained from indirect sum of bent functions.

Since these constructions do not intersect, the sum of their cardinalities provides a lower
bound for the cardinality of the set of self-dual bent iterative functions [25].

Corollary 4. |Bn−2|+
∣∣SB+(n− 2)

∣∣2 6 ∣∣SB+
BI(n)

∣∣ 6 |Bn−2|2.
4.3. T h e d i m e n s i o n o f l i n e a r s p a n o f s i g n f u n c t i o n s

o f s e l f - d u a l b e n t f u n c t i o n s
Let Hn = H⊗n1 be the n-fold tensor product of the matrix H1 with itself, where

H1 =

(
1 1
1 −1

)
.

It is known the Hadamard property of this matrix:

HnH
T
n = 2nI2n .

Denote Hn = 2−n/2Hn. In terms of sign functions, the function f ∈ Fn is bent if for its
sign function F it holds HnF ∈ {±1}2n .

Recall that a non-zero vector v ∈ Cn is called an eigenvector of a square n×n matrix A
attached to the eigenvalue λ ∈ C if Av = λv. A linear span of eigenvectors attached
to the eigenvalue λ is called an eigenspace associated with λ. Consider a linear mapping
ψ : Cn → Cn represented by a n× n complex matrix A. A kernel of ψ is the set

Ker (ψ) = {x ∈ Cn : Ax = 0 ∈ Cn} ,

where 0 is a zero element of the space Cn.
From the definition of self-duality it follows that sign function of any self-dual bent

function is the eigenvector of Hn attached to the eigenvalue 1, that is an element
from the subspace Ker (Hn − I2n) = Ker

(
Hn − 2n/2I2n

)
. The same holds for a sign

function of any anti-self-dual bent function, which obviously is an eigenvector of Hn

attached to the eigenvalue (−1), that is, an element from the subspace Ker (Hn + I2n) =
Ker

(
Hn + 2n/2I2n

)
.

In [16], an orthogonal decomposition of R2n in eigenspaces of Hn was given:

R2n = Ker
(
Hn + 2n/2I2n

)
⊕Ker

(
Hn − 2n/2I2n

)
, (2)

where the symbol ⊕ denotes a direct sum of subspaces.
It is known that

dim
(
Ker

(
Hn + 2n/2I2n

))
= dim

(
Ker

(
Hn − 2n/2I2n

))
= 2n−1,
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where dim(V ) is the dimension of the subspace V ⊆ R2n . Moreover, from symmetricity
of Hn it follows that the subspaces Ker

(
Hn − 2n/2I2n

)
and Ker

(
Hn + 2n/2I2n

)
are mutually

orthogonal.
In [25], it was proved that
Theorem 9 [25]. If n > 4, then:

— among sign functions of self-dual bent functions in n variables there exists a basis
of the eigenspace of the matrix Hn attached to the eigenvalues 1, that is, the
subspace Ker

(
Hn − 2n/2I2n

)
;

— among sign functions of anti-self-dual bent functions in n variables there exists a basis
of the eigenspace of the matrix Hn attached to the eigenvalues (−1), that is, the
subspace Ker

(
Hn + 2n/2I2n

)
.

It is worth notice that there exists an example of basis which consists of sign functions
of self-dual bent iterative functions provided by two constructions of self-dual bent iterative
functions obtained by Theorem 8. Given the basis for self-dual case, the basis for anti-self-
dual case can be obtained by using one of bijections from Theorem 20.

5. Metrical complement and regularity
In this section, we give results regarding notable metrical property of a subset of Boolean

cube called metrical regularity. The sets of affine Boolean functions and bent functions
possess it. The sets of self-dual and anti-self-dual bent functions in n > 4 variables are
also mutually maximally distant. That implies metrical duality, in some sence, between the
considered pairs of subsets of Boolean functions.

Regarding that, some essential and intriguing questions arise: for instance, are there
any pairs of metrically regular subsets inside the metrically regular set of bent functions
in n variables? If additionally, in order to exclude some trivial cases, we consider only
the subsets which include functions together with their negations, the maximal Hamming
distance from the considered sets is at most 2n−1. Are there any pairs of metrically regular
subsets with additional mentioned requirement such that the distance between them is
exactly 2n−1, that is, they would be extreme?

5.1. D e f i n i t i o n s
Let X ⊆ Fn2 be an arbitrary set and let y ∈ Fn2 be an arbitrary vector. Define the

distance between y and X as dist(y,X) = min
x∈X

dist(y, x). The maximal distance from the
set X is

d(X) = max
y∈Fn

2

dist(y,X).

In coding theory this number is also known as the covering radius of the set X. A vector
z ∈ Fn2 is called maximally distant from a set X if dist(z,X) = d(X). The set of all
maximally distant vectors from the set X is called the metrical complement of the set X
and is denoted by X̂ [33]. A set X is said to be metrically regular if ̂̂X = X. Define,
following N. Tokareva [2], a subset of Boolean functions to be metrically regular if the set
of corresponding vectors of values is metrically regular.

Sets of functions which have maximum distance from partition set functions were studied
in [34], it was shown that partition set functions defined by some partition are mutually
maximally distant sets. Lower bound on size of the largest metrically regular subset of the
Boolean cube was studied in [35].
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5.2. T h e s e t o f b e n t f u n c t i o n s
Let GA(n) denote an affine group.
Proposition 1. Any isometric mapping of the form

f(x) −→ f (Ax⊕ b)⊕ 〈c, x〉 ⊕ d,

where A ∈ GL(n), b, c ∈ Fn2 , d ∈ F2, preserves bentness.
In [36], the following theorem was proved.
Theorem 10 [36]. For each non-affine Boolean function h ∈ Fn, there exists a bent

function f ∈ Bn such that f ⊕ h is not bent.
From Proposition 1 and Theorem 10 it follows that the set of bent functions is closed

under addition of affine Boolean functions only. This fact implies that the affine functions
are precisely all Boolean functions which are at the maximum distance from the class of
bent functions. Namely, in [36] it was shown that

Theorem 11 [36]. A Boolean function in n variables is
— a bent function if and only if it has the maximal possible distance 2n−1 − 2n/2−1 to the

set of all affine functions, that is it is an element of Ân;
— an affine function if and only if it has the maximal possible distance 2n−1 − 2n/2−1 to

the set of all bent functions, that is it is an element of B̂n.
Thus, from the results given in [36], it follows that there exists a duality, in some sense,

between the definitions of bent functions and affine functions. In particular, we obtain
metrical regularity of the sets of affine functions and bent functions.

Corollary 5.
1) The set An of all affine Boolean functions in n variables is metrically regular.
2) The set Bn of all bent functions in n variables is metrically regular.

5.3. T h e s e t o f ( a n t i - ) s e l f - d u a l b e n t f u n c t i o n s
For any (anti-)self-dual bent function f ∈ SB+(n) its negation f ⊕ 1 is also (anti-)self-

dual bent [16, 17]. Moreover, from the results presented in [14], it follows the counterpart
of Theorem 10 for the (anti-)self-dual case, namely:

Theorem 12. For each non-constant Boolean function h ∈ Fn there exists a self-dual
bent function f ∈ SB+(n) such that f⊕h is not self-dual bent. Anti-self-dual bent functions
possess the same property.

Thus, it follows that the set of (anti-)self-dual bent functions is closed only under
addition of 1, that is, taking the negation of the function.

From the fact that considered set is closed under addition of 1, it follows that the
maximal Hamming distance from the set SB+(n) is at most 2n−1. It was proved by Carlet et
al. in [16] that the Hamming distance between any pair of self-dual and anti-self-dual bent
functions, both in n variables, is equal to 2n−1. So we have

d
(
SB+(n)

)
= 2n−1,

and all anti-self-dual bent functions in n variables belong to the metrical complement of
the set of self-dual bent functions in n variables.

In paper [25], the metrical complement of the set of (anti-)self-dual bent functions in
n > 4 variables was completely characterized by using the orthogonal decomposition (2)
and existence of the basis provided by the Theorem 9.
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Theorem 13 [25]. Let n > 4, then a Boolean function in n variables is:
— self-dual bent if and only if it has the maximal possible distance 2n−1 to the set of all

anti-self-dual bent functions, that is, it is an element of ŜB−(n);
— anti-self-dual bent if and only if it has the maximal possible distance 2n−1 to the set of

all self-dual bent functions, that is, it is an element of ŜB+(n).
As for the pair of the sets of bent functions and affine functions, it follows that there

also exists a duality between the sets of self-dual and anti-self-dual bent functions in n > 4
variables.

The case n = 2 was considered explicitly and it appeared that both SB+(2) and SB−(2)
are metrically regular sets. From that and the Theorem 13 it follows

Corollary 6.
1) The set SB+(n) of all self-dual bent functions in n variables is metrically regular.
2) The set SB−(n) of all anti-self-dual bent functions in n variables is metrically regular.

6. The group of automorphisms
Study of automorphism groups of mathematical objects deserves attention since these

groups are closely connected with the structure of the objects. There exists a natural
question: how groups of automorphisms of two mathematical objects, one of which is
embedded to another one, are related.

An example of such a problem statement is the set of bent functions in n variables and
one of its significant subclasses which consisits of self-dual bent functions in n variables.

It is also worth mentioning that the complexity of classification of combinatorial objects
depends on generality of the approach. Consequently, the question “if the common approach
to classify (self-dual) bent functions is the most general within automorphisms of the set of
Boolean functions”, arises naturally.

6.1. I s o m e t r i c m a p p i n g s a n d a u t o m o r p h i s m g r o u p s
Recall that a mapping ϕ of the set of all Boolean functions in n variables to itself is

called isometric if it preserves the Hamming distance between functions. Following [14],
denote the set of all isometric mappings of the set of all Boolean functions in n variables
to itself by In.

It is known (A.A. Markov, 1956) that every isometric mapping of all Boolean functions
in n variables to itself has the unique representation of the form

f(x) −→ f(π(x))⊕ g(x), (3)

where π is a permutation on the set Fn2 and g ∈ Fn [37]. The mapping of this form is
denoted by ϕπ,g ∈ In.

The group of automorphisms of a fixed subset M ⊆ Fn is the group of isometric
mappings of the set of all Boolean functions in n variables to itself preserving the set M .
It is denoted by Aut (M).

6.2. M a t r i x r e p r e s e n t a t i o n
For the number k ∈ {0, 1, . . . , 2n − 1}, denote by vk ∈ Fn2 its binary representation.
Recall that a square matrix is called monomial (or generalized permutation matrix) if it

has exactly one nonzero entry in each row and each column.
The following one-to-one correspondence between the set In and the set of monomial

matrices of order 2n with nonzero elements from the set {±1} was used in [14]. In more
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detail, let ϕπ,g ∈ In be an arbitrary isometric mapping. Then, for any f ∈ Fn and its sign
function

F =
(
(−1)f(v0), (−1)f(v1), . . . , (−1)f(v2n−1)

)
∈ {±1}2n ,

the sign function

F ′ =
(

(−1)f
′(v0), (−1)f

′(v1), . . . , (−1)f
′(v2n−1)

)
∈ {±1}2n

of f ′ = ϕπ,g (f) ∈ Fn can be expressed as F ′ = AF , where A is the 2n × 2n monomial
matrix, constructed by the permutation π and the function g:



j
...
0
...

i . . . 0 . . . (−1)g(vi−1) . . . 0 . . .
...
0
...


,

in which in the i-th row a nonzero element (−1)g(vi−1) is in the j-th column, where (j−1) is
a number with binary representation π (vi−1). So the i-th component of F ′ = AF is equal to

(−1)f
′(vi−1) = (−1)f(π(vi−1))(−1)g(vi−1) = (−1)f(π(vi−1))⊕g(vi−1)

for any i ∈ {1, 2, . . . , 2n}, that is, equivalent to f ′ (x) = f (π (x))⊕ g (x), x ∈ Fn2 .
6.3. T h e g r o u p o f a u t o m o r p h i s m s o f t h e s e t o f b e n t f u n c t i o n s

Some attempts to determine the automorphism group of a given bent function were
undertaken by U. Dempwolff in 2006 [38]. Results were presented in terms of elementary
Abelian Hadamard difference sets (equivalently, bent functions).

A natural question whether there exist isometric mappings of Boolean functions into
itself, distinct from those mentioned in Proposition 1, which preserve the class of bent
function, was completely solved in paper [39]. It was proved that there were no other
mappings possessing such a property. Namely, by using the Theorem 11 in view of the
duality, the following coincidence was shown.

Theorem 14 [39]. Aut (Bn) = Aut (An).
The group of automorphisms of the set of all affine functions in n variables consists, as

it is well known, of mappings of the form (3) with affine permutation π and affine shift g,
see, for example, [28]. Note that the set of all affine functions in n variables forms a group
isomorphic to Fn+1

2 . Let the symbol n stands for the semidirect product, then the result is
formulated as follows.

Theorem 15 [39]. Aut (Bn) = GA(n) n Fn+1
2 .

These results imply the non-existence of a more general approach to equivalence of bent
functions than that on the base of isometric mappings.
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6.4. T h e g r o u p o f a u t o m o r p h i s m s
o f t h e s e t o f ( a n t i - ) s e l f - d u a l b e n t f u n c t i o n s

In [16], the following problem was pointed.
Open question (Carlet, Danielson, Parker, Solé, 2010): to find mappings preserving

self-duality, distinct from the known ones, or give a proof that there are no more.
In [14], this question was resolved within isometric mappings of the set of all Boolean

functions in n > 4 variables into itself.
First, there is the problem of how the sets of isometric mapping preserving self-duality

and anti-self-duality or, in other words, groups of automorphisms of the sets SB+(n)
and SB−(n) are related. This problem was solved in [14], where with a use of the orthogonal
decomposition (2) and the basis from the Theorem 9 it was proved

Theorem 16 [14]. If n > 4, then Aut
(
SB+(n)

)
= Aut

(
SB−(n)

)
.

In [14], the criterion of preserving self-duality was also presented.
Theorem 17 [14]. If n > 4, then isometric mapping ϕπ,g belongs to Aut

(
SB+(n)

)
if

and only if, for any x, y ∈ Fn2 , it holds

〈π(x), y〉 ⊕ g(x) =
〈
x, π−1(y)

〉
⊕ g

(
π−1(y)

)
.

In matrix terms the criterion can be formulated as AHn = HnA, where A is the matrix
which represents the mapping ϕπ,g.

The problem of characterization mappings which preserve self-duality was studied
in [16, 17], where it was shown that the mapping (1) preserves self-duality of a bent function,
in other words, it is an element of Aut

(
SB+(n)

)
. It is obvious that this mapping is isometric

and corresponds to ϕπ,g ∈ In with

π(x) = L (x⊕ c) , g(x) = 〈c, x〉 ⊕ d, x ∈ Fn2 ,

where L ∈ On, c ∈ Fn2 , wt(c) is even, d ∈ F2. The group which consists of mappings of such
form is called an extended orthogonal group and denoted by On [17, 40]. It is known that
this group is a subgroup of GL (n+ 2,F2) [17].

In paper [14], known results were generalized within isometric mappings from the set In
for n > 4. Namely, by using the criterion from Theorem 17 and the matrix representation of
isometric mappings (see Section 6.2), it was proved that the desired group of automorphisms
coincides with the extended orthogonal group.

Theorem 18 [14]. For n > 4,

Aut
(
SB+(n)

)
= Aut

(
SB−(n)

)
= On.

It follows that the classification of self-dual bent functions in n > 4 variables based on
the restricted form of affine equivalence proposed in [16, 17] is the most general isometric
mapping of the set of all Boolean functions in n variables into itself.

7. Isometric mappings and duality
In this Section, we discuss results from [14] on characterization of isometric mappings

which define bijections between self-dual and anti-self dual bent functions, and description
of isometric mappings which preserve or change the sign of the Rayleigh quotient of a
Boolean function.
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7.1. I s o m e t r i c b i j e c t i o n s b e t w e e n s e l f - d u a l
a n d a n t i - s e l f - d u a l b e n t f u n c t i o n s

It is known [16] that there exists a bijection between SB+(n) and SB−(n), based on the
decomposition of sign functions of (anti-)self-dual bent functions. Also, note that from the
existence of such bijection it follows that

∣∣SB+(n)
∣∣ =

∣∣SB−(n)
∣∣.

Namely, let (Y, Z) ∈ {±1}2n , where Y, Z ∈ {±1}2n−1

, be a sign function for some
f ∈ SB+(n). Then a vector (Z,−Y ) ∈ {±1}2n is a sign function for some function from
SB−(n). In terms of isometric mappings, this transformation can be represented as

f(x) −→ f (x⊕ c)⊕ 〈c, x〉 ,

where c = (1, 0, 0, . . . , 0) ∈ Fn2 .
In [15], it was mentioned that the more general form of this mapping

f(x) −→ f (x⊕ c)⊕ 〈c, x〉 ,

where c ∈ Fn2 , wt(c) is odd, is a bijection between SB+(n) and SB−(n). It is obvious that
this mapping is an element from In.

In [14], these results were generalized within isometric mappings from the set In for
n > 4.

The criterion of bijectivity between self-dual and anti-self-dual bent functions was
obtained in [14] with a use of the orthogonal decomposition (2) and the basis from
the Theorem 9.

Theorem 19 [14]. Let n > 4, then isometric mapping ϕπ,g ∈ In is a bijection between
SB+(n) and SB−(n) if and only if, for any x, y ∈ Fn2 , it holds

〈π(x), y〉 ⊕ g(x) =
〈
x, π−1(y)

〉
⊕ g

(
π−1(y)

)
⊕ 1.

By using this criterion, in [14] the general form of considered isometric bijections was
found.

Theorem 20 [14]. For n > 4, isometric mapping ϕπ,g ∈ In is a bijection between
SB+(n) and SB−(n) if and only if

π(x) = L (x⊕ c) , g(x) = 〈c, x〉 ⊕ d, x ∈ Fn2 ,

where L ∈ On, c ∈ Fn2 , wt(c) is odd, d ∈ F2.
Thus, from Theorems 18 and 20 we can conclude that if we take a mapping from the

groupOn and replace the vector c ∈ Fn2 by a binary vector of length n with an odd Hamming
weight, then we switch the mapping from the “automorphism mode” to the “bijection mode”
between the sets SB+(n) and SB−(n).

7.2. I s o m e t r i c m a p p i n g s a n d t h e R a y l e i g h q u o t i e n t
In [16], the Rayleigh quotient Sf of a Boolean function f ∈ Fn was defined as

Sf =
∑

x,y∈Fn
2

(−1)f(x)⊕f(y)⊕〈x,y〉 =
∑
y∈Fn

2

(−1)f(y)Wf (y).

In a scope of bent functions, the Rayleigh quotient characterizes the Hamming distance
between a bent function and its dual. Indeed, let f ∈ Bn, then

dist(f, f̃) = 2n−1 − 1

2n/2+1
Sf = 2n−1 − 1

2
Nf .
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In [16], it was proved that, for any f ∈ Fn, the absolute value of Sf is at most 23n/2 with
equality if and only if f is self-dual

(
+23n/2

)
and anti-self-dual

(
−23n/2

)
bent function. That

is, the maximum (minimum) value of the Rayleigh quotient of a Boolean function in an
even number of variables is attainable on self-dual (anti-self-dual) bent functions and only
them, thus providing a criterion for (anti-)self-duality in terms of the Rayleigh quotient
values.

In [40], the operations on Boolean functions that preserve bentness and the Rayleigh
quotient were given. Namely, it was proved that, for any f ∈ Bn, L ∈ On, c ∈ Fn2 , d ∈ F2,
the functions g, h ∈ Bn defined as g(x) = f (Lx)⊕ d and h(x) = f (x⊕ c)⊕ 〈c, x〉 provide
Ng = Nf and Nh = (−1)〈c,c〉Nf .

The mentioned operations are isometric mappings from In. The complete characterization
of isometric mappings that preserve the Rayleigh quotient as well as change it was given
in [14].

Theorem 21 [14]. If n > 4, then isometric mapping ϕπ,g ∈ In preserves the Rayleigh
quotient of every Boolean function in n variables if and only if ϕπ,g ∈ Aut

(
SB+(n)

)
.

Theorem 22 [14]. If n > 4, then isometric mapping ϕπ,g ∈ In changes the sign of the
Rayleigh quotient of every Boolean function in n variables if and only if it is a bijection
between SB+(n) and SB−(n).

In a scope of bent functions, the Rayleigh quotient characterizes the Hamming distance
between a bent function and its dual. Indeed, let f ∈ Bn, then

dist(f, f̃) = 2n−1 − Sf
2n/2+1

.

So from Theorem 21 we immediately have that general form of isometric mappings
preserving the Hamming distance between every bent function and its dual is described by
the extended orthogonal group On (see Theorem 2).

8. Conclusion
In this paper, we have given a review of metrical properties of the set of bent functions

and its subset of functions which coincide with their duals. The group of automorphisms and
metrical complements of these sets are described. We also reviewed some general metrical
properties of the set of self-dual bent functions and considered an iterative construction
of bent functions. Some relevant open problems and hypothesis on bent functions were
discussed.

An interesting question is the characterization of isometric mappings preserving bentness
and self-duality, that are beyond the automorphisms of the set of all Boolean functions.

The solution of the problems, that were considered in this review, with regard to different
generalizations of bent functions that is study of metrical properties and the duality as well
as self-duality in this scope, is a goal worth pursuing.
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