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This review deals with the metric complements and metric regularity in the Boolean
cube and in arbitrary finite metric spaces. Let A be an arbitrary subset of a finite
metric space M , and Â be the metric complement of A — the set of all points of M
at the maximal possible distance from A. If the metric complement of the set Â
coincides with A, then the set A is called a metrically regular set. The problem of
investigating metrically regular sets was posed by N. Tokareva in 2012 when studying
metric properties of bent functions, which have important applications in cryptography
and coding theory and are also one of the earliest examples of a metrically regular
set. In this paper, main known problems and results concerning the metric regularity
are overviewed, such as the problem of finding the largest and the smallest metrically
regular sets, both in the general case and in the case of fixed covering radius, and the
problem of obtaining metric complements and establishing metric regularity of linear
codes. Results concerning metric regularity of partition sets of functions and Reed —
Muller codes are presented.
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1. Introduction
The problem of investigating and classifying metrically regular sets was posed by

N. Tokareva [1, 2] when studying metric properties of bent functions [3]. A Boolean function
in even number of variables is called a bent function if it is at the maximal possible distance
from the set of affine functions.

Bent functions have various applications in cryptography, coding theory and
combinatorics [2, 4, 5]. In cryptography, bent functions are valued because of their
outstanding nonlinearity, which helps to construct S-boxes for block ciphers with high
resistance to linear cryptanalysis, and, as it turned out, good diffusion properties and high
resistance to differential cryptanalysis [5]. Bent functions were also used in the construction
of the stream cipher Grain, being a part of a nonlinear feedback shift register [2]. From the
coding theory standpoint, bent functions form the set of points at the maximal possible
distance from the Reed —Muller code of the first order RM(1,m) in even number of
variablesm. Bent functions are used to construct Kerdock codes, which are optimal and have
large code distances (see more in [5]). Bent functions also have a number of representations
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no. 0314-2019-0017) and supported by RFBR (projects no. 18-07-01394, 19-31-90093) and Laboratory of
Cryptography JetBrains Research.
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and relations to different combinatorial objects: Hadamard difference sets, block designs,
etc. [2, 5].

However, many problems related to bent functions remain unsolved; in particular, the
gap between the best known lower and upper bound on the number of bent functions is
extremely large; currently known constructions of bent functions are rather scarse.

In 2010 [6], N. Tokareva has proved that, like bent functions are maximally distant from
affine functions, affine functions are at the maximal possible distance from bent functions,
thus establishing the metric regularity of both sets. Combined with the importance of bent
functions in cryptography and coding theory, this arouses the interest in studying the
property of metric regularity and in the classification of metrically regular sets.

This paper deals with the metrically regular sets in the Boolean cube and in arbitrary
finite metric spaces. Published results concerning the topic, as well as some currently
unpublished, are overviewed.

Section 2 provides necessary basic definitions, simple examples of metrically regular
sets and some of their trivial properties. Section 3 describes the results of Stănică, Sasao
and Butler [7] concerning metric complements and metric regularity of partition sets of
functions. Section 4 deals with the problem of finding the smallest and the largest metrically
regular sets, both in general and in the case of fixed distance between sets [8]. Strongly
metrically regular sets are introduced in Section 5 as a subclass of metrically regular sets.
These allow one to obtain iterative constructions of metrically regular sets and get an
estimate on how big the largest metrically regular set with fixed covering radius can be [9].
Section 6 touches upon the problem of describing metric complements and establishing
metric regularity of linear codes. General results are presented, and the metric regularity
of several families of Reed —Muller codes is established [10, 11].

2. Preliminaries
2.1. D e f i n i t i o n s

Let M be a finite discrete metric space with a metric d(·, ·), which admits values from a
setD. From now on, every space mentioned in the paper will be a finite discrete metric space.
Let X ⊆M be an arbitrary subset of the space (in this paper, whenever the symbol “⊂” is
used, it will imply a nonempty proper subset) and y ∈M be an arbitrary point. The distance
d(y,X) from the point y to the set X is equal to min

x∈X
d(y, x). The covering radius of the

set X is defined as follows:
ρ(X) = max

z∈M
d(z,X).

A set X with the covering radius r is also sometimes called a covering code [12] of radius r.
Consider the following set

{y ∈M : d(y,X) = ρ(X)}

of all vectors at the maximal possible distance from the set X. This set is called the metric
complement [10] of X and is denoted by X̂. If ̂̂X = X, the set X is said to be metrically
regular [1].

Note that metrically regular sets always come in pairs, i.e. if A is a metrically regular
set, its metric complement Â is also a metrically regular set. In this paper, a pair consisting
of a metrically regular set A and its metric complement B = Â will sometimes be referred
to as “a pair of metrically regular sets A, B”.

Throughout the paper, we will mostly consider the metric space Fn2 of binary vectors
of length n equipped with the Hamming metric. The Hamming distance dH(·, ·) between
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two binary vectors is defined as the number of coordinates in which these vectors differ,
while wt(·) denotes the Hamming weight of a vector, i.e., the number of nonzero values it
contains. Since F2 is a field, Fn2 is also considered as a vector space with the plus sign “+”
denoting addition of vectors modulo two. A Boolean function in m variables is an arbitrary
mapping from Fm2 to F2.

2.2. E x a m p l e s a n d b a s i c r e s u l t s
Let us consider some simple examples of metric complements and metrically regular

sets in the space Fn2 .
1) Let X = {x} be the set consisting of one binary vector. It has covering radius n and

its metric complement is the set X̂ = {x+1}, consisting only of the opposite vector

(here 1 is the all-ones vector). It follows that ̂̂X = X, so X is a metrically regular
set.

2) Consider a ball of radius r centered at x, i.e., X = {y ∈ Fn2 : d(x, y) 6 r}. Then the
vector x+1 will be at the distance n− r from the set X, while any other vector will
be at a smaller distance. Therefore, the covering radius of X is equal to n − r and
its metric complement is the set X̂ = {x+1}. Then ̂̂X = {x}, which shows us that,
unless r = 0, the ball of radius r is not a metrically regular set.

For other examples of metric complements and metrically regular sets the reader is
referred to [8 – 10].

Let us return to an arbitrary metric space M with a metric admitting values from a
set D and present some basic results concerning metric regularity.

An automorphism of a set X ⊆ M is an isometric mapping from M into M which
maps X into itself. The following result [10] is straightforward from the definition of metric
regularity, and is also described in [6, 1] for affine/bent functions.

Theorem 1 [10]. Let X ⊂M be a metrically regular set. Then sets of automorphisms
of X and X̂ coincide: Aut(X) = Aut(X̂).

As we could see from examples, not every set is metrically regular, which means that
we can apply the procedure of taking metric complement more than twice and obtain new
sets. It has been proven [10] that this process stabilizes for any set after not more than
|D| − 1 repetitions.

Proposition 1 [10]. Let X be an arbitrary subset of M . Let us denote X0 = X,
Xk+1 = X̂k for k > 0. Then there exists a number N 6 |D|− 1 such that Xn is a metrically
regular set for any n > N .

Using this proposition, we can, for example, split the set 2M of all subsets of M into
equivalence classes, and call two sets X,Y ⊆ M equivalent if and only if the pair of
metrically regular sets A,A∗, which we obtain from the setX by repeatedly obtaining metric
complement as in Proposition 1, coincides with the pair of metrically regular sets B,B∗
which we obtain from the set Y . How would the equivalence classes look? The description
has not yet been given.

Proposition 1 is also useful when conducting experiments with metrically regular sets
using computers.

3. Partition sets of functions
In [7], authors introduce the notion of partition sets of functions and study their metric

complements and metric regularity.
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A set S of Boolean functions in m variables is said to be a partition set with respect
to a partition U of the set Fm2 , if the elements in the same block of U all map to 0 or all
map to 1, and all combinations of assignments to the blocks are included in S. Partition
set functions include, for example, symmetric functions, rotation symmetric functions, self-
anti-dual-functions and linear structure functions.

The following theorem presents the main result of [7], describing the covering radius
and the metric complement of a partition set of functions.

Theorem 2 [7]. Consider a partition set of functions S, and let us denote the covering
radius of S as ρS . Let NS be the number of Boolean functions at distance ρS from S. Then,

ρS =
l∑

i=1

bki/2c and NS =
l∏

i=1

1

2− ki mod 2

((
ki
bki/2c

)
+

(
ki
dki/2e

))
,

where ki is the cardinality of the i-th block of the l blocks in partition U .
The proof of the theorem is constructive and gives an explicit description of the metric

complement Ŝ. From this description, the equality ̂̂S = S is trivially established, showing
that all partition sets of functions are metrically regular.

The authors then proceed to investigate special cases of partition sets of functions,
namely, symmetric and rotation symmetric functions. They calculate covering radii for
both of these sets, give characterization for the set of maximally asymmetric functions (the
metric complement of the set of symmetric functions) and calculate the number of such
functions. They also study the weight distribution of maximally asymmetric functions, as
well as their algebraic degrees, and provide a classification of all functions with respect to
the distance from the set of symmetric functions. For details, the reader is referred to [7].

4. Largest and smallest metrically regular sets
Let us return to affine and bent functions. Since the gap between the best known upper

and lower bounds on the size of the set of bent functions is so large, it is interesting
to investigate possible cardinalities of metrically regular sets, particularly, the extreme
cardinalities, in an attempt to improve known bounds. The paper [8] focuses on the problem
of finding the largest and the smallest metrically regular sets.

4.1. G e n e r a l p r o b l e m
In the Boolean cube Fn2 with the Hamming distance, any smallest metrically regular

set has cardinality 1, as can be seen from the simplest example X = {x}, x ∈ Fn2 . For the
largest metrically regular set the solution is not so trivial. The following theorem reduces
the general problem to a special case.

Theorem 3 [8]. Let A,B ⊂ Fn2 be a pair of metrically regular sets, i.e., A = B̂, B = Â.
Then there exists a pair of metrically regular sets A∗, B∗ at distance 1 from each other such
that either A ⊆ A∗, B ⊆ B∗, or both A,B ⊆ A∗.

The Theorem 3 tells us that for each metrically regular set in the Boolean cube there
exists a metrically regular superset with the covering radius of 1. Therefore, the covering
radius of the largest metrically regular set in the Boolean cube is equal to 1. Since for any
set A with ρ(A) = 1 it holds A ∪ Â = Fn2 , the largest metrically regular set is the metric
(and ordinary) complement of the smallest metrically regular set with the covering radius
equal to 1.

The problem is reduced further by the following fact.
Proposition 2 [8]. If C ⊆ Fn2 is a minimal covering code of radius 1, then C is

metrically regular.
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It follows from the Proposition 2 that any smallest covering code of radius 1 is also
a smallest metrically regular set with the covering radius 1. Combined with Theorem 3,
this shows that the problem of finding the largest metrically regular set is equivalent to
the problem of finding the smallest covering code of radius 1. This is an open problem of
coding theory [12] and is solved mostly for particular cases and small dimensions.

Proposition 2 is conjectured to hold true for larger values of the covering radius, however,
this has not been proved yet.

Conjecture 1 [8]. If C ⊆ Fn2 is a covering code of radius r of minimal size, then C is
metrically regular.

The conjecture was computationally checked [8] for several minimal covering codes with
n = 2r+3, 2r+4, where r equals 2 or 3. Constructions of these codes can be found in [13, 14].

4.2. F i x e d d i s t a n c e s
As we see from the previous subsection, the general problems of finding the largest and

the smallest metrically regular sets are reduced to the cases when the covering radius is
trivial (equal to either 1 or n). However, the set Bm of bent functions in m variables has
the covering radius 2m−1 − 2m/2−1. In [8], the sizes of the sets at a fixed distance r from
each other are considered. Theses sizes are estimated nondirectly, through estimating the
size of the union of two metrically regular sets, maximally distant one from another. Let
us return to the general finite metric space M with a metric d(·, ·) admitting values from a
set D. Then, the following bound holds.

Theorem 4 [8]. Let A,B ⊆ M be a pair of metrically regular sets at distance r ∈ D
from each other, and let Ck be the size of the largest sphere of radius k ∈ D in M . Then

|A|+ |B| > 2|M |
1 +

∑
k∈D
k<r

Ck
.

This bound is very similar to the sphere-packing bound on the size of a code, well-known
in the coding theory. In the case when the space M is Fn2 with the Hamming metric, the
bound becomes:

Corollary 1. Let A,B ⊆ Fn2 be a pair of metrically regular sets at distance r from
each other. Then

|A|+ |B| > 2n+1

1 +
r−1∑
k=0

(
n

k

) .
5. Strongly metrically regular sets

5.1. P r e l i m i n a r i e s
Metrically regular sets are defined by their outstanding metric properties, but a lot of

them possess even more regularity. In order to investigate largest and smallest metrically
regular sets further, the notion of a strongly metrically regular set was introduced in [9].

Let A ⊂ Fn2 be a set with the covering radius r. The set A is called strongly metrically
regular, if for any vector x ∈ Fn2 it holds

d(x,A) + d(x, Â) = r.

In other words, any vector of the Boolean cube belongs to some shortest path from the
set A to the set Â. It is clear from the definition that any strongly metrically regular set is
metrically regular.
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The following pair of metrically regular sets gives us a simple example:A = {0}, Â = {1}.
Any vector x ∈ Fn2 with the Hamming weight k is at distance k from the set A and at
distance (n − k) from the set Â, so the sum of both distances is equal to n, which is the
covering radius of these sets.

But not all metrically regular sets are strongly metrically regular. One of the problems of
the International Cryptographic Olympiad NSUCRYPTO 2016 [15] was to find a metrically
regular set which is not strongly metrically regular (or prove that such set does not exist),
and several contestants managed to find a solution. The smallest known example of such a
set is contained in the Boolean cube of dimension 7.

Let A be an arbitrary subset of the Boolean cube Fn2 . The layer representation of Fn2
with respect to the set A is the sequence of layers defined as follows:

Ak = {x ∈ Fn2 : d(x,A) = k}, k = 0, 1, . . . , r,

where r is the covering radius of A. Using layer representation, strongly metrically regular
sets can alternatively be defined as follows:

Proposition 3 [9]. Set A is strongly metrically regular if and only if for any k from 0

to r it holds Ak = Âr−k, where r is the covering radius of both sets.
It is easy to see that completely regular codes [16] are strongly metrically regular.

The converse is not true: an example of a strongly metrically regular set which is not a
completely regular code is the set A = {(000), (011), (111)} in F3

2.
5.2. I t e r a t i v e c o n s t r u c t i o n s

In [9], several iterative constructions of strongly metrically regular sets are obtained.
Theorem 5 [9]. Let A be a strongly metrically regular set with the covering radius r.

Then C = A ∪ Â is also a strongly metrically regular set.
Then this theorem is generalized to obtain more iterative constructions of strongly

metrically regular sets.
Theorem 6. Let A be a strongly metrically regular set with the covering radius r > 0

(case r = 0 is trivial). Let i1, . . . , is be a sequence of indices satisfying 0 6 i1 < i2 < . . . <

< is−1 < is 6 r. Then the union C =
s⋃

k=1

Aik is a strongly metrically regular set if and only

if there exists a number ρ > 0 such that all the following conditions are satisfied:
1) for any k ∈ {1, . . . , s− 1} the distance (ik+1 − ik) is equal to 1, 2ρ or 2ρ+ 1;
2) for any k ∈ {2, . . . , s−1} at least one of the distances (ik+1−ik), (ik−ik−1) is greater

than 1;
3) i1 is either ρ or 0, and if i1 = 0, then i2 − i1 = 2ρ or 2ρ+ 1 if i2 exists;
4) is is either r − ρ or r, and if is = r, then is − is−1 = 2ρ or 2ρ+ 1 if is−1 exists;
The number ρ is the covering radius of C.
Theorem 6 allows one to construct many new strongly metrically regular sets with

smaller covering radii given a strongly metrically regular set with the covering radius r.
For example, consider a strongly metrically regular set with the covering radius 20. Then,
if we take the union of layers with indices {2, 3, 7, 12, 16, 20}, it will be a strongly metrically
regular set with the covering radius 2 and its metric complement will consist of layers with
indices {0, 5, 9, 10, 14, 18}.

The number of strongly metrically regular sets with the covering radius r which can be
constructed using Theorem 6 is also calculated.
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Theorem 7 [9]. Let A be a strongly metrically regular set with the covering radius
r > 0. Then the number Gρ(r) of different strongly metrically regular sets with covering
radius ρ that can be obtained by applying Theorem 6 to the set A can be calculated using
the following recurrent formulas:

Gρ(r) =


Gρ(r − ρ) +Gρ(r − ρ− 1), when r > ρ,

2, when r = ρ,

0, when 0 6 r < ρ.

5.3. S p e c i a l c o n s t r u c t i o n s a n d l o w e r b o u n d s
Utilizing Theorem 6 and other considerations, two families of “large” strongly metrically

regular sets {Y r
n }, {Zr

n} for n > 2r, r > 1 are constructed in [9]. Here, Y r
n , Z

r
n ⊆ Fn2 and

ρ(Y r
n ) = ρ(Zr

n) = r. Sets from these families asymptotically cover a large part of the Boolean
cube:

|Y r
n |

n→∞∼ 2

2r + 1
2n, |Zr

n| = 2n−2r

(
2r

r

)
r→∞∼ 1√

πr
2n.

The lower bound on the sizes of sets from the family {Y r
n } is obtained, which results in

the following lower bound on the size of the largest metrically regular set for fixed covering
radius.

Theorem 8. Let A be the largest metrically regular set with the covering radius r in
the Boolean cube of dimension n (n > 2r), and let ρ be the remainder of n+ 1 divided by
2r + 1. Then

|A| > max

{
2n
(

2

2r + 1
− 2√

n− ρ+ 1

)
, 2n−2r

(
2r

r

)}
.

Construction of the family of strongly metrically regular sets {Y r
n } allows one to obtain

metrically regular sets with the covering radius r that cover roughly the fraction
2

2r + 1
of

the whole Boolean cube when n is big enough, while the family {Zr
n} contains metrically

regular sets with the covering radius r that cover roughly the fraction
1√
πr

of the Boolean

cube for large values of r.

6. Metric complements and metric regularity of linear codes
6.1. G e n e r a l r e s u l t s

The papers [10, 11] touch upon the topic of metric complements of linear codes in the
Boolean cube. First, let us formulate some basic results.

Proposition 4. Let L ⊆ Fn2 be a linear code. Then the metric complement of L is the
union of cosets of L.

This result follows directly from the equality dH(x, y) = wt(x + y) and the linearity of
the code. The following bound is also a simple and well-known result.

Proposition 5. Let L ⊆ Fn2 be a linear code of dimension k. Then ρ(L) 6 n− k.
The paper [10] describes sufficient and necessary conditions on an arbitrary linear code L

to attain this bound, as well as some sufficient conditions for ρ(L) = n − k − 1 or ρ(L) =
= n − k − 2. Both of these results also present explicit form of the metric complement of
the linear code in question, and in the case when ρ(L) = n− k, the code L is found to be
metrically regular.
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The following characterization of the second metric complement using the first is also
presented in [10, 1].

Proposition 6. Let L ⊆ Fn2 be a linear code. Then ρ(L̂) = ρ(L) and a vector x is in ̂̂L
if and only if x+ L̂ = L̂.

Corollary 2. Let L ⊆ Fn2 be a linear code. Assume that L̂ is an affine subspace, i.e.,

L̂ = a+ L1 for some linear code L1. Then
̂̂
L = L1.

6.2. S e t s o f a f f i n e / b e n t f u n c t i o n s
Let us remember that the notion of a metrically regular set and the problem of

investigating and classifying metrically regular sets was first posed by N. Tokareva in [1]
when studying metric properties of bent functions, particularly, the duality between bent
functions and affine functions.

A Boolean function in even number m of variables is called a bent function, if it is at
the maximal possible distance from the set of affine functions Am. If we denote the set of
bent functions as Bm, then we have, by definition, Bm = Âm.

Despite the fact that all characterizations of the set of bent functions that are currently
known are rather ineffective when it comes to counting and constructing bent-functions, it
turned out that these characterizations are enough to establish metric regularity of the set
of affine/bent functions.

It follows from Proposition 6 that a linear code is metrically regular if and only if no
vectors other that those from the code keep its metric complement stable under addition.
This property of linear codes was used in [6, 1] to establish that the set of affine functions
is the metric complement of the set of bent functions: N. Tokareva has shown that, for any
non-affine function f , there exists a bent function g (from the Maiorana —McFarland class
of bent functions) such that f + g is not a bent function. Thus, the following holds.

Theorem 9. Sets of affine functions Am and bent functions Bm are metrically regular.
A. Kutsenko studied metric properties of two subclasses of bent functions called self-dual

and anti-self-dual bent functions. In [17], he shows that the set of self-dual bent functions
is the metric complement of the set of anti-self-dual bent functions and vice versa, thus
establishing the metric regularity of both of these sets. Other metric properties of bent
functions (e.g. the graph of minimal distances between bent functions) were also studied
by N. Kolomeec in [18 – 21].

6.3. R e e d — M u l l e r c o d e s
Let Fm be the set of all Boolean functions in m variables. The Reed —Muller code of

order k in m variables is defined as follows:

RM(k,m) = {f ∈ Fm : deg(f) 6 k},

where deg(·) denotes the degree of the algebraic normal form [2] of the function. These codes
may also be represented as sets of value vectors of corresponding functions: binary vectors
of length 2m, containing values which a function assumes on all vectors of Fm2 , listed in some
fixed order. Distances between functions can therefore be defined as distances between their
value vectors.

The Reed —Muller code of order 1 is, by definition, the set of affine functions, which is,
in the case of even number of variables m, metrically regular (as is its metric complement —
the set of bent functions). Does this hold for other codes from this family? In [11], this
metric property for other Reed —Muller codes is being investigated.
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In [22], E. Berlekamp and N. Welch presented a partition of all cosets of the RM(1, 5)
code into 48 classes with respect to the EA-equivalence (extended affine equivalence),
providing a representative for each class. Then they obtained weight distributions for
each class of cosets. This weight distribution allows one to explicitly describe the metric
complement of the code by selecting classes with the largest minimal weigth. Proposition 6
is then used to establish the metric regularity of RM(1, 5) in [11]. It is shown that, for any
equivalence class of cosets (other than the RM(1, 5) itself), adding a function from that
class to some function from the metric complement R̂M(1, 5) yields a function outside of
the metric complement, leading to the following

Theorem 10. The code RM(1, 5) is metrically regular.
Reed —Muller codes of orders 0, m and m − 1 coincide with the repetition code, the

whole space, and the even weight code respectively. It is trivial that all of them are metrically
regular. Metric regularity of the Reed —Muller code of order m− 2 is also easy to establish
as follows [11].

The Reed —Muller code of order m − 2 has covering radius 2 [12]. By definition, it
consists of all Boolean functions of degree at mostm−2. Since all functions of degreem have
odd weights, and all functions of smaller degree have even weights, functions of degree m
are at distance 1 from RM(m − 2,m), while functions of degree m − 1 are at distance 2,
and therefore

R̂M(m− 2,m) = RM(m− 1,m) \ RM(m− 2,m).

Since RM(m − 2,m) is linear, ρ(R̂M(m − 2,m)) = ρ(RM(m − 2,m)) = 2 and thus

functions of degreem are at distance 1 from R̂M(m−2,m). It follows that ̂̂RM(m−2,m) =
= RM(m− 2,m) and therefore the following holds:

Theorem 11. Codes RM(k,m) for k > m− 2 are metrically regular.
Codes of order m− 3 are harder to handle. In 1979, A.M. McLoughlin [23] has proved

that

ρ(RM(m− 3,m)) =

{
m+ 1, if m is odd,
m+ 2, if m is even.

This result is reestablished by G. Cohen et al. in [12] using a method of syndrome
matrices, different from the method in [23]. This method allows the author of [11] not only
to obtain the covering radius of the Reed —Muller code of order m−3, but also to describe
the metric complement of this code. As with the covering radius, the cases of even and odd
m are distinct.

In the case of even number m of variables, the metric complement can be described as
follows:

R̂M(m− 3,m) =
⋃
g∈G

(g +RM(m− 3,m)) ,

where

G = {g : supp(g) = {0,x1,x2, . . . ,xm,x1 + . . .+ xm},x1, . . . ,xm are linearly independent},

while, for m odd, the description is as follows:

R̂M(m− 3,m) =
⋃

g∈G1∪G2

(g +RM(m− 3,m)),

G1 = {g : supp(g) = {0,x1,x2, . . . ,xm},x1, . . . ,xm are linearly independent},
G2 = {g : supp(g) = {0,x1, . . . ,xm−1,x1+ . . .+xm−1},x1, . . . ,xm−1 are linearly independent}.
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Then, the metric regularity ofRM(m−3,m) is proved by establishing that no functions
other that those contained inRM(m−3,m) preserve the metric complement under addition
(once again utilizing Proposition 6).

The author then considers the code RM(2, 6). Using a proper ordering of the values in
the value vectors of functions, this code can be presented in the following manner:

RM(2, 6) = {(u,u + v) : u ∈ RM(2, 5),v ∈ RM(1, 5)}.

Since both RM(2, 5) and RM(1, 5) were shown to be metrically regular, this constructions
is useful and allows the author to establish the metric regularity of the code RM(2, 6) as
well. The proof of this result heavily relies on the fact that RM(2, 6) attains the upper
bound on the covering radius provided by the (u,u + v) construction, i.e., ρ(RM(2, 6)) =
= ρ(RM(2, 5)) + ρ(RM(1, 5)) [24].

Thus, the metric regularity of the codes RM(1, 5), RM(2, 6) and of the codes
RM(k,m) for k > m− 3 has been established. Factoring in the result by N. Tokareva [6],
which proves the metric regularity of RM(1,m) for even m, this covers all infinite families
of Reed —Muller codes with known covering radius. The only other Reed —Muller codes
with known covering radius, metric regularity of which has not been yet established, are
RM(1, 7) [25, 26] and RM(2, 7) [27]. Given these results, the following conjecture is
formulated [11].

Conjecture 2. All Reed —Muller codes RM(k,m) are metrically regular.

7. Conclusion
In the paper, the main published results concerning metric complements and metric

regularity are presented. Metric regularity of partition sets of functions is established.
General problem of finding smallest metrically regular sets is found to be trivial, while
finding the largest is shown to be as hard as finding the smallest covering code of radius 1.
For fixed covering radius, a lower bounds on the sum of sizes of metrically regular sets
constituting a pair is obtained. Using the notion of strongly metrically regular set, iterative
constructions of metrically regular sets are described and the number of sets which can be
obtained using these constructions is calculated. Two families of “large” (relative to the size
of Fn2 ) metrically regular sets with fixed covering radius are constructed, giving the idea of
how big the largest metrically regular sets can be. Characterizations of the first and the
second metric complements of linear codes are given. Metric regularity of the Reed —Muller
codes RM(1,m) for m even, RM(k,m) for k = 0, k > m− 3 and of the codes RM(1, 5)
and RM(2, 6) is established.
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