УДК 519.7

DOI 10.17223/2226308X/13/9

ОЦЕНКА НЕЛИНЕЙНОСТИ СБАЛАНСИРОВАННЫХ БУЛЕВЫХ ФУНКЦИЙ, ПОРОЖДЁННЫХ ОБОБЩЁННОЙ КОНСТРУКЦИЕЙ ДОББЕРТИНА¹

И. А. Сутормин

Предложено обобщение конструкции Доббертина для высоконелинейных сбалансированных булевых функций. Исследован спектр Уолша — Адамара и получены оценки спектрального радиуса предложенных функций. Доказана точная верхняя оценка на спектральный радиус (нижняя оценка нелинейности) и предложен способ построить сбалансированную функцию Θ от 2n переменных при помощи сбалансированной θ от n-k переменных со спектральным радиусом $R_{\Theta}=2^n+2^kR_{\theta}$, где R_{Θ} и R_{θ} — спектральные радиусы Θ и θ соответственно.

Ключевые слова: булевы функции, бент-функции, сбалансированность, нелинейность, спектральный радиус.

В различных криптографических алгоритмах часто используются булевы функции. Нелинейность — одно из основных для них свойств, оно показывает, насколько хорошо функцию можно приблизить некоторой линейной функцией, работать с которой значительно проще. Шифр может стать уязвимым к линейному криптоанализу при низкой нелинейности даже одной его части. Примером криптографического алгоритма, скомпрометированного своими компонентами с низкой нелинейностью, может послужить старый стандарт шифрования США — DES.

Введём необходимые определения. Преобразование Уолша— Адамара булевой функции f определяется как $W_f(a)=\sum\limits_{x\in\mathbb{F}_2^n}(-1)^{f(x)+\langle x,a\rangle},\ a\in\mathbb{F}_2^n;\ cneктральный радиус$ $R_f=\max_{a\in\mathbb{F}_2^n}|W_f(a)|$ и нелиненость $N_f=2^{n-1}-R_f/2$. Бент-функциями называются

функции от чётного числа переменных с максимальной возможной нелинейностью. Они впервые описаны в [1]. Подробную информацию об этом классе функций можно найти в [2, 3]. Булевы функции f и g от n переменных $a\phi\phi$ инно эквивалентны, если для всех x выполнено g(x) = f(Ax+b), где A— невырожденная матрица размера $n \times n$; b— вектор длины n.

В практических целях часто требуется чтобы функция была *сбалансированной* — принимала значения 0 и 1 на одном и том же числе аргументов. Но максимальное значение нелинейности сбалансированных функций неизвестно, начиная уже с восьми переменных. Лучшие оценки получаются как следствие конкретных конструкций сбалансированных функций.

Конструкция, описанная Доббертином в [4], основана на модификации нормальных бент функций — функций от 2n переменных, постоянных на некотором аффинном подпространстве L размерности n. Суть конструкции заключается в замене значений бентфункции на подпространстве L значениями сбалансированной функции θ от n переменных. При этом спектральный радиус получившейся сбалансированной функции Θ равен $R_{\Theta} = 2^n + R_{\theta}$, а её нелинейность — $N_{\Theta} = 2^{2n-1} - 2^{n-1} - R_{\theta}/2$. В [4] сформулирована не опровергнутая до сих пор гипотеза о несуществовании сбалансированных функций с нелинейностью выше, чем можно получить при помощи этой конструкции.

 $^{^1}$ Работа выполнена в рамках государственного задания Института математики им. С. Л. Соболева СО РАН (проект № 0314-2019-0017) при поддержке РФФИ (проект № 20-31-70043) и Лаборатории криптографии JetBrains Research.

Рассмотрим обобщение конструкции Доббертина, использующее бент-функции с близкими к нормальности свойствами, а именно бент-функции от 2n переменных, принимающие постоянное значение на нескольких сдвигах некоторого подпространства L размерности n-k, $0 \le k \le n-2$. Так как аффинная эквивалентность сохраняет нелинейность и сбалансированность, можно без ограничения общности рассматривать такие бент-функции в виде $f: \mathbb{F}_2^{n-k} \times \mathbb{F}_2^{n+k} \to \mathbb{F}_2$, для которой существуют подмножества $I_0, I_1 \subset \mathbb{F}_2^{n+k}$ мощностей $|I_0| = 2^{2k-1} + 2^{k-1}$, $|I_1| = 2^{2k-1} - 2^{k-1}$, для которых справедливо

$$f(x,y) \equiv 0$$
 при $y \in I_0$, $f(x,y) \equiv 1$ при $y \in I_1$.

Такое представление прямо связано с конструкцией вида $\widetilde{f} + \operatorname{Ind}_{L^{\perp}}$, подробную информацию о которой можно найти в [5-7]. Здесь \widetilde{f} — дуальная к f функция [3].

При помощи бент-функции такого вида и набора $\theta_y, y \in I_0 \cup I_1$, сбалансированных функций от n-k переменных строится обобщающая конструкцию Доббертина функция Θ :

$$\Theta(x,y) = \begin{cases} \theta_y(x) & \text{при } y \in I_0 \cup I_1, \\ f(x,y) & \text{иначе.} \end{cases}$$
 (1)

При k=0 описанная конструкция полностью совпадает с конструкцией Доббертина, при k=1 она также эквивалентна конструкции Доббертина.

Теорема 1. Функция Θ вида (1) является сбалансированной функцией и её коэффициенты Уолша — Адамара вычисляются по формуле

$$W_{\Theta}(a,b) = egin{cases} W_f(a,b) + \sum\limits_{y \in I_0 \cup I_1} (-1)^{\langle b,y \rangle} W_{\theta_y}(a), & \text{если } a \neq 0, \\ 0 & \text{иначе.} \end{cases}$$

Следствие 1. Спектральный радиус Θ не превосходит $2^n + \sum_{y \in I_0 \cup I_1} R_{\theta_y}$, причём всегда можно выбрать θ_y , при которых оценка достигается.

Теорема 2. Пусть θ — сбалансированная функция n-k переменных, $\theta_y=\theta$ при $y\in I_0$ и $\theta_y=\theta\oplus 1$ при $y\in I_1$. Тогда

$$R_{\Theta} = 2^n + 2^k R_{\theta}.$$

Получившееся R_{Θ} зависит от R_{θ} , k и n. Несмотря на то, что θ является функцией от n-k переменных, наилучший результат достигается при k=0, то есть в случае, описанном Доббертином.

ЛИТЕРАТУРА

- 1. Rothaus O. On "bent" functions // J. Combin. Theory. Ser. A. 1976. V. 20. No. 3. P. 300–305.
- 2. Логачев О. А., Сальников А. А., Смышляев С. В., Ященко В. В. Булевы функции в теории кодирования и криптологии. 2-е изд. М.: МЦНМО, $2012.\,584\,\mathrm{c}$.
- 3. *Tokareva N. N.* Bent Functions. Results and Applications to Cryptography. Acad. Press. Elsevier, 2015.
- 4. Dobbertin H. Construction of bent functions and balanced Boolean functions with high nonlinearity // LNCS. 1994. V. 1008. P. 61–74.

- 5. *Kolomeec N.* On properties of a bent function secondary construction // Proc. BFA'2020. https://boolean.w.uib.no/bfa-2020.
- 6. *Коломеец Н. А.* О некоторых свойствах конструкции бент-функций с помощью подпространств произвольной размерности // Прикладная дискретная математика. Приложение. 2018. № 11. С. 41–43.
- 7. Carlet C. Two new classes of bent functions // LNCS. 1994. V. 765. P. 77–101.

УДК 519.7

DOI 10.17223/2226308X/13/10

СВЯЗЬ МЕЖДУ КВАТЕРНАРНЫМИ И КОМПОНЕНТНЫМИ БУЛЕВЫМИ БЕНТ-ФУНКЦИЯМИ¹

А.С. Шапоренко

Исследуются кватернарные бент-функции. Функция $g:\mathbb{Z}_4^n\to\mathbb{Z}_4$ называется кватернарной функцией от n переменных. Доказано, что свойство кватернарной функции g(x+2y)=a(x,y)+2b(x,y) быть бент напрямую не зависит от того, являются ли функции b и $a\oplus b$ булевыми бент-функциями. Получено количество кватернарных бент-функций от одной и двух переменных с описанием свойств булевых функций b и $a\oplus b$. Представлены простые конструкции кватернарных бент-функций от любого числа переменных.

Ключевые слова: кватернарные функции, булевы функции, бент-функции.

Пусть $\langle x, y \rangle$ обозначает скалярное произведение двоичных векторов x и y по модулю 2, а x.y— их скалярное произведение по модулю 4.

Функция $f: \mathbb{Z}_2^n \to \mathbb{Z}_2$ называется булевой функцией от n переменных. Преобразованием Уолша — Адамара булевой функции f от n переменных называется целочисленная функция $W_f(x)$, заданная на множестве \mathbb{Z}_2^n равенством

$$W_f(x) = \sum_{y \in \mathbb{Z}_2^n} (-1)^{\langle x,y \rangle \oplus f(y)}.$$

Булева функция f от чётного числа n переменных называется $beht{dem}$ -byhkuueu, если $|W_f(x)| = 2^{n/2}$ для любого $x \in \mathbb{Z}_2^n$.

Шифры, в которых используются бент-функции, более устойчивы к линейному криптоанализу [1], потому что бент-функции крайне плохо аппроксимируются аффинными функциями. Бент-функции используются в блочном шифре CAST как координатные функции S-блоков [2], а также для построения регистра сдвига с нелинейной обратной связью в поточном шифре Grain [3]. Бент-функции связаны также с некоторыми объектами теории кодирования, например с кодами Рида — Маллера [4].

Функция $g: \mathbb{Z}_4^n \to \mathbb{Z}_4$ называется *кватернарной функцией* от n переменных [5]. Преобразование Уолша — Адамара кватернарной функции g определяется следующим образом:

$$W_g(x) = \sum_{y \in \mathbb{Z}_4^n} i^{x \cdot y + g(y)},$$

где «+» означает сложение по модулю 4.

 $^{^1}$ Работа выполнена в рамках государственного задания Института математики им. С. Л. Соболева СО РАН (проект № 0314-2019-0017) при поддержке РФФИ (проект № 18-07-01394) и Лаборатории криптографии JetBrains Research.