Утверждение 5. Пусть g(x+2y) = a(x,y) + 2b(x,y), где $x,y \in \mathbb{Z}_2^n$ и a,b — булевы функции от 2n переменных, является бент-функцией. Тогда функция g'(x+2y) = 3a(x,y) + 2b(x,y) также является кватернарной бент-функцией от $n \ge 1$ переменных. Отметим, что утверждение верно и в обратную сторону. ## ЛИТЕРАТУРА - Matsui M. Linear cryptanalysis method for DES cipher // Eurocrypt'1993. LNCS. 1994. V. 765. P. 386–397. - 2. Adams C. Constructing symmetric ciphers using the CAST design procedure // Design, Codes, and Cryptography. 1997. V. 12. No. 3. P. 283–316. - 3. Hell M., Johansson T., Maximov A., and Meier W. A stream cipher proposal: Grain-128 // IEEE Intern. Symp. Inform. Theory. Seattle, WA, 2006. P. 1614–1618. - 4. Tokareva N. Bent Functions: Results and Applications to Cryptography. Acad. Press, Elsevier, 2015. 230 p. - 5. Kumar P. V., Scholtz R. A., and Welch L. R. Generalized bent functions and their properties // J. Combin. Theory. 1985. V. 40. No. 1. P. 90–107. - 6. Solé P. and Tokareva N. Connections Between Quaternary and Binary Bent Functions // Cryptology ePrint Archive, Report 2009/544. http://eprint.iacr.org/. - 7. Solé P. and Tokareva N. On quaternary and binary bent functions // Прикладная дискретная математика. Приложение. 2009. № 1. С. 16–18. UDC 519.7 DOI 10.17223/2226308X/13/11 ## ON A SECONDARY CONSTRUCTION OF QUADRATIC APN FUNCTIONS¹ K. V. Kalgin, V. A. Idrisova Almost perfect nonlinear functions possess the optimal resistance to the differential cryptanalysis and are widely studied. Most known constructions of APN functions are obtained as functions over finite fields \mathbb{F}_{2^n} and very little is known about combinatorial constructions in \mathbb{F}_2^n . We consider how to obtain a quadratic APN function in n+1 variables from a given quadratic APN function in n variables using special restrictions on new terms. **Keywords:** vectorial Boolean function, APN function, quadratic function, secondary construction. Let us recall some definitions. Let \mathbb{F}_2^n be the *n*-dimensional vector space over \mathbb{F}_2 . A function F from \mathbb{F}_2^n to \mathbb{F}_2^m , where n and m are integers, is called a *vectorial Boolean function*. If m=1, such a function is called *Boolean*. Every vectorial Boolean function F can be represented as a set of m coordinate functions $F=(f_1,\ldots,f_m)$, where f_i is a Boolean function in n variables. Any vectorial function F can be represented uniquely in its algebraic normal form (ANF): $$F(x) = \sum_{I \in \mathcal{P}(N)} a_I(\prod_{i \in I} x_i),$$ where $\mathcal{P}(N)$ is a power set of $N = \{1, \dots, n\}$ and $a_I \in \mathbb{F}_2^m$. The algebraic degree of a given function F is the degree of its ANF: deg $(F) = \max\{|I| : a_I \neq 0, I \in \mathcal{P}(N)\}$. If algebraic ¹The work was carried out within the framework of the state contract of the Sobolev Institute of Mathematics (project no. 0314-2019-0017) and supported by RFBR (projects no. 18-07-01394, 20-31-70043) and Laboratory of Cryptography JetBrains Research. degree of a function F is not more than 1, then F is called *affine*. If for an affine function F it holds $F(\mathbf{0}) = \mathbf{0}$, then F is called *linear*. If algebraic degree of a function F is equal to 2, then F is called *quadratic*. Two vectorial functions F and G are extended affinely equivalent (EA-equivalent) if $F = A_1 \circ G \circ A_2 + A$, where A_1, A_2 are affine permutations on \mathbb{F}_2^n and A is an affine function. Let F be a vectorial Boolean function from \mathbb{F}_2^n to \mathbb{F}_2^n . For vectors $a, b \in \mathbb{F}_2^n$, where $a \neq 0$, consider the value $$\delta(a,b) = |\{x \in \mathbb{F}_2^n : F(x+a) + F(x) = b\}|.$$ Denote by Δ_F the following value: $$\Delta_F = \max_{a \neq \mathbf{0}, b \in \mathbb{F}_2^n} \delta(a, b).$$ Then F is called differentially Δ_F -uniform function. The smaller the parameter Δ_F is, the better the resistance of a cipher containing F as an S-box to differential cryptanalysis. For the vectorial functions from \mathbb{F}_2^n to \mathbb{F}_2^n , the minimal possible value of Δ_F is equal to 2. In this case, the function F is called almost perfect nonlinear (APN). This notion was introduced by K. Nyberg in [1]. APN fuctions draw attention of many researchers, but there is still a significant list (see, for example, [2-4]) of important open questions. We are especially interested how to find new constructions of APN functions in vector space \mathbb{F}_2^n , since almost all the known constructions of this class are found only as polynomials over the finite fields, and to the best of our knowledge, only a few approaches to such combinatorial constructions was proposed [5, 6]. Since EA-equivalence preserves APNness, it is always possible to omit linear and constant terms in the algebraic normal form of a given APN function. Further we will consider quadratic vectorial Boolean functions that have only quadratic terms in their ANF. The following theorem gives a necessary condition on the ANF of a given APN function. **Theorem 1** [7]. Let $F = (f_1, \ldots, f_n)$ be an APN function in n variables. Then every quadratic term $x_i x_j$, where $i \neq j$, appears at least in one coordinate function of F. This property motivated us to suggest the following construction of quadratic APN functions. Let $G = (g_1, \ldots, g_n)$ be a quadratic APN-function in n variables. Consider vectorial function $F = (f_1, \ldots, f_n, f_{n+1})$ in n+1 variables such that $$f_{1} = g_{1} + \sum_{i=1}^{n} \alpha_{1,i} x_{i} x_{n+1},$$ $$\cdots$$ $$f_{n} = g_{n} + \sum_{i=1}^{n} \alpha_{n,i} x_{i} x_{n+1},$$ $$f_{n+1} = g_{n+1} + \sum_{i=1}^{n} \alpha_{n+1,i} x_{i} x_{n+1},$$ $$(1)$$ where $\alpha_{1,i}, \ldots, \alpha_{n+1,i} \in \mathbb{F}_2$ for $i = 1, \ldots, n$ and $g_{n+1} = \sum_{1 \leq j < k \leq n} \beta_{j,k} x_j x_k$ for some fixed $\beta_{j,k} \in \mathbb{F}_2$. Note that if $\alpha_{1,i}, \ldots, \alpha_{n,i}$ are such that each term $x_i x_{n+1}$ appears at least in one of the coordinate functions f_1, \ldots, f_n , then the necessary condition of Theorem 1 is held for the constructed function F. Each quadratic vectorial function G in n variables can be considered as a symmetric matrix $\mathcal{G} = (g_{ij})$, where each element $g_{ij} \in \mathbb{F}_2^n$ is a vector of coefficients corresponding to term $x_i x_j$ in the algebraic normal form of G and all diagonal elements g_{ii} are null. It is necessary to mention that these matrices are essentially the same as so-called QAM matrices that were used in [8, 9] to construct and classify a lot of new quadratic APN functions over finite fields. Using these matrices, the APN property can be formulated in the following way: **Proposition 1.** Let \mathcal{G} be the matrix that corresponds to quadratic vectorial function G. Then function G is APN if and only if $x(\mathcal{G} \cdot a) \neq 0$ for all $x \neq a$, where $a, x \in \mathbb{F}_2^n$ and $a \neq \mathbf{0}$. In terms of matrices, the construction (1) can be considered as an extension of a given \mathcal{G} with an extra bit that represents g_{n+1} in every element and an extra pair of row and column that represents a set of new terms $x_i x_{n+1}$. Consider a quadratic APN function G and the corresponding $n \times n$ matrix \mathcal{G} . Denote the vector of nonzero coefficients as $\alpha = (\alpha_1, \ldots, \alpha_n)$. Let us fix g_{n+1} and construct $(n+1) \times (n+1)$ matrix \mathcal{F} by adding $(\alpha_1, \ldots, \alpha_n, 0)$ as the last column and the last row and adding new bit to every element according to the choice of g_{n+1} . Let us denote as \mathcal{G}' the submatrix (f_{ij}) of \mathcal{F} , such that i, j < n+1. Let $\langle X \rangle$ denote the linear span of X and F be the quadratic vectorial function corresponding to the constructed matrix \mathcal{F} . **Theorem 2.** A function F is APN if and only if $\alpha \cdot a'$ does not belong to $\langle \mathcal{G}' \cdot a' \rangle$ for all $a' \in \mathbb{F}_2^n$, $a' \neq \mathbf{0}$. Theorem 2 shows how to choose new coefficients $\alpha_{1,i} \dots, \alpha_{n+1,i} \in \mathbb{F}_2$ in the construction (1) such that an obtained function F is APN. When n = 3, 4 and 5, for APN functions that are representatives of EA classes, all possible classes of quadratic APNs are obtained for 4, 5 and 6 variables from the classification [10] and large variety of classes for constructing functions in 6 and 7 variables. ## REFERENCES - 1. Nyberg K. Differentially uniform mappings for cryptography. EUROCRYPT'93, LNCS, 1994, vol. 765, pp. 55–64. - 2. Carlet C. Open questions on nonlinearity and on APN Functions. WAIFI 2014, LNCS, 2015, vol. 9061, pp. 83–107. - 3. Glukhov M. M. O priblizhenii diskretnykh funktsiy lineynymi funktsiyami [On the approximation of discrete functions by linear functions]. Matematicheskie Voprosy Kriptografii, 2016, vol. 7, no. 4, pp. 29–50. (in Russian) - 4. Tuzhilin M. E. Pochti sovershennye nelineynye funktsii [APN-functions]. Prikladnaya Diskretnaya Matematika, 2009, no. 3(5), pp. 14–20. (in Russian) - 5. Gorodilova A. A. Characterization of almost perfect nonlinear functions in terms of subfunctions. Discrete Math. Appl., 2016, vol. 26, iss. 4, pp. 193–202. - 6. *Idrisova V. A.* On an algorithm generating 2-to-1 APN functions and its applications to "the big APN problem". Cryptogr. Commun., 2019, no. 11, pp. 21–39. - 7. Beth T. and Ding C. On almost perfect nonlinear permutations. EUROCRYPT'93, LNCS, 1993, vol. 765, pp. 65–76. - 8. Yu Y., Wang M., and Li Y. A matrix approach for constructing quadratic APN functions. Des. Codes Cryptogr., 2014, no. 73, pp. 587–600. - 9. Yu Y., Kaleyski N. S., Budaghyan L., and Li Y. Classification of Quadratic APN Functions with Coefficients in GF(2) for Dimensions up to 9. IACR Cryptol. ePrint Arch.: 1491, 2019. - 10. Brinkmann M. and Leander G. On the classification of APN functions up to dimension five. Des. Codes Cryptogr., 2008, vol. 49, iss. 1–3, pp. 273–288.