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Proposition 2. If |Mk
π,n| 6= |Mk

ρ,n| for some k, then the set of one-to-one functions
from ∆π,n is empty.

Theorem 1 means that in order to construct one-to-one functions Fπ ∈ ∆π,n we can
use bijective maps Ψn : Θπ,n → Θρ,n that satisfy |Ψn(g)| = |g|, where g ∈ Θπ,n. Then,
depending on them, we can construct Fπ ∈ ∆π,n such that ΨFπ ,n ≡ Ψn.

Proposition 3. Let Ψn : Θπ,n → Θρ,n satisfy |Ψn(g)| = |g| for all g ∈ Θπ,n. Then, for
all k ∈ N, the restriction of Ψn on Mk

π,n is a permutation of Mk
π,n.

Now consider the case π = ρ. We defineMk
n = Mk

ρ,n. Consider an one-to-one function Ψn

which satisfies |Ψn(g)| = |g| for all g ∈ Θπ,n. Let us construct function Fρ ∈ ∆ρ,n based
on Ψn. Let O ∈ Θρ,n be an orbit of length k. If the value of Fρ for some x ∈ O is determined,
then the value of Fρ is determined for all x ∈ O, since Fρ(ρn(x)) = ρ−n(Fρ(x)). Thus, for
every ΨFρ,n, we are able to construct

∏
k∈In

k|M
k
n | functions, where In = {z ∈ N : z|n}, and all

of them are pairwise different.
Proposition 4. For any k ∈ N,

∑
`∈Ik

` · |M `
n| = 2k.

This formula allows us to calculate |Mk
n | for every k. There are always only two orbits

of length one, so we can calculate |Mk
n | for every prime k. Then we can calculate it for

every k. Therefore, we get the number of one-to-one functions from ∆ρ,n:
Theorem 2. The number of one-to-one vectorial Boolean functions in class ∆ρ,n is

equal to
∏
k∈In
|Mk

n |! · k|M
k
n |.
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CRYPTOGRAPHIC PROPERTIES OF A SIMPLE S-BOX
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AND A PERMUTATION1
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We propose a simple method of constructing S-boxes using Boolean functions and
permutations. Let π be an arbitrary permutation on n elements, f be a Boolean
function in n variables. Define a vectorial Boolean function Fπ : Fn2 → Fn2 as Fπ(x) =
= (f(x), f(π(x)), f(π2(x)), . . . , f(πn−1(x))). We study cryptographic properties of Fπ
such as high nonlinearity, balancedness, low differential δ-uniformity in dependence on
properties of f and π for small n.
Keywords: Boolean function, vectorial Boolean function, S-box, high nonlinearity,
balancedness, low differential δ-uniformity, high algebraic degree.

S-boxes play the crucial role for providing resistance of a block cipher to different types
of attacks. The major reason for this is that in classical and modern block ciphers the
main complicated and nonlinear layer is presented namely by S-boxes. Mathematically,
S-box is a vectorial Boolean function that maps n bits to m bits. Usually, n coincides
with m. It is well known that some special mathematical properties of S-boxes, such
as high nonlinearity, low differential uniformity, high algebraic immunity, etc. make a
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cipher with such S-boxes be resistant to linear, differential, algebraic and other methods of
cryptanalysis. The cryptographic properties of a Boolean (vectorial) function contradict to
each other [1, 2]. That is why we try to find vectorial Boolean functions that reach a tradeoff
between different cryptographic properties and are constructed using mathematical methods
(and not a direct computer search) for their constructing.

In the paper, we propose a simple method of constructing S-boxes using Boolean
functions. Let π be an arbitrary permutation on n elements, π ∈ Sn. If x = (x1, . . . , xn)
is a binary vector, then let π(x) be a vector π(x) = (xπ(1), . . . , xπ(n)). Let f be a Boolean
function in n variables. Define a vectorial Boolean function Fπ : Fn2 → Fn2 as follows:

Fπ(x) = (f(x), f(π(x)), f(π2(x)), . . . , f(πn−1(x))).

We would like to study cryptographic properties of the vectorial Boolean function Fπ in
dependence on properties of the Boolean function f and the permutation π.

Note that this way of constructing vectorial Boolean functions was already mentioned
before but only for obtaining some examples. Thus, A. Udovenko proposed a vectorial
Boolean function of this type in 5 variables with the maximal possible algebraic immunity 3.
It is a unique known solution of the previously unsolved problem from NSUCRYPTO
2016 [3]. So functions Fπ can have good crypto properties.

Separately, we consider the special case of a permutation. Let An be the set of all full
cycle permutations for n elements. For example, A4 consists of 6 permutations: (2, 3, 4, 1),
(2, 4, 1, 3), (3, 1, 4, 2), (3, 4, 2, 1), (4, 1, 2, 3), (4, 3, 1, 2) presented as vectors or (1234), (1243),
(1342), (1324), (1432), (1423) in cyclic representation.

Let us recall definitions of several cryptographic properties.
A Boolean function f in n variables is called balanced if it takes every value (0 or 1) the

same number of times [4]. A vectorial Boolean function F : Fn2 → Fn2 is balanced if it takes
every value of Fn2 equally often [2] .

Let An = {〈a, x〉 ⊕ b : a ∈ Fn2 , b ∈ F2} be the class of all affine Boolean functions
in n variables [5]. The nonlinearity nl(f) of a Boolean function f in n variables is the
Hamming distance between f and the set of all affine Boolean functions in n variables [5].
The nonlinearity nl(F ) of a vectorial Boolean function F is the minimal nonlinearity of all
its component Boolean functions:

nl(F ) = min
v∈Fn2 \{0}

nl(Fv) = min
v∈Fn2 \{0}

d(〈v, F 〉,An) = min
v∈Fn2 \{0}

min
g∈An

d(〈v, F 〉, g).

The algebraic degree of a vectorial Boolean function is the maximal algebraic degree of
its component functions [2]. Note that for our construction deg(F ) = deg(f) for any π,
since all coordinate functions of F have degree deg(f).

For a vectorial Boolean function F : Fn2 → Fn2 let δF denote the maximal number of
solutions for the equation F (x)⊕F (x⊕ a) = b while a, b run through Fn2 and a is nonzero.
Then F is called differential δF -uniform [2]. Note that the minimal possible value of δF ,
where F maps from Fn2 to Fn2 , is 2.

We consider cryptographic properties of Fπ for small n in relation to f and π. All of
the following propositions are obtained via computer search.

1. Case n = 2

• For any permutation π ∈ S2 there exists a Boolean function f in 2 variables such that
δFπ = 2. Moreover, such Boolean functions are constructed as f(x) = x1x2⊕a1x1⊕a2x2⊕a0,
where a0, a1, a2 ∈ F2.
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2. Case n = 3

For any Boolean function f in 3 variables nl(f) 6 2.
• For any permutation π ∈ A3 there exists a balanced Boolean function f in 3 variables

such that vectorial Boolean function Fπ is balanced.
• For any permutation π ∈ A3 it holds nl(Fπ) = nl(f). Note that if nl(Fπ) = 2, i.e., is

maximal, then δFπ = 2, i.e., is minimal possible. The number of such funstions f is 48.
• For an arbitary permutation π /∈ A3 and Boolean function f in 3 variables δFπ > 4.

3. Case n = 4

Let us introduce the notation for permutations from the set A4: π1 = (2, 3, 4, 1), π2 =
= (4, 1, 2, 3), π3 = (2, 4, 1, 3), π4 = (3, 1, 4, 2), π5 = (3, 4, 2, 1), π6 = (4, 3, 1, 2). Note that
π−1

1 = π2, π−1
3 = π4, π−1

5 = π6.
• For any permutation π ∈ A1

4 and a balanced Boolean function f in 4 variables such
that δFπ = 2, Fπ is not balanced.
• For any permutation π ∈ A1

4 there exists a Boolean function f in 4 variables such that
if δFπ = 2 and nonlinearity of f and Fπ are the same, then δFπ−1 = 2. Moreover, nonlinearity
of Fπ−1 and f coincide.
• For any permutation π /∈ A1

4 for an arbitary Boolean function f in 4 variables δFπ > 4.
Based on the results, we suppose that it is possible to construct vectorial Boolean

functions in the arbitrary number of variables with cryptographic properties good enough
using our simple construction for necessary Booleans functions and permutations.

We plan to use our program for studying vectorial Boolean functions with larger number
of variables, now this work is in progress.
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