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ON THE NUMBER OF UNSUITABLE BOOLEAN FUNCTIONS
IN CONSTRUCTIONS OF FILTER AND COMBINING MODELS

OF STREAM CIPHERS1
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It is well known that every stream cipher is based on a good pseudorandom generator.
For cryptographic purposes, we are interested in generation of pseudorandom sequences
of the maximal possible period. A feedback register is one of the most known
cryptographic primitives that is used in construction of stream generators. We analyze
periodic properties of pseudorandom sequences produced by filter and combiner
generators equipped with nonlinear Boolean functions. We determine which nonlinear
functions in these schemes lead to pseudorandom sequences of not maximal possible
period. We call such functions unsuitable and count the exact number of them for an
arbitrary n.
Keywords: stream cipher, filter generator, combiner generator, gamma, Boolean
function.

Remember that a feedback shift register (FSR) contains two parts: a binary block x =
= (xn−1, . . . x0) of length n and a feedback function f : (xn−1, . . . , x0) → {0, 1}, where f
is a Boolean function in n variables. First, we fill the block x with concrete values of bits;
together they form the initial state of the register. For functioning of the FSR, the time is
considered to be discrete, i.e., it is divided into clock cycles. On each clock cycle, the value
of f(x) is calculated first, then the state x = (xn−1, . . . , x1, x0) of the register changes to the
state x′ = (xn−2, . . . , x0, f(x)), and the bit xn−1 is written as the first bit of the generated
sequence gamma.

The properties of gamma generated by FSR are well studied in the case when f is a
linear function. If f is nonlinear [1], then there are too many open questions with properties
of gamma that all are connected to analysis of nonlinear recurrent sequences [2, 3]. That
is why in cryptography some nonlinear combinations of linear FSRs are considered, for
instance, filter and combining models of stream generators [4, 5].

In this paper, we analyze pseudorandom sequences produced by filter and combiner
generators. Namely, we study which nonlinear functions h in these schemes lead to
pseudorandom sequences such that their periods are not maximally possible. We call such
functions unsuitable and count the exact number of them for an arbitrary n.

A linear feedback shift register (LFSR) consists of two parts: a binary vector x =
= (xn−1, . . . x0) of length n and a linear feedback function f in n variables. A state of
the register is a filling of vector x. During encryption, the register changes its states under
an action of the feedback function. Gamma is a pseudorandom sequence generated by LFSR.

Also, LFSR can be specified using feedback polynomials. It is a polynomial of degree n
defining bits to be summed. If f(xn−1, . . . , x0) = a0xn−1 ⊕ a1xn−2 ⊕ · · · ⊕ an−1x0, then the
corresponding feedback polynomial is defined as p(z) = a0z

n + a1z
n−1 + · · · + an−1z + 1.

If p(z) is a primitive polynomial, then the period of a pseudorandom sequence generated
by LFSR is maximal, i.e., is equal to 2n − 1. Thererfore, linear feedback shift registers are
usually considered with primitive polinomials.
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1. Functions for the filter model
The filter generator consists of a single shift register of length n with a linear feedback

and uses a primitive polynomial to change states. A Boolean function h(xn−1, . . . , x0),
applied to the current state, generates a pseudorandom sequence gamma.

Let γ = (y1y2 . . . y2n−1), where y1 = h(xn−1, . . . , x0), y2 = h(xn−2, . . . , x0, f(xn−1, . . . , x0)),
etc. Since the number of all nonzero states is equal to 2n−1, the maximal period of gamma
is 2n−1 too. In this paper, we would like do determine all Boolean function h in n variables
that lead to gammas with non-maximum period. Let us call such functions unsuitable.

Note that the number of them does not depend on a linear feedback function. But
whether the function is suitable or not for a given generator depends on the feedback
function. When we count the number of unsuitable functions h, we do not consider a
specific set of states. We say that there is a certain number of different states which the
generator uses (all sets, that primitive polynomials generate, fit this definition). Next, we
study which pseudorandom sequences have the maximum length. We analyze the number
of unsuitable sequences and then the number of unsuitable functions. Thus, our reasonings
do not affect the specific order of the states. Accordingly, for any set of states which the
generator uses, there is the number of unsuitable functions h exactly that we calculated.

Theorem 1. Let n be an integer and 2n − 1 = pα1
1 p

α2
2 . . . pαss , where pi are distinct

prime numbers, αi are positive integers, s is a some number. Then the number of unsuitable
Boolean functions in n variables for the filter generator with LFSR based on a primitive
polynomial is equal to

2
∑

β∈Fs2,β 6=0

(−1)β1+···+βs+12p
α1−β1
1 ...pαs−βss ,

where β = (β1, . . . , βs).

2. Functions for the combining model
Combiner generators use several linear feedback shift registers. Each register has its

own length ni and uses its primitive polynomial for changing states. A Boolean function
h(X1, . . . , Xm) generates the pseudorandom sequence gamma where Xi is a register bit
string i. Since we do not use the zero state in combiner generator, the total number of
states does not exceed (2n1− 1)(2n2− 1) . . . (2nm− 1). In this case, the maximum is reached
at gcd(ni, nj) = 1, where i, j = 1, . . . ,m, i 6= j, and if all LFSRs have primitive feedback
polynomials. Then the Boolean function can generate a gamma with period from 1 to
(2n1 − 1)(2n2 − 1) . . . (2nm − 1).

We consider a more general model of a combiner generator that is applied in ciphers
Grain [6] and Bean [7]. Note that the classical combining model does not allow to describe a
number of modern stream ciphers based on the more complicated operating with bits from
different registers. In this case, the combiner generator, in which the function depends only
on the extreme bits of the registers, is included in the model we consider. In a nonlinear
model sometimes it is more convenient to work with several smaller registers than with one
large. It should be noted that the model that we consider can be used not only in cases of
all linear or all non-linear registers, but also in cases of mixed registers (i.e., some registers
are linear, some are non-linear).

Theorem 2. Let n be an integer,
m∑
i=1

ni = n, (2n1 − 1)(2n2 − 1) . . . (2nm − 1) =

= pα1
1 p

α2
2 . . . pαss , where pi are different prime numbers, αi > 0, s is an integer. Then the
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number of unsuitable Boolean functions in n variables for the combiner generator with
LFSRs of lengths n1, . . . , nm all based on primitive polynomials is equal to

22n1+n2+···+nm−(2n1−1)(2n2−1)...(2nm−1)
∑

β∈Fs2,β 6=0

(−1)β1+···+βs+12p
α1−β1
1 ...pαs−βss ,

where β = (β1, . . . , βs).

3. Functions for models with nonlinear registers
A nonlinear feedback shift register (NFSR) consists of two parts: a binary vector x =

= (xn−1, . . . x0) of length n and a nonlinear state function f : (xn−1, . . . , x0) → {0, 1}
in n variables.

Similarly to the linear case, consider the filter generator. We assume that NFSR passes
over all 2n states, i.e., it has maximal possible period.

Theorem 3. Let n be an integer. Then the number of unsuitable Boolean functions
in n variables for the filter generator with NFSR of the maximal possible period is equal
to 22n−1 .

There is an another question related to NFSRs: how to determine for which nonlinear
feedback functions NFSR of length n has the maximal possible period 2n? This question is
hard and still open.

We kindly thank the reviewer for careful reading of our paper and significant remarks.
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EFFICIENT S-REPETITION METHOD FOR CONSTRUCTING
AN IND-CCA2 SECURE MCELIECE MODIFICATION

IN THE STANDARD MODEL

Y.V. Kosolapov, O.Y. Turchenko

The paper is devoted to the construction of IND-CCA2-secure modification of the
McEliece cryptosystem in the standard model. The modification uses S-repetition


