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number of unsuitable Boolean functions in n variables for the combiner generator with
LFSRs of lengths n1, . . . , nm all based on primitive polynomials is equal to

22n1+n2+···+nm−(2n1−1)(2n2−1)...(2nm−1)
∑

β∈Fs2,β 6=0

(−1)β1+···+βs+12p
α1−β1
1 ...pαs−βss ,

where β = (β1, . . . , βs).

3. Functions for models with nonlinear registers
A nonlinear feedback shift register (NFSR) consists of two parts: a binary vector x =

= (xn−1, . . . x0) of length n and a nonlinear state function f : (xn−1, . . . , x0) → {0, 1}
in n variables.

Similarly to the linear case, consider the filter generator. We assume that NFSR passes
over all 2n states, i.e., it has maximal possible period.

Theorem 3. Let n be an integer. Then the number of unsuitable Boolean functions
in n variables for the filter generator with NFSR of the maximal possible period is equal
to 22n−1 .

There is an another question related to NFSRs: how to determine for which nonlinear
feedback functions NFSR of length n has the maximal possible period 2n? This question is
hard and still open.

We kindly thank the reviewer for careful reading of our paper and significant remarks.
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EFFICIENT S-REPETITION METHOD FOR CONSTRUCTING
AN IND-CCA2 SECURE MCELIECE MODIFICATION

IN THE STANDARD MODEL

Y.V. Kosolapov, O.Y. Turchenko

The paper is devoted to the construction of IND-CCA2-secure modification of the
McEliece cryptosystem in the standard model. The modification uses S-repetition
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encryption of S/2 various messages with one common secret permutation, in contrast
to other modifications that use S-repetition encryption of one message. Thus, this
modification provides IND-CCA2-security with an efficient information transfer rate.

Ключевые слова: post-quantum cryptography, McEliece-type cryptosystem, IND-
CCA2-security, S-repetition encryption.

1. Introduction
Currently, much effort is being devoted to the development of quantum computers.

Therefore, the study of post-quantum cryptosystems is an important task. One suitable
scheme in the post-quantum era is the McEliece cryptosystem [1]. Note that the McEliece
cryptosystem does not use quantum mechanical properties. However, the original McEliece
scheme is vulnerable to attacks on cyphertexts. To date, many approaches have been
developed to modify the McEliece cryptosystem. One of the most successful approaches is
based on the application of correlated products [2]. For instance, in [3, 4] authors presented
IND-CCA2-secure modifications in the standard model. At the same time, the main idea of
correlated products is not effective in practice, because it requires to transmit S encrypted
blocks for one information message. Based on the ideas from [3], we offer a new IND-CCA2-
secure modification of the McEliece cryptosystem in the standard model, which requires to
transmit S encrypted blocks for S/2 information messages.

2. Preliminaries
Let n, t be natural, 2t < n, [n] = {1, . . . , n}, β ⊆ [n], 2[n] is set of all subsets of [n],

F2 be a Galois field of cardinality 2. The support of the vector m = (m1, . . . ,mn) ∈ Fn2
is the set supp(m) = {i : mi 6= 0} and the Hamming weight of this vector is a number
wt(m) = |supp(m)|. A function γ : N→ [0, 1] is negligible of k, if

∀c ∈ N ∃kc ∈ N ∀k > kc (γ(k) 6 k−c).

We will use the notations similarly to the [3]. If S is a finite set, then s ∈R S denotes
the operation of picking an element at random and uniformly from S. Denote by En,t,β the
subset of Fn2 such that any vector e = (e1, . . . , en) ∈ En,t,β has Hamming weight t and ei = 0
for any i ∈ β. We will write En,t when β = ∅. Let us define a cryptosystem as triplet of
algorithms, i.e. Σ = (K, E ,D), where:

1) K is a probabilistic polynomial-time key generation algorithm which takes as input a
security parameter N ∈ N and outputs a pair of public-key and a secret-key (pk, sk);

2) E is probabilistic polynomial-time encryption algorithm which takes as input a
public-key pk and a message m and outputs a ciphertext c; we will write {m}Σ

pk

as encryption of the message m with the key pk;
3) D is deterministic polynomial-time decryption algorithm which takes as input a

secret-key sk and a ciphertext c and outputs either a message m or a symbol ⊥
in the case, when the ciphertext is incorrect; decryption of the ciphertext c on the
secret key sk we will denote {c}Σ

sk.
Let us define signature scheme (SS) and one-time strongly unforgeable feature in the

same way as [3]. A signature scheme is triplet of algorithms SS = (KSS, Sign, Check), where
K is key generation algorithm which takes as input a security parameter N ∈ N and outputs
a signing-key dsk and a verification-key vk, Sign is signing algorithm which takes as input
a signing-key dsk and a message m and outputs a signature σ, Check is checking algorithm
which takes as input a verification-key vk a message m and a signature σ and outputs 1 if



82 Прикладная дискретная математика. Приложение

σ is valid for m and 0 otherwise. It is important to note, that one-time strongly unforgeable
signature scheme can be constructed using one-way functions (see [5, 6]).

Consider the McEliece cryptosystem as a triplet of polynomial-time algorithms: McE =
= (KMcE, EMcE,DMcE) on the linear [n, k, d]-code C ⊆ Fn2 , where n is the length, k is the
code dimension, and d is the minimum code distance. Let G be the generator matrix of
the code C, t = b(d − 1)/2c. A secret key sk is a pair (S, P ), where S is a non-singular
(k× k)-matrix over the field F2 and P is a permutation (n× n)-matrix. A public key pk is
a pair (G̃ = SGP, t). Encryption of a message m ∈ Fk2 is performed according to the rule

{m}McE
pk = mG̃+ e = c, e ∈R En,t.

To decrypt the ciphertext c, one should use an effective decoder DecC : Fn2 → Fk2 of the
code C and the secret key sk:

{c}McE
sk = DecC(cP−1)S−1.

3. Efficient S-repetition construction
On the basis of the Randomized McEliece cryptosystem [7] we construct a new

cryptosystem bMcEl = (KbMcEl , EbMcEl ,DbMcEl) and call it the basic cryptosystem. For
the vector m(∈ Fkq) and the ordered set ω = {ω1, . . . , ωl} ⊆ [k], where ω1 < . . . < ωl,
we consider the projection operator Πω : Fkq → F|ω|q acting according to the rule:
Πω(m) = (mω1 , . . . ,miωl

). For ω consider a subset G(ω) of permutations group Sk acting
on the elements of the set [k]:

G(ω) = {π ∈ Sk : π(1) = ω1, . . . , π(l) = ωl}.

With every permutation π from G(ω) we associate a permutation (k × k)-matrix Rπ.
The encryption rule of basic McEliece bMcEl has the form

{m}bMcEl
pk,ω = {(m ‖ r1)Rπ}McE

pk ‖ {(m ‖ r2)Rπ}McE
pk = c1 ‖ c2 = c,

where m ∈ Flq, ω ⊂R [k], |ω| = l, r1 ∈R Fk−lq , r2 is formed in accordance with the restriction
supp(r1−r2) = [k]\ω, π ∈R G(ω). The error vectors e1 and e2, generated in McE-encryption,
are chosen such that e1 ∈R En,t, e2 ∈R En,t,supp(e1). From here, it follows that

wt(e1) + wt(e2) = 2t.

To decrypt the ciphertext c, one should calculate

{c}bMcEl
sk = Πη({c1}McE

sk ), η = [k] \ supp({c1}McE
sk − {c2}McE

sk ). (1)

Using the one-time strongly unforgeable signature scheme SS = (KSS, Sign, Check) we
will construct a new S-repetition McEliece cryptosystem as a triplet of polynomial-time
algorithms: bMcEs

l = (KbMcEsl
, EbMcEsl

,DbMcEsl
). Key generation algorithm KbMcEsl

takes as
input a security parameter N ∈ N and outputs a public-key pk and a secret key sk of the
form

pk = ((pk0
i , pk

1
i ))

s
i=1, sk = ((sk0

i , sk
1
i ))

s
i=1,

where pkbi , skbi ← KMcE(N), b ∈ {0, 1}, i ∈ [s].
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To define encryption algorithm, let us consider a message m = (m1 ‖ . . . ‖ ms) where
mi ∈ Fl2. Encryption algorithm EbMcEsl

takes as input a public-key pk and a message m and
outputs a ciphertext c:

c = {m}bMcEsl
pkvk

= c′ ‖ vk ‖ σ,

where (dsk,vk) ← KSS(N), vk = (vk1, . . . , vks), σ = Sign(dsk, c′), pkvk = (pkvk11 , . . . ,
pkvkss ), and c′ calculated as follows:

c′ = c′1 ‖ . . . ‖ c′s = [c′1,1 ‖ c′1,2] ‖ . . . ‖ [c′s,1 ‖ c′s,2],

where c′j = [c′j,1 ‖ c′j,2] = {mj}bMcEl

pk
vkj
j ,ω

for j ∈ [s] and ω is chosen randomly once for all

j = 1, . . . , s.
Decryption algorithm DbMcEsl

takes as input a secret-key sk and a ciphertext c and
outputs either a message m ∈ Fslq or a error symbol ⊥. On the first step, DbMcEsl

checks
signature of the message. If Check(c′,vk, σ) = 0, then DbMcEsl

outputs ⊥, otherwise it
computes m as follows. For each c′i from c′ = c′1 ‖ . . . ‖ c′s it finds mi = {c′i}

bMcEl
ski

and ηi
according to (1) and outputs

m =

{
m1 ‖ . . . ‖ms, if η1 = . . . = ηs,

⊥, otherwise.

Let McE be the McEliece cryptosystem with security parameter N . The security of McE
is based on two following standard assumptions.

Assumption 1. There is no polynomial algorithm capable of distinguishing the
(k × n)-matrix of the public key of the McE cryptosystem from a random (k × n)-matrix
with non-negligible probability in N .

Assumption 2. There is no polynomial algorithm that solves the problem of decoding
a general linear code.

According to [8], the problem of decoding a general linear code is NP -hard. Since
P 6= NP has not been proved, we formulate this only as an assumption.

Note that, if these assumptions hold, then one can say that McE is one way trapdoor
function (or OW-CPA secure) [9]. The hardness of most McE-type cryptosystems is based
on the above assumptions (for example, [3, 4, 7]). To formulate the following theorem we
should introduce auxiliary assumption.

Assumption 3. There is no polynomial algorithm that takes as input ciphertext c of
the McE and the number l ∈ N, and outputs 0 if c corresponds to an information message
of a weight less than l and outputs 1 if c corresponds to an information message of weight l
with non-negligible distinguishing advantage in the N .

Theorem 1. Let SS be one-time strongly unforgeable signature scheme. Then bMcEs
l

with security parameter N and fixed s is IND-CCA2 secure if assumptions 1–3 hold.
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