Т. 63, № 9 ФИЗИКА 2020

УДК 538.911 DOI: 10.17223/00213411/63/9/126

В.В. ШЕХОВЦОВ, В.А. ВЛАСОВ, Н.К. СКРИПНИКОВА, М.А. СЕМЕНОВЫХ

ПРОЦЕССЫ СТРУКТУРООБРАЗОВАНИЯ МАТРИЦ БЕТОННЫХ СИСТЕМ, МОДИФИЦИРОВАНЫХ НЕКОНДИЦИОННЫМИ ЧАСТИЦАМИ *

Проведены теоретические и экспериментальные исследования формирования матрицы бетонной системы при вводе некондиционных частиц (НКЧ) концентрацией $0 \le k \ge 0.5$ в состав исходной дисперсной фазы. Установлено, что в бетонных дисперсных системах происходит возникновение и развитие пространственных структурных каркасов с различной степенью заполнения их НКЧ. Введение НКЧ в состав матрицы бетонной системы приводит к формированию прочных структурных связей за счет контактирования частиц через адсорбционные и диффузионные слои, образованных в процессе формирования субмикрокристаллического гелия, обтекаемого новообразованными дисперсными областями (C-S-H). Это обусловлено высоким содержанием FeO в исходном составе НКЧ, который влияет на сцепление между собой частиц дисперсной фазы, обладающих высоким коэффициентом электростатического и электромагнитного притяжения, формирующих кристаллизационные центры на контактных поверхностях границ раздела фаз.

Ключевые слова: матрица бетона, некондиционные частицы, структурообразование, капиллярно-пористые и дисперсные системы, гидросиликаты.

Введение

Физическая природа структурообразования тел основывается на изменении энергии межмолекулярного взаимодействия частиц между собой, вследствие чего в дисперсной среде наблюдается развитие новообразованных связей исследуемой матрицы материала. Рассматривая процессы структурообразования матрицы на основе вяжущих веществ необходимо выделить главную особенность – термодинамический эффект, за счет которого понижается степень насыщения системы влагой, что приводит к изменению активности обводнения (образование гидросиликатов). Этим отличается степень насыщения матрицы в типичных капиллярно-пористых телах [1-3]. Одной из перспективных капиллярно-пористых систем, рассматриваемой на сегодняшний день, представлена матрица бетона [4-6]. Основными новообразованиями, определяющими конечные свойства матрицы бетона, является концентрация гидросиликатов кальция различной модификации (C-S-H обозначение по X. Тейлору). Размеры кристаллов гидросиликатов кальция варьируются от 10^{-7} до 10^{-3} см, т.е. в пределах от коллоидно-дисперсных до грубодисперсных частиц. Стоит отметить, что матрица бетонных изделий представляет собой около 85 % массы затвердевшего материала. В матрице бетонной системы гидросиликаты кальция могут находиться как в гелеобразном состоянии, так и в виде монокристаллов и кристаллических сростков. Основным стабильным морфологическим аспектом существования гидросиликатов в бетонной матрице являются сростки кристаллов, представленные метасоматическим микрорельефом с кавернами и трещинами на поверхности [7].

В настоящее время активно проводятся исследования в области модификации матрицы бетонных систем [8, 9] путем ввода некондиционных частиц (НКЧ) различной морфологии для улучшения компактности заполняемых ячеек (кластеров) дисперсной фазы, внутренней структуры и устойчивости к физико-механическим нагрузкам. В качестве НКЧ в большей степени используют шламы, шлаки и зольные остатки тепловых и металлургических предприятий, которые являются продуктом техногенного характера [10–12]. Однако увеличение содержания НКЧ в матрице бетонной системы вызывает такие проблемы, как низкая прочность, интенсивная подвижность дисперсной системы на ранней стадии твердения [13, 14], вследствие чего снижается долговечность конечного продукта.

Для оценки процессов структурообразования матрицы бетонной системы с учетом взаимодействия НКЧ необходимо отталкиваться от их физической природы образования. Большинство таких масс формируются за счет тепловых нагрузок на исходные сырьевые материалы, используемых на тепловых и металлургических предприятиях, вследствие чего выделяется побочный продукт (отходы), представленный мелкодисперсной скаогулированной массой [15–17]. В рабо-

 $^{^*}$ Работа выполнена при поддержке госзадания Министерства науки и высшего образования РФ FEMN-2020-0004.

Уважаемые читатели!

Доступ к полнотекстовой версии журнала «Известия высших учебных заведений. Физика» осуществляется на платформе Научной электронной библиотеки eLIBRARY.RU на платной основе:

https://elibrary.ru/contents.asp?titleid=7725