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The paper continues an investigation of the cryptanalytical invertibility concept of
finite automata with a finite delay introduced by the author in his previous papers
where he also gave a constructive set theory test for an automaton A to be cryptana-
lytically invertible, that is, to have a recovering function f which allows to calculate
a prefix of a length m in an input sequence of the automaton A by using its output
sequence of a length m+ τ and some additional information about A known to crypt-
analysts, defining a type of its invertibility and of its recovering functon. Here, we
expound a test for that of another kind, namely some logical necessary and sufficient
conditions for an automaton A to have or not a recovering function f of a certain
type. Results related to specific types of automata invertibility (invertibility tests,
inversion algorithms, synthesis of inverse automata and others) are subjects of further
researching and publications.
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1. Introduction
The finite automata invertibility with a finite delay is studied from a cryptanalyst’s

point of view, namely in dependence on a priori information accessible to an inversion
algorithm. In cryptanalysis of symmetric finite automata ciphers by attack with known
ciphertext, the case, when there is a need for solution to an automaton inversion problem
by a partially informed cryptanalyst, is very typical. The cryptanalysts can or can not
know some information about the transfer or output functions of the automaton, about its
initial, intermediate or final state, a part of input word, playing a service role, its length
or the place in the input sequence and others. The variety of information, which can be
known to a cryptanalyst, provides many different types of the automaton invertibility and
many different classes of invertible automata. In this paper, it is assumed that the transfer
and output functions of the automaton under consideration are known completely or up
to accuracy of their classes and the cryptanalysis problem is to recover the prefix of input
word.

The automaton cryptanalytic invertibility with a finite delay plays a very important
role in the analysis and synthesis of finite automata cryptographic systems. In this paper it
is studied with a delay denoted by an integer τ . From the cryptanalyst’s point of view, this
notion means the theoretical possibility for recovering, under some conditions, any prefix α
of a length m in an unknown input sequence αδ of an automaton from its output sequence γ
of the length m + τ and perhaps an additional information such as parameters τ and m,
initial, intermediate or final states of the automaton or the suffix δ of the length τ in the
input sequence. The conditions imposed on the recovering algorithm require for prefix α to
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be arbitrary and may require for the initial state q and suffix δ to be arbitrary or existent,
that is, the variable α is always bound by the universal quantifier and each of variables q
and δ may be bound by any of quantifiers — universal (∀) or existential (∃) one. The variety
of information, which can be known to a cryptanalyst, provides many different types of the
automaton invertibility and, respectively, many different classes of invertible automata.

Thus, in the paper, an invertibility with a finite delay τ of a finite automaton A is a
property of this automaton that allows to precisely determine any input word α of a lengthm
for the output word γ being the result of transforming by the automaton A at its initial
state q the input word αδ with the delay word δ of length τ and with the known m, τ,A, γ
and a subset υ of the set, consisting of the delay word δ and initial, intermediate and final
states q, ψ(α, q), ψ(αδ, q), to which A transits from q under acting of input words α and αδ
respectively and where q and δ may be arbitrary or some elements in their sets. According
to this, the automaton A is called invertible with a delay τ if there exists a function f(γ, υ)
and a triplet of quantifiers κ ∈ {K1x1K2x2K3x3 : Kixi ∈ {∀q,∃q,∀α, ∀δ, ∃δ}, i 6= j ⇒
⇒ xi 6= xj} such that κ(f(γ, υ) = α); in this case f is called a recovering function, κ— an
invertibility type, υ— an invertibility order of the automaton A and ∃fκ(f(γ, υ) = α) —
an invertibility condition for the automaton A. The most known invertibility conditions for
finite automata described earlier as strong and weak by scientists D.A. Huffman, A. Gill,
Sh. Even, A.A. Kurmit, Z.D. Dai, D. F. Ye, K.Y. Lam, R. Tao from [1 – 8] are (∀q∀α∀δ,∅)
and (∀q∀α∀δ, {q}) respectively.

There are many scientific problems which are related to the cryptanalytical notion of
the automaton invertibility with finite delay and are thoroughly enumerated in the previous
author’s paper [9]. Some of them were particularly solved in [10]. Here we study the decision
problem of finding out whether a given automaton is invertible of a given type with a given
delay.

The main result of this study is presented by the logical expressions from quantifier logic
that are constructively describe necessary and sufficient conditions for an automaton A to
have a recovery function f of a certain type and, consequently, to be invertible with a finite
delay and of a given type.

Further, in sections 3 and 4, as a short review, we tell some own results related to
automaton and function cryptanalytical invertibility conditions.

2. Finite automata and normal logical formulas
A finite automaton is described as A = (X,Q, Y, ψ, ϕ), where X, Q and Y are its

input alphabet, state set and output alphabet respectively, ψ and ϕ— its transfer and
output functions, ψ : X × Q → Q and ϕ : X × Q → Y . The last ones being defined for
pairs xq ∈ X × Q, are extended to pairs αq ∈ X∗ × Q by induction on the length |α|
of the word α ∈ X∗, namely the functions ψ : X∗ × Q → Q and ϕ̄ : X∗ × Q → Y ∗

are defined as ψ(Λ, q) = q, ψ(αβ, q) = ψ(β, ψ(α, q)), ϕ̄(Λ, q) = Λ, ϕ̄(x, q) = ϕ(x, q) and
ϕ̄(αβ, q) = ϕ̄(α, q)ϕ̄(β, ψ(α, q)). Here the symbol Λ denotes the empty word in any alphabet.
Thus, ψ(α, q) is a state, into which the automaton A comes from a state q under acting
input word α, and ϕ̄(α, q) is an output word which the automaton produces this time.

Everywhere further τ is a non-negative integer called a delay and it is supposed that in
logical formulas a ∈ X, b ∈ X, α ∈ X∗, β ∈ X∗, δ ∈ Xτ , ε ∈ Xτ , q ∈ Q, s ∈ Q.

3. Decision Problem for finite Automaton Cryptanalytical Invertibility
Consider a finite automaton A = (X,Q, Y, ψ, ϕ). Let q, α, δ be variables with values

in Q,X∗, Xτ , denoting respectively initial state, prefix and suffix of input word αδ of the



64 G. P. Agibalov

automaton A, andK = {∀q,∀α, ∀δ,∃q,∃δ} be the set of universal and existential quantifiers
bounding these variables. In reality, the quantifiers in K are ∀q ∈ Q, ∀α ∈ X∗, ∀δ ∈ Xτ ,
∃q ∈ Q, ∃δ ∈ Xτ . For brevity, we write them without ranges of its variables. Note, that K
doesn’t contain the quantifier ∃α. Also, let V be the set of all subsets υ(q, α, δ) of the set
V0 = {q, δ, ψ(α, q), ψ(αδ, q)} with the initial, intermediate, and final states q, ψ(α, q), and
ψ(αδ, q) respectively and a delay word δ.

We say, that the automaton A is cryptanalytically invertible (with a delay IDel τ =
= |δ|, of a type IT = (K1x1, K2x2, K3x3) with {x1, x2, x3} = {q, α, δ}, of a degree IDeg =
= (K1, K2, K3), Ki ∈ {∀, ∃}, Kixi ∈ K, i = 1, 2, 3, and of an order IO = υ(q, α, δ) ∈ V )
if there exists an inverse (recovering) function IF f : Y ∗ × V → X∗ with the invertibility
property expressed in the form

K1x1K2x2K3x3(f(ϕ̄(αδ, q), υ(q, α, δ)) = α), (1)

in this case the used delay IDel, type IT, degree IDeg, order IO and function IF we call the
parameters of this invertibility.

In reality, 208 different kinds of cryptanalytical invertibility of finite automata are now
defined. All of them are presented in the Table 1 [9].

Ta b l e 1
Formulas for cryptanalytical invertibility conditions

of a finite automaton

No Quantifier prefix No Underlying expression
1 f(ϕ̄(αδ, q)) = α
2 f(ϕ̄(αδ, q), q) = α
3 f(ϕ̄(αδ, q), ψ(α, q)) = α

1 ∃f ∀q ∀α ∀δ 4 f(ϕ̄(αδ, q), ψ(αδ, q)) = α
2 ∃f ∀q ∀α ∃δ 5 f(ϕ̄(αδ, q), δ) = α
3 ∃f ∀q ∃δ ∀α 6 f(ϕ̄(αδ, q), q, ψ(α, q)) = α
4 ∃f ∃q ∀α ∀δ 7 f(ϕ̄(αδ, q), q, ψ(αδ, q)) = α
5 ∃f ∃q ∀α ∃δ 8 f(ϕ̄(αδ, q), q, δ) = α
6 ∃f ∃q ∃δ ∀α 9 f(ϕ̄(αδ, q), ψ(α, q), ψ(αδ, q)) = α
7 ∃f ∀α ∃q ∀δ 10 f(ϕ̄(αδ, q), ψ(α, q), δ) = α
8 ∃f ∀α ∃q ∃δ 11 f(ϕ̄(αδ, q), ψ(αδ, q), δ) = α
9 ∃f ∀α ∀δ ∃q 12 f(ϕ̄(αδ, q), q, ψ(α, q), ψ(αδ, q)) = α
10 ∃f ∀α ∃δ ∀q 13 f(ϕ̄(αδ, q), q, ψ(α, q), δ) = α
11 ∃f ∀δ ∃q ∀α 14 f(ϕ̄(αδ, q), q, ψ(αδ, q), δ) = α
12 ∃f ∃δ ∀q ∀α 15 f(ϕ̄(αδ, q), ψ(α, q), ψ(αδ, q), δ) = α
13 ∃f ∃δ ∀α ∃q 16 f(ϕ̄(αδ, q), q, ψ(α, q), ψ(αδ, q), δ) = α

The definition of the cryptanalytical invertibility of a finite automaton given above
unfortunately is not constructive one. It doesn’t contain any necessary and sufficient
conditions for an automaton to be cryptanalytically invertible with the given parameters,
but implies the existence of a recovering function, and should be provided with an
algorithmic test in order to effectively find out whether there exist the function f such that
the formula (1) is true and in case of a positive answer to produce an effective algorithm
for constructing such a function, to become convinced in the automaton cryptanalytical
invertibility with the nedeed properties and possibly with the existence of the inverse
automaton and to design the last.

So, the following is the first Decision Problem which we need to put and try to solve
for further developing the theory of Cryptanalytically Invertible finite automata —ACIDP:
given a finite automaton A, the values of invertibility delay IDel τ , an invertibility type IT,
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an invertibility degree IDeg and (or) an invertibility order IO for cryptanalytical invertibility
of the automaton A, find out whether the automaton A is invertible of type IT with the
delay τ and of order IO and if so, to construct a proper recovering function f satisfying the
condition (1).

The important place in this row takes the problem of creation or generating invertible
automata of all possible types. In various decisions of this problem different requirements
to generated automata can be presented: with equal probability in given invertibility class,
with bounded complexity, with the great or, otherwise, small delay of invertibility and so
on. Its solution seems to be impossible without proper decision of the first problem.

Further, in this Section, we tell some results related to ACIDP, published in [9, 10] and
given here in the form of Propositions.

Proposition 1 [9]. The automaton A is cryptanalytically invertible with the delay
τ = |δ|, of type (∀q,∀α, ∀δ), and of an order υ(q, α, δ), that is, there exists a function
f : Y ∗ × V → X∗ with the invertibility property

∀q∀α∀δ(f(ϕ̄(αδ, q), υ(q, α, δ)) = α),

if and only if

∀q∀α∀δ∀s∀β∀ε(α 6= β ⇒ (ϕ̄(αδ, q), υ(q, α, δ)) 6= (ϕ̄(βε, s), υ(s, β, ε)).

Proposition 2 [9]. If the automaton A is invertible of a delay |δ|, of a type
K1x1K2x2K3x3, and of an order υ(q, α, δ), that is, if there exists a function f : Y ∗×V → X∗

with the invertibility property (1), then

K1x1K2x2K3x3K1y1K2y2K3y3

(
α 6= β ⇒ (ϕ̄(αδ, q), υ(q, α, δ)) 6= (ϕ̄(βε, s), υ(s, β, ε))

)
,

where {x1, x2, x3} = {q, α, δ}, {y1, y2, y3} = {s, β, ε}.
Definition 1 [10]. Having a quantifier sequence K1x1, . . . , Knxn (a quantifier prefix

of a predicate logical formula in a normal form), we believe n = m + s, i1 6 . . . 6 im,
j1 6 . . . 6 js, {i1, . . . im, j1, . . . , js} = {1, . . . , n}, Ki1 = . . . = Kim = ∀, Kj1 = . . . =
Kjs = ∃. Also, for r ∈ {j1, . . . , js} let εr : D1 × . . . × Dr−1 → Dr be a function (called
existential) the value εr(a1, . . . , ar−1) of which is computed by the quantifier Krxr with
Kr = ∃ as a next value ar of the variable xr in dependence on the last values a1, . . . , ar−1

of variables x1, . . . , xr−1, predecessors to variable xr. Finally, define the vector existential
function ε = εj1 . . . εjs and the setMε called the existential domain of the quantifier sequence
K1x1 . . . Knxn corresponding to existential functions in ε. By the definition

a1 . . . an ∈Mε ⇔ (a1 . . . an ∈ D1×. . .×Dn)&(aj1 . . . ajs = εj1(a1 . . . aj1−1) . . . εjs(a1 . . . ajs−1).

Proposition 3 [10]. The automaton A is cryptanalytically invertible of a delay |δ|,
of a type K1x1K2x2K3x3, where {x1, x2, x3} = {q, α, δ}, and of an order υ(q, α, δ), that is,
there exists a function f : Y ∗ × V → X∗ with the invertibility property, if and only if for
K1x1K2x2K3x3 there is an existential vector function ε such that

∀a1a2a3 ∈Mε∀b1b2b3 ∈Mε(α 6= β ⇒ ((ϕ̄(αδ, q), υ(q, α, δ)) 6= (ϕ̄(βε, s), υ(s, β, γ)))),

where q and s ∈ Q,α and β ∈ X∗, δ and γ ∈ Xτ , a1a2a3 and b1b2b3 ∈Mε, if ak = q, α or δ,
then bk = s, β or γ respectively, k ∈ {1, 2, 3}.
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4. Decision Problem for Function Cryptanalytical Invertibility
This problem we use as an auxiliary one to the main problem—ACIDP.
Let g(x1, . . . , xn) be a function in variables x1, . . . , xn with a range Dg, Kixi be a

quantifier bounding the variable xi, i = 1, . . . n, k0 ∈ {1, . . . , n}, and Kk0 = ∀. Let
f : Dg → Dk0 denote an arbitrary function with the domain Dg and the range Dk0 and, for
definition correctness of f , let |Dg| > |Dk0|. Moreover, always further we believe that each
function under consideration has a domain with the number of elements not less than the
number of elements in its range.

We say, that the function g(x1, x2, . . . , xn) is cryptanalytically invertible (with respect
to an invertibility variable IV = xk0 and of the type IT = K1x1 . . . Knxn) if there exists an
inverse (recovering) function f : Dg → Dk0 with the invertibility property expressed in the
form

K1x1 . . . Knxn(f(g(x1, . . . , xn)) = xk0), (2)

in this case the used number k0, type IT, and the function f we call the parameters of this
invertibility.

The following is the Decision Problem for Function Cryptanalytical Invertibility —
FCIDP: given a function g, a variable xk0 and invertibility type IT = K1x1 . . . Knxn for
cryptanalytical invertibility of the function g, find out whether the function g is invertible
with respect to IV xk0 and of type IT and if so, to construct a function f satisfying the
condition (2).

We should see that our main problem ACIDP is obtained from the particular case of our
auxiliary problem FCIDP by taking n = 3, k0 ∈ {1, 2, 3}, {x1, x2, x3} = {q, α, δ}, xk0 = α,
g(x1, x2, x3) = (ϕ̄(αδ, q), υ(q, α, δ)). Thus, a method deciding the auxiliary problem also
decides the main one and so, our problem ACIDP reduces to our problem FCIDP.

Now we tell some theoretical results related to FCIDP published in [9, 10].
Proposition 4 [9]. For any function g : D1× . . .×Dn → Dg a function f : Dg → Dk0

with the invertibility property

∀x1 . . . ∀xn(f(g(x1, . . . , xn)) = xk0)

exists if and only if

∀x1 . . . ∀xn∀y1 . . . ∀yn(xk0 6= yk0 ⇒ g(x1, . . . , xn) 6= g(y1, . . . , yn)).

Proposition 5 [9]. For any function g, if there exists a function f : Dg → Dk0 with
the invertibility property (2), then

K1x1 . . . KnxnK1y1 . . . Knyn(xk0 6= yk0 ⇒ g(x1, . . . , xn) 6= g(y1, . . . , yn)).

Proposition 6 [10]. For any function g(x1, . . . , xn) there exists a function f : Dg →
→ Dk0 with the invertibility property (2), if and only if for each k ∈ {j1, . . . , js} there exists
an existential function εk : D1 × . . . × Dk−1 → Dk such that the set Mε corresponding to
ε = εj1 . . . εjs satisfies the following condition:

∀a = a1 . . . an ∈Mε∀b = b1 . . . bn ∈Mε(ak0 6= bk0 ⇒ g(a) 6= g(b)).
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5. Formulas for cryptanalytical invertibility conditions for finite automata
The Table 1 from [9] is presented here for constructing invertibility condition of an

automaton from its parts. The line number i ∈ {1, 2, . . . , 13} specifies the quantifier
prefix ∃fK1x1K2x2K3x3 and the line number j ∈ {1, 2, . . . , 16} describes the underlying
expression f(ϕ̄(αδ, q), υ(q, α, δ)) = α, where {x1, x2, x3} = {q, α, δ}. These parts form the
complete condition denoted Ui,j or Ui,j[τ ], if a reference to the invertibility delay is required.
For instance, U1,1[τ ] =∃f∀q∀α∀δ(f(ϕ̄(αδ, q)) =α), U1,2[τ ] =∃f∀q∀α∀δ(f(ϕ̄(αδ, q), q) =α),
U5,10[τ ] = ∃f∃q∀α∃δ(f(ϕ̄(αδ, q), ψ(α, q), δ) = α).

Let κ(i)(q, α, δ) and υj(q, α, δ) be respectively K1x1K2x2K3x3 where ∃fK1x1K2x2K3x3

is the quantifier prefix from the line number i in the Table 1 and the invertibility order
υj(q, α, δ) from the line number j in underlying expression f(ϕ̄(αδ, q), υj(q, α, δ)) = α in
the Table 1. For example, κ(5)(q, α, δ) = ∃q∀α∃δ and υ13(q, α, δ) = {q, ψ(α, q), δ}.

So for any i ∈ {1, 2, . . . , 13} and j ∈ {1, 2, . . . , 16}, κ(i)(q, α, δ) and υj(q, α, δ) present
some cryptanalytical parameters of finite automata such as their invertibility type, degree,
order and so on.

Let also κi(q, α, δ, s, β, ε) = κ(i)(q, α, δ)κ(i)(s, β, ε), {x1, x2, x3} = {q, α, δ}, {y1, y2, y3} =
= {s, β, ε}, xk0 = α, yk0 = β, g(x1, . . . , xn) = (ϕ̄(αδ, q), υj(q, α, δ)),

K1x1K2x2K3x3K1y1K2y2K3y3 = κi(q, α, δ, s, β, ε),

and we can write down the invertibility condition (1) in the following new form

Ui,j = ∃fκ(i)(q, α, δ)[f(ϕ̄(αδ, q), υj(q, α, δ)) = α],

its equivalent from Proposition 2 in the following new form

κi(q, α, δ, s, β, ε)[(α 6= β ⇒ (ϕ̄(αδ, q), υj(q, α, δ)) 6= (ϕ̄(βε, s), υj(s, β, ε)))].

where {x1, x2, x3} = {q, α, δ}, {y1, y2, y3} = {s, β, ε}.
Thus, the following assertion is proved.
Proposition 7. For all i ∈ {1, 2, . . . , 13} and j ∈ {1, 2, . . . , 16},

Ui,j = κi(q, α, δ, s, β, ε)[α 6= β & υj(q, α, δ) = υj(s, β, ε)⇒ ϕ̄(αδ, q) 6= ϕ̄(βε, s)]. (3)

For example,

U2,7 = ∀q∀α∃δ∀s∀β∃ε[α 6= β & q = s & ψ(αδ, q) = ψ(βε, s)⇒ ϕ̄(αδ, q) 6= ϕ̄(βε, s)].

For compact presentation of obtained so, including simplifications, logic formulas for
all 208 invertibility conditions Ui,j of automata A, below at first separately the notation
in them is enumerated for all possible quantifier prefixes and underlying expressions, and
then in the Table 2 the formulas themselfes in the form κΓ, where κ and Γ —notation
respectively of quantifier prefix and of underlying expression from the given list.

In some cases formula (3) for Ui,j can be simplified, namely: if the condition υj(q, α, δ) =
= υj(s, β, ε) includes the equalities q = s and (or) δ = ε, and the quantifier prefix
κ(i)(q, α, δ)κ(i)(s, β, ε) contains quantifiers ∀q, ∀s and (or) ∀δ, ∀ε, then it is possible
to exclude simultaneously from this condition these equalities, to exclude from prefix
quantifiers ∀s and (or) ∀ε, and to put in conclusion (ϕ̄(αδ, q) 6= ϕ̄(βε, s)) s = q and (or)
ε = δ respectively. This simplification is an equivalent transformation and doesn’t change
the truth value of the formula.

Notations of quantifier prefixes κ in the formulas of automaton A invertibility conditions:
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a = ∀q∀α∀δ∀s∀β∀ε; i = ∀α∀δ∃q∀β∀ε∃s; b2 = ∀q∀α∃δ∀β∃ε;
b = ∀q∀α∃δ∀s∀β∃ε; j = ∀α∃δ∀q∀β∃ε∀s; c2 = ∀q∃δ∀α∃ε∀β;
c = ∀q∃δ∀α∀s∃ε∀β; k = ∀δ∃q∀α∀ε∃s∀β; d1 = ∃q∀α∀δ∃s∀β;
d = ∃q∀α∀δ∃s∀β∀ε; l = ∃δ∀q∀α∃ε∀s∀β; g1 = ∀α∃q∀δ∀β∃s;
e = ∃q∀α∃δ∃s∀β∃ε; m = ∃δ∀α∃q∃ε∀β∃s; i1 = ∀α∀δ∃q∀β∃s;
f = ∃q∃δ∀α∃s∃ε∀β; a2 = ∀q∀α∀δ∀β∀ε; j2 = ∀α∃δ∀q∀β∃ε;
g = ∀α∃q∀δ∀β∃s∀ε; a1 = ∀q∀α∀δ∀s∀β k1 = ∀δ∃q∀α∃s∀β;
h = ∀α∃q∃δ∀β∃s∃ε; a0 = ∀q∀α∀δ∀β; l2 = ∃δ∀q∀α∃ε∀β.

Notation of underlying expressions Γ in formulas of automaton A invertibility conditions:

A = [α 6= β ⇒ ϕ̄(αδ, q) 6= ϕ̄(βε, s)];

B = [α 6= β & q = s⇒ ϕ̄(αδ, q) 6= ϕ̄(βε, s)];

B2 = [α 6= β ⇒ ϕ̄(αδ, q) 6= ϕ̄(βε, q)];

C = [α 6= β & ψ(α, q) = ψ(β, s)⇒ ϕ̄(αδ, q) 6= ϕ̄(βε, s)];

D = [α 6= β & ψ(αδ, q) = ψ(βε, s)⇒ ϕ̄(αδ, q) 6= ϕ̄(βε, s)];

E = [α 6= β & δ = ε⇒ ϕ̄(αδ, q) 6= ϕ̄(βε, s)];

E1 = [α 6= β ⇒ ϕ̄(αδ, q) 6= ϕ̄(βδ, s)];

F = [α 6= β & q = s & ψ(α, q) = ψ(β, s)⇒ ϕ̄(αδ, q) 6= ϕ̄(βε, s)];

F2 = [α 6= β & ψ(α, q) = ψ(β, q)⇒ ϕ̄(αδ, q) 6= ϕ̄(βε, q)];

G = [α 6= β & q = s & ψ(αδ, q) = ψ(βε, s)⇒ ϕ̄(αδ, q) 6= ϕ̄(βε, s)];

G2 = [α 6= β & ψ(αδ, q) = ψ(βε, q)⇒ ϕ̄(αδ, q) 6= ϕ̄(βε, q)];

H = [α 6= β & q = s & δ = ε⇒ ϕ̄(αδ, q) 6= ϕ̄(βε, s)];

H2 = [α 6= β & δ = ε⇒ ϕ̄(αδ, q) 6= ϕ̄(βε, q)];

H1 = [α 6= β & q = s⇒ ϕ̄(αδ, q) 6= ϕ̄(βδ, s)];

H0 = [α 6= β ⇒ ϕ̄(αδ, q) 6= ϕ̄(βδ, q)];

I = [α 6= β & ψ(α, q) = ψ(β, s) & ψ(αδ, q) = ψ(βε, s)⇒ ϕ̄(αδ, q) 6= ϕ̄(βε, s)];

J = [α 6= β & δ = ε & ψ(α, q) = ψ(β, s)⇒ ϕ̄(αδ, q) 6= ϕ̄(βε, s)];

J1 = [α 6= β & ψ(α, q) = ψ(β, s)⇒ ϕ̄(αδ, q) 6= ϕ̄(βδ, s)];

K = [α 6= β & δ = ε & ψ(αδ, q) = ψ(βε, s)⇒ ϕ̄(αδ, q) 6= ϕ̄(βε, s)];

K1 = [α 6= β & ψ(αδ, q) = ψ(βδ, s)⇒ ϕ̄(αδ, q) 6= ϕ̄(βδ, s)];

L = [α 6= β & q = s & ψ(α, q) = ψ(β, s) & ψ(αδ, q) = ψ(βε, s)⇒ ϕ̄(αδ, q) 6= ϕ̄(βε, s)];

L2 = [α 6= β & ψ(α, q) = ψ(β, q) & ψ(αδ, q) = ψ(βε, q)⇒ ϕ̄(αδ, q) 6= ϕ̄(βε, q)];

M = [α 6= β & q = s & δ = ε & ψ(α, q) = ψ(β, s)⇒ ϕ̄(αδ, q) 6= ϕ̄(βε, s)];

M2 = [α 6= β & δ = ε & ψ(α, q) = ψ(β, q)⇒ ϕ̄(αδ, q) 6= ϕ̄(βε, q)];

M1 = [α 6= β & q = s & ψ(α, q) = ψ(β, s)⇒ ϕ̄(αδ, q) 6= ϕ̄(βδ, s)];

M0 = [α 6= β & ψ(α, q) = ψ(β, q)⇒ ϕ̄(αδ, q) 6= ϕ̄(βδ, q)];

N = [α 6= β & q = s & δ = ε & ψ(αδ, q) = ψ(βε, s)⇒ ϕ̄(αδ, q) 6= ϕ̄(βε, s)];

N2 = [α 6= β & δ = ε & ψ(αδ, q) = ψ(βε, q)⇒ ϕ̄(αδ, q) 6= ϕ̄(βε, q)];

N1 = [α 6= β & q = s & ψ(αδ, q) = ψ(βδ, s)⇒ ϕ̄(αδ, q) 6= ϕ̄(βδ, s)];

N0 = [α 6= β & ψ(αδ, q) = ψ(βδ, q)⇒ ϕ̄(αδ, q) 6= ϕ̄(βδ, q)];
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O = [α 6= β & δ = ε & ψ(α, q) = ψ(β, s) & ψ(αδ, q) = ψ(βε, s)⇒ ϕ̄(αδ, q) 6= ϕ̄(βε, s)];

O1 = [α 6= β & ψ(α, q) = ψ(β, s) & ψ(αδ, q) = ψ(βδ, s)⇒ ϕ̄(αδ, q) 6= ϕ̄(βδ, s)];

P = [α 6= β & q = s & δ = ε & ψ(α, q) = ψ(β, s) & ψ(αδ, q) = ψ(βε, s)⇒
⇒ ϕ̄(αδ, q) 6= ϕ̄(βε, s)];

P2 = [α 6= β & δ = ε & ψ(α, q) = ψ(β, q) & ψ(αδ, q) = ψ(βε, q)⇒ ϕ̄(αδ, q) 6= ϕ̄(βε, q)];

P1 = [α 6= β & q = s & ψ(α, q) = ψ(β, s) & ψ(αδ, q) = ψ(βδ, s)⇒ ϕ̄(αδ, q) 6= ϕ̄(βδ, s)];

P0 = [α 6= β & ψ(α, q) = ψ(β, q) & ψ(αδ, q) = ψ(βδ, q)⇒ ϕ̄(αδ, q) 6= ϕ̄(βδ, q)].

Formulas κΓ for conditions of the automaton A invertibility of all possible types are
presented in the Table 2. For any words ξ, ζ in X∗ and states q, s in Q inequality ϕ̄(ξ, q) 6=
6= ϕ̄(ζ, s) is always provided when |ξ| 6= |ζ|, therefore in any of these formulas it is possible
to count |α| = |β|. Further we use this possibility without additional reservations.

Ta b l e 2

Formulas κΓ for conditions of the automaton invertibility of all possible types

i 1 2 3 4 5 6 7 8 9 10 11 12 13
Ui,1 aA bA cA dA eA fA gA hA iA jA kA lA mA
Ui,2 a2B2 b2B2 c2B2 dB eB fB gB hB iB j2B2 kB l2B2 mB
Ui,3 aC bC cC dC eC fC gC hC iC jC kC lC mC
Ui,4 aD bD cD dD eD fD gD hD iD jD kD lD mD
Ui,5 a1E1 bE cE d1E1 eE fE g1E1 hE i1E1 jE k1E1 lE mE
Ui,6 a2F2 b2F2 c2F2 dF eF fF gF hF iF j2F2 kF l2F2 mF
Ui,7 a2G2 b2G2 c2G2 dG eG fG gG hG iG j2G2 kG l2G2 mG
Ui,8 a0H0 b2H2 c2H2 d1H1 eH fH g1H1 hH i1H1 j2H2 k1H1 l2H2 mH
Ui,9 aI bI cI dI eI fI gI hI iI jI kI lI mI
Ui,10 a1J1 bJ cJ d1J1 eJ fJ g1J1 hJ i1J1 jJ k1J1 lJ mJ
Ui,11 a1K1 bK cK d1K1 eK fK g1K1 hK i1K1 jK k1K1 lK mK
Ui,12 a2L2 b2L2 c2L2 dL eL fL gL hL iL j2L2 kL l2L2 mL
Ui,13 a0M0 b2M2 c2M2 d1M1 eM fM g1M1 hM i1M1 j2M2 k1M1 l2M2 mM
Ui,14 a0N0 b2N2 c2N2 d1N1 eN fN g1N1 hN i1N1 j2N2 k1N1 l2N2 mN
Ui,15 a1O1 bO cO d1O1 eO fO g1O1 hO i1O1 jO k1O1 lO mO
Ui,16 a0P0 b2P2 c2P2 d1P1 eP fP g1P1 hP i1P1 j2P2 k1P1 l2P2 mP

Let in the Table 2 for any i = 1, 2, . . . , 13 and j = 1, 2, . . . , 16 element on intersection
of line with Ui,j at the head and column with the number i is denoted Tij. Then Ui,j = Tij.

So, for instance, U1,1 = aA = ∀q∀α∀δ∀s∀β∀ε[α 6= β ⇒ ϕ̄(αδ, q) 6= ϕ̄(βε, s)];
U4,8 = d1H1 = ∃q∀α∀δ∃s∀β[α 6= β & q = s ⇒ ϕ̄(αδ, q) 6= ϕ̄(βδ, s)]; U10,13 = j2M2 =
= ∀α∃δ∀q∀β∃ε[α 6= β & δ = ε & ψ(α, q) = ψ(β, q)⇒ ϕ̄(αδ, q) 6= ϕ̄(βε, q)], and so on.

If in expression for Ui,j in (3) the condition υj(q, α, δ) = υj(s, β, ε) includes into itself
equalities q = s and (or) δ = ε, and quantifier prefix κ(i)(q, α, δ)κ(i)(s, β, ε) contains
quantifiers ∃q,∃s and (or) ∃δ, ∃ε, then, putting down from it these equalities and quantifiers
∃s and (or) ∃ε and placing in its conclusion ϕ̄(αδ, q) 6= ϕ̄(βε, s) respectively s = q and (or)
ε = δ, we obtain expression, denoted further U ′i,j, for which the implication U ′i,j ⇒ Ui,j
is true. This means that the condition U ′i,j is sufficient, but not obligatory necessary for
invertibility of type κ(i) and order υj for аutomaton A. All obtained so sufficient conditions
of invertibility for automaton A are represented in Table 3. In it quantifier prefixes have
the following notation:

b1 = ∀q∀α∃δ∀s∀β; e1 = ∃q∀α∃δ∃s∀β; h2 = ∀α∃q∃δ∀β∃ε; k2 = ∀δ∃q∀α∀ε∀β;
b0 = ∀q∀α∃δ∀β; e0 = ∃q∀α∃δ∀β; h1 = ∀α∃q∃δ∀β∃s; k0 = ∀δ∃q∀α∀β;
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c1 = ∀q∃δ∀α∀s∀β; f2 = ∃q∃δ∀α∃ε∀β; h0 = ∀α∃q∃δ∀β; l1 = ∃δ∀q∀α∀s∀β;
c0 = ∀q∃δ∀α∀β; f1 = ∃q∃δ∀α∃s∀β; i2 = ∀α∀δ∃q∀β∀ε; l0 = ∃δ∀q∀α∀β;
d2 = ∃q∀α∀δ∀β∀ε; f0 = ∃q∃δ∀α∀β; i0 = ∀α∀δ∃q∀β; m2 = ∃δ∀α∃q∃ε∀β;
d0 = ∃q∀α∀δ∀β; g2 = ∀α∃q∀δ∀β∀ε; j1 = ∀α∃δ∀q∀β∀s; m1 = ∃δ∀α∃q∀β∃s;
e2 = ∃q∀α∃δ∀β∃ε; g0 = ∀α∃q∀δ∀β; j0 = ∀α∃δ∀q∀β; m0 = ∃δ∀α∃q∀β.

Ta b l e 3

Formulas for sufficient conditions of the automaton invertibility of some types

i 2 3 4 5 6 7 8 9 10 11 12 13
U ′
i,2 d2B2 e2B2 f2B2 g2B2 h2B2 i2B2 k2B2 m2B2

U ′
i,5 b1E1 c1E1 e1E1 f1E1 h1E1 j1E1 l1E1 m1E1

U ′
i,6 d2F2 e2F2 f2F2 g2F2 h2F2 i2F2 k2F2 m2F2

U ′
i,7 d2G2 e2G2 f2G2 g2G2 h2G2 i2G2 k2G2 m2G2

U ′
i,8 b0H0 c0H0 d0H0 e0H0 f0H0 g0H0 h0H0 i0H0 j0H0 k0H0 l0H0 m0H0

U ′
i,10 b1J1 c1J1 e1J1 f1J1 h1J1 j1J1 l1J1 m1J1

U ′
i,11 b1K1 c1K1 e1K1 f1K1 h1K1 j1K1 l1K1 m1K1

U ′
i,12 d2L2 e2L2 f2L2 g2L2 h2L2 i2L2 k2L2 m2L2

U ′
i,13 b0M0 c0M0 d0M0 e0M0 f0M0 g0M0 h0M0 i0M0 j0M0 k0M0 l0M0 m0M0

U ′
i,14 b0N0 c0N0 d0N0 e0N0 fNH0 g0N0 h0N0 i0N0 j0N0 k0N0 l0N0 m0N0

U ′
i,15 b1O1 c1O1 e1O1 f1O1 h1O1 j1O1 l1O1 m1O1

U ′
i,16 b0P0 c0P0 d0P0 e0P0 f0P0 g0P0 h0P0 i0P0 j0P0 k0P0 l0P0 m0P0

6. Problems in the theory of automata cryptanalytical invertibility
ACIDP. Given a cryptanalyical invertibility type (quantifier prefix K1x1K2x3K3x3,

{x1, x2, x3} = {q, α, δ}, and invertibility order υ(q, α, δ)), as well as an invertibility
delay τ , a number k0 ∈ {1, 2, 3} such that Kk0 = ∀, xk0 = α, a subject direct
transformation g(x1, x2, x3) = (ϕ̄(αδ, q), υ(q, α, δ)), and a subject inverse transformation
f(ϕ̄(αδ, q), υ(q, α, δ)), find out whether f is a proper recovering function, that is, (1) is
true, and hence the automaton under consideration is really invertible of the given type
and with the given delay.

FIDP. Given a cryptanalytical invertibility type (quantifier prefix K1x1 . . . Knxn), a
number k0 ∈ {1, . . . , n} such that Kk0 = ∀, and an abstract function g(x1, . . . , xn), find
out whether there exists a recovering function f such that f(g(x1, . . . , xn)) = xk0 , and if it
exists, then construct it.

For any specific j, classes Ci,j(τ) [9] with all possible i and τ and automata in them we
call respectively classes of invertibility and invertible automata of one propositionality (j),
or one-propositional (of index j). Due to the fact that, for any predicates P (x) and
R(x, y), implicаtions ∀xP (x) ⇒ ∃xP (x), ∀x∀yR(x, y) ⇒ ∃x∀yR(x, y) and ∃x∀yR(x, y) ⇒
⇒ ∀y∃xR(x, y) are true, the inclusion relation is possible between some one-propositional
classes of invertibility with equal delay [9].

The invertibility notion of finite automaton considered in this paper doesn’t foresee
for invertible automaton of obligatory existence of an inverse automaton. Moreover, it is
admitted that the function of recovering input prefix for some types of automata invertibility
can not be finite automaton. In this situation, naturally, the problem arises to find out for
given invertible (of a certain) type automaton whether it has inverse automaton, and if it
has, then to construct it. Decision of this problem, in turn, intends the introduction of the
definition of an inverse automaton for an arbitrary automaton of every invertibility class.
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The important place in this row takes the problem of creation invertible automata
of all possible types. In various formulations of this problem different requirements to
generated automata can be considered —with equal probability in given invertibility class,
with bounded complexity, with a great or, otherwise, small delay of invertibility and so on.
Its solution seems to be impossible without proper decision of the ACIDP.
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