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The paper continues an investigation of the cryptanalytical invertibility concept of
finite automata with a finite delay introduced by the author in his previous papers
where he also gave a constructive set theory test for an automaton A to be cryptana-
lytically invertible, that is, to have a recovering function f which allows to calculate
a prefix of a length m in an input sequence of the automaton A by using its output
sequence of a length m 4 7 and some additional information about A known to crypt-
analysts, defining a type of its invertibility and of its recovering functon. Here, we
expound a test for that of another kind, namely some logical necessary and sufficient
conditions for an automaton A to have or not a recovering function f of a certain
type. Results related to specific types of automata invertibility (invertibility tests,
inversion algorithms, synthesis of inverse automata and others) are subjects of further
researching and publications.
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1. Introduction

The finite automata invertibility with a finite delay is studied from a cryptanalyst’s
point of view, namely in dependence on a priori information accessible to an inversion
algorithm. In cryptanalysis of symmetric finite automata ciphers by attack with known
ciphertext, the case, when there is a need for solution to an automaton inversion problem
by a partially informed cryptanalyst, is very typical. The cryptanalysts can or can not
know some information about the transfer or output functions of the automaton, about its
initial, intermediate or final state, a part of input word, playing a service role, its length
or the place in the input sequence and others. The variety of information, which can be
known to a cryptanalyst, provides many different types of the automaton invertibility and
many different classes of invertible automata. In this paper, it is assumed that the transfer
and output functions of the automaton under consideration are known completely or up
to accuracy of their classes and the cryptanalysis problem is to recover the prefix of input
word.

The automaton cryptanalytic invertibility with a finite delay plays a very important
role in the analysis and synthesis of finite automata cryptographic systems. In this paper it
is studied with a delay denoted by an integer 7. From the cryptanalyst’s point of view, this
notion means the theoretical possibility for recovering, under some conditions, any prefix a
of a length m in an unknown input sequence ad of an automaton from its output sequence
of the length m + 7 and perhaps an additional information such as parameters 7 and m,
initial, intermediate or final states of the automaton or the suffix § of the length 7 in the
input sequence. The conditions imposed on the recovering algorithm require for prefix a to
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be arbitrary and may require for the initial state ¢ and suffix ¢ to be arbitrary or existent,
that is, the variable « is always bound by the universal quantifier and each of variables ¢
and J may be bound by any of quantifiers — universal (V) or existential (3) one. The variety
of information, which can be known to a cryptanalyst, provides many different types of the
automaton invertibility and, respectively, many different classes of invertible automata.

Thus, in the paper, an invertibility with a finite delay 7 of a finite automaton A is a
property of this automaton that allows to precisely determine any input word « of a length m
for the output word ~ being the result of transforming by the automaton A at its initial
state ¢ the input word ad with the delay word ¢ of length 7 and with the known m, 7, A,y
and a subset v of the set, consisting of the delay word ¢ and initial, intermediate and final
states ¢, ¥(a, q), ¥ (ad, q), to which A transits from ¢ under acting of input words o and «d
respectively and where ¢ and d may be arbitrary or some elements in their sets. According
to this, the automaton A is called invertible with a delay 7 if there exists a function f(~,v)
and a triplet of quantifiers k € {Kjx1KyroKsxg @ Kix; € {¥q,3q,Va,¥0,36},i # j =
= z; # x;} such that x(f(7,v) = a); in this case f is called a recovering function, x — an
invertibility type, v —an invertibility order of the automaton A and Ifr(f(y,v) = o) —
an invertibility condition for the automaton A. The most known invertibility conditions for
finite automata described earlier as strong and weak by scientists D. A. Huffman, A. Gill,
Sh. Even, A. A. Kurmit, Z.D. Dai, D.F. Ye, K. Y. Lam, R. Tao from [1-8] are (V¢VaVé, @)
and (VgVaVo, {q}) respectively.

There are many scientific problems which are related to the cryptanalytical notion of
the automaton invertibility with finite delay and are thoroughly enumerated in the previous
author’s paper |9]. Some of them were particularly solved in [10]. Here we study the decision
problem of finding out whether a given automaton is invertible of a given type with a given
delay.

The main result of this study is presented by the logical expressions from quantifier logic
that are constructively describe necessary and sufficient conditions for an automaton A to
have a recovery function f of a certain type and, consequently, to be invertible with a finite
delay and of a given type.

Further, in sections 3 and 4, as a short review, we tell some own results related to
automaton and function cryptanalytical invertibility conditions.

2. Finite automata and normal logical formulas

A finite automaton is described as A = (X,Q,Y,v,p), where X, @ and Y are its
input alphabet, state set and output alphabet respectively, ¥ and ¢ —its transfer and
output functions, ¥ : X x @ — @ and ¢ : X x ) — Y. The last ones being defined for
pairs xqg € X x @, are extended to pairs ag € X* x @ by induction on the length |«
of the word @ € X*, namely the functions ¢ : X* x @ — @Q and ¢ : X* x Q — Y~
are defined as ¥(A, q) = ¢, ¥(af,q) = V(B,¥(a,q)), ¢(A,q) = A, ¢(x,q) = ¢(x,q) and
o(ap,q) = (o, q)p(B, ¥ (a, q)). Here the symbol A denotes the empty word in any alphabet.
Thus, ¥(«, q) is a state, into which the automaton A comes from a state ¢ under acting
input word «, and ¢(«, q) is an output word which the automaton produces this time.

Everywhere further 7 is a non-negative integer called a delay and it is supposed that in
logical formulasa € X, be X, a e X*, e X*, 0 X", c€c X", g€ @, s€ Q.

3. Decision Problem for finite Automaton Cryptanalytical Invertibility

Consider a finite automaton A = (X,Q,Y, v, ). Let q,«,d be variables with values
in @, X*, X7, denoting respectively initial state, prefix and suffix of input word ad of the
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automaton A, and K = {Vq, Vo, Vd, g, 39} be the set of universal and existential quantifiers
bounding these variables. In reality, the quantifiers in K are Vq € @), Voo € X*, V6 € X7,
dg € @, 30 € X7. For brevity, we write them without ranges of its variables. Note, that K
doesn’t contain the quantifier Ja. Also, let V' be the set of all subsets v(q, a, d) of the set
Vo = {q,0,¢%(a, q),¥(ad, q)} with the initial, intermediate, and final states ¢, («,q), and
¥(ad, q) respectively and a delay word 4.

We say, that the automaton A is cryptanalytically invertible (with a delay IDel 7 =
= |0], of a type IT = (K z1, Koxo, K3z3) with {21, 29,23} = {q,a, 3}, of a degree IDeg =
= (K1, Ky, K3), K; € {V,3}, Kz; € K, i =1,2,3, and of an order 10 = v(q,a,d) € V)
if there exists an inverse (recovering) function IF f : Y* x V' — X* with the invertibility
property expressed in the form

lelK?x?Kfﬂxfi(f(@(aév Q)’U(Q7a75)) = O‘)? (1)

in this case the used delay IDel, type I'T, degree IDeg, order IO and function IF we call the
parameters of this invertibility.

In reality, 208 different kinds of cryptanalytical invertibility of finite automata are now
defined. All of them are presented in the Table 1 [9].

Table 1
Formulas for cryptanalytical invertibility conditions
of a finite automaton

No | Quantifier prefix || No Underlying expression
1 f(p(ad,q)) = a
2 f(p(ad,q),q) = a
3 f(@(ad, q), (e, q)) =
1 3fVgva Vs 4 f(@(ad, q),(ad,q) =
2 dfVgVa 30 5 (p(ad,q),d) =«
3 3fVYq36Va 6 f(@(ad,q),q,9%(a,q)) =
4 3f gVa Vo 7 f(e(ad, q),q,v(ad, q)) =«
5 3f IqVa 30 8 f(@(ad,q),q,0) =
6 3f3qFVa 9 f(@(ad, q), ¥(a, q),¥(ad, q)) =
7 AfVadqVé 10 flo(ad, q),¥(a,q),d) =«
8 3f Va3q3o 11 f(@(ad, q),¥(ad, q),0) = a
9 3fVYavi3g 12 | f(p(ad,q),q,¢(, q),¥(ad, q)) = a
10 3f Va 36 Vq 13 f(@(ad, q),q,¢(a,q),0) =«
11 3f V6 3qva 14 f(@(ad,q),q,9(ad, q),6) =
12 df36VqVa 15 flo(ad, q), ¥(a, q),¥(ad, q),0) = «
13 3f A6 Va Jq 16 | f(e(ad,q),q,v(a,q),¥(ad, q),d) = a

The definition of the cryptanalytical invertibility of a finite automaton given above
unfortunately is not constructive one. It doesn’t contain any necessary and sufficient
conditions for an automaton to be cryptanalytically invertible with the given parameters,
but implies the existence of a recovering function, and should be provided with an
algorithmic test in order to effectively find out whether there exist the function f such that
the formula (1) is true and in case of a positive answer to produce an effective algorithm
for constructing such a function, to become convinced in the automaton cryptanalytical
invertibility with the nedeed properties and possibly with the existence of the inverse
automaton and to design the last.

So, the following is the first Decision Problem which we need to put and try to solve
for further developing the theory of Cryptanalytically Invertible finite automata — ACIDP:
given a finite automaton A, the values of invertibility delay IDel 7, an invertibility type IT,
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an invertibility degree IDeg and (or) an invertibility order IO for cryptanalytical invertibility
of the automaton A, find out whether the automaton A is invertible of type I'T with the
delay 7 and of order IO and if so, to construct a proper recovering function f satisfying the
condition (1).

The important place in this row takes the problem of creation or generating invertible
automata of all possible types. In various decisions of this problem different requirements
to generated automata can be presented: with equal probability in given invertibility class,
with bounded complexity, with the great or, otherwise, small delay of invertibility and so
on. Its solution seems to be impossible without proper decision of the first problem.

Further, in this Section, we tell some results related to ACIDP, published in [9, 10| and
given here in the form of Propositions.

Proposition 1 [9]. The automaton A is cryptanalytically invertible with the delay
T = 0|, of type (Vq,Va,Vd), and of an order v(q,«,d), that is, there exists a function
f:Y* xV — X* with the invertibility property

Vgvavi(f(p(ad, q), v(g, o, 0)) = a),
if and only if
Vgvavovsypve(a # B = (o(ad, q),v(q, @, 0)) # (p(Be, s), v(s, B,€)).

Proposition 2 [9]. If the automaton A is invertible of a delay |0], of a type
K21 Ksxe K3x3, and of an order v(q, o, ), that is, if there exists a function f : Y*xV — X*
with the invertibility property (1), then

K1x1K2$2K3373K1y1K2y2K33/3 (04 7£ 5 = (@(Ozé, Q), U(Q7 a, 6)) 7£ (@(ﬁ& 5)7 U(Sa 57 6))>7

where {lCl,Z’Q,iL'g} = {Q7Oé76}7 {3/173/2,93} = {S,ﬂ,&'}.

Definition 1 [10|. Having a quantifier sequence Kixy,..., K,z, (a quantifier prefix
of a predicate logical formula in a normal form), we believe n = m + s, i3 < ... < iy,
G < oo < o ity ety dsl = {1, Ky = =Ky, =V, K; = ... =
K;, = 3. Also, for r € {j1,...,Js} let &, : Dy X ... x D,_y — D, be a function (called
existential) the value e,.(ay,...,a,_1) of which is computed by the quantifier K,z, with
K, = d as a next value a, of the variable z, in dependence on the last values aq,...,a,_1
of variables x1,...,x,_1, predecessors to variable x,. Finally, define the vector existential

function e = ¢;, . ..¢;, and the set M, called the existential domain of the quantifier sequence
Kz ... K,x, corresponding to existential functions in €. By the definition

a...a, € Ms = (Cll...(ln S D1X...XDn)&<CLj1 NRNR :6j1(a1...ajl_l)...éjs(al...ajs_l).

Proposition 3 [10]. The automaton A is cryptanalytically invertible of a delay |d],
of a type Ky KsxoK3x3, where {xq, 29,23} = {q,,d}, and of an order v(q, a, 9), that is,
there exists a function f : Y* x V — X* with the invertibility property, if and only if for
Kix1Kyx9 K313 there is an existential vector function € such that

Vajagaz € M Vbibobs € M (o # B = ((p(ad, q),v(q, a,9)) # (p(Be, s),v(s, 5,7)))),

where ¢ and s € Q,a and f € X* 0 and v € X7, ajasa3 and bybsbs € M., if a, = g, or 9,
then by = s, 8 or v respectively, k € {1,2,3}.
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4. Decision Problem for Function Cryptanalytical Invertibility

This problem we use as an auxiliary one to the main problem — ACIDP.

Let g(x1,...,x,) be a function in variables wz,...,z, with a range D,, K;z; be a
quantifier bounding the variable z;, i = 1,...n, ky € {1,...,n}, and Ky, = V. Let
f: Dy — Dy, denote an arbitrary function with the domain D, and the range Dy, and, for
definition correctness of f, let |Dy| > |Dy,|. Moreover, always further we believe that each
function under consideration has a domain with the number of elements not less than the
number of elements in its range.

We say, that the function g(z1,xs,...,x,) is cryptanalytically invertible (with respect
to an invertibility variable IV = zy, and of the type IT = Kjx; ... K,z,) if there exists an
inverse (recovering) function f : Dy, — Dy, with the invertibility property expressed in the
form

Kyzy .. . Kpx,(f(g(z1, ... x0)) = Ty )s (2)

in this case the used number kg, type IT, and the function f we call the parameters of this
invertibility.

The following is the Decision Problem for Function Cryptanalytical Invertibility —
FCIDP: given a function g, a variable xy, and invertibility type IT = Kjx;... K,z, for
cryptanalytical invertibility of the function ¢, find out whether the function ¢ is invertible
with respect to IV x, and of type IT and if so, to construct a function f satisfying the
condition (2).

We should see that our main problem ACIDP is obtained from the particular case of our
auxiliary problem FCIDP by taking n = 3, ko € {1,2,3}, {z1, 22,23} = {q,, 0}, 2, = v,
g(x1, 29, 23) = (p(ad,q),v(q,,d)). Thus, a method deciding the auxiliary problem also
decides the main one and so, our problem ACIDP reduces to our problem FCIDP.

Now we tell some theoretical results related to FCIDP published in [9, 10].

Proposition 4 [9]. For any function ¢g : Dy x ... x D,, — D, a function f : D, — Dy,
with the invertibility property

Vay .. Ve, (f(g(z, ... xn)) = 2k,

exists if and only if

Vay .. Ve,Yyr o Yy Tk, 7 Uke = (21, -, 20) # 9(Y1y -2, Yn))-

Proposition 5 [9]. For any function g, if there exists a function f : D, — Dy, with
the invertibility property (2), then

Kyzy o Knwn Ky Koyn(@rg 7 Yro = 9(@1, - 2n) 7# 901, Yn)-

Proposition 6 [10]. For any function g(xy,...,x,) there exists a function f : D, —
— Dy, with the invertibility property (2), if and only if for each k € {j1,. .., js} there exists
an existential function €, : Dy X ... X Dy_; — D;, such that the set M. corresponding to
€ =¢j, ...¢j, satisfies the following condition:

Va=ay...a, € MNb=10...b, € M.(ay, # bk, = g(a) # g(b)).
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5. Formulas for cryptanalytical invertibility conditions for finite automata

The Table 1 from [9] is presented here for constructing invertibility condition of an
automaton from its parts. The line number i € {1,2,...,13} specifies the quantifier
prefix 3f K21 KoxoK3zs and the line number j € {1,2,...,16} describes the underlying
expression f(@(ad, q),v(q, @, d)) = a, where {1, 29,23} = {q,,}. These parts form the
complete condition denoted U; ; or U, ;[7], if a reference to the invertibility delay is required.
For instance, Uj[7] =3fVqVaVo(f(p(ad, q)) =), Ur2[r] =3 fVqVaVi(f(p(ad, q),q) =),
Us 0[] = 3f3q¥aTo(f(o(ad, q), ¥(e, q),0) = ).

Let k9 (q, ) and v;(g, «, §) be respectively Kz Koo K3y where 3f Kyx1 Koo Kaxs
is the quantifier prefix from the line number ¢ in the Table 1 and the invertibility order
v;(¢, @, 6) from the line number j in underlying expression f(¢(ad,q),v;(q,@,9)) = a in
the Table 1. For example, k) (q, o, §) = Ig¥a 3 and vi3(q, a, d) = {q,¥(a, q), 6}.

So for any i € {1,2,...,13} and j € {1,2,...,16}, k¥ (q,a,d) and v;(q, a, §) present
some cryptanalytical parameters of finite automata such as their invertibility type, degree,
order and so on.

Let also s;(q, a, 8,5, B,¢) = kD (q, a, 6)xD (s, B, ), {w1, 2,23} = {q,,0}, {y1, 92, y3} =
= {Sa 675}7 Ty = O, Yo = 5, g(xh s ’:L‘n) = (@(O‘57 Q)v Uj(qy a, 5))a

K21 Kaowo K3 Ky Koy Kays = kilg, o, 6, 8, 8, €),
and we can write down the invertibility condition (1) in the following new form

Usj = 3fs"(q, ,0)[f(¢(ad, q), v(g, @, 8)) = o,

its equivalent from Proposition 2 in the following new form

Ki(Quaa 67 57ﬁ78>[<05 7£ 6 = (@(aév Q>7Uj(q7a>5)) 7& (@(ﬁgv S)7Uj(8757€)))]'

where {Ih T, ZL‘3} = {q’ Q, 5}7 {yla Yo, yS} - {Sa ﬁa E}'
Thus, the following assertion is proved.

Proposition 7. For all i € {1,2,...,13} and j € {1,2,...,16},
Ui,j = H’i<Qaa75a S,ﬂ,E)[CY 7& B & Uj(Qaav(s) = Uj(s7ﬁ7€) = @(Q(S? q) 7é @(ﬁE,S)]. (3)

For example,

Usz = Vqva3sVsVpaela # 6 & g = s & d(asd, q) = ¥(fe, s) = p(asd, q) # @(Be, 5)].

For compact presentation of obtained so, including simplifications, logic formulas for
all 208 invertibility conditions U, ; of automata A, below at first separately the notation
in them is enumerated for all possible quantifier prefixes and underlying expressions, and
then in the Table 2 the formulas themselfes in the form «I', where x and I' — notation
respectively of quantifier prefix and of underlying expression from the given list.

In some cases formula (3) for U; ; can be simplified, namely: if the condition v;(q, o, 0) =
= v,(s,f,¢) includes the equalities ¢ = s and (or) 6 = &, and the quantifier prefix
k¥ (q,a,0)k (s, 3,€) contains quantifiers Vg, Vs and (or) V6, Ve, then it is possible
to exclude simultaneously from this condition these equalities, to exclude from prefix
quantifiers Vs and (or) Ve, and to put in conclusion (¢(ad,q) # ¢(Be,s)) s = ¢ and (or)
¢ = § respectively. This simplification is an equivalent transformation and doesn’t change
the truth value of the formula.

Notations of quantifier prefixes x in the formulas of automaton A invertibility conditions:
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a =VgVaVoVsV Ve, i =VaVidqVpVeds; by = VgVadoV[3e;
b =VqVadoVsVpBde; j =VaddVgVpdeVs; ¢y = VqIoVadeV s,
c =VqadVaVsIeVp;,  k =VodgVaVedsVp; di = JqVaVodsvs;
d = dgVaVodsVpVe; | = F0VqVaTeVsVE; g1 = VadqVov5ds;
e = dgVa30dsVpde; m = A6VadqdeV(ds; i = VaVodqV[ds;
f=3¢q30Vads3deVE;,  ay = VgVaVov[Ve; Jjo = YadoVqV[3e;
g = VadqVoVpdsVe;  a; = VqVaVoVsV s k1 = Vé3dqVadsVp;
h =VYadq3ddéVphdsde;  ag = VgVaVov s, lo = OV qVaTeVj.

Notation of underlying expressions I' in formulas of automaton A invertibility conditions:

a# B = @(ad, q) # @(Be, s)];
a# B & q=s5= p(ad,q) # p(Be,s)];

# P& 0 =¢e & p(ad,q) = ¥(Be,q) = o(ad, q) # p(Be, q)];
# B & q=s & p(ad,q) = Y(BI,s) = @(ad, q) # ¢(B9, 5)];
a# B & (ad, q) = (80,q) = @(ad, q) # 2(8d, q)];

=
=
B2 [a # 8 = ¢(ad, q) # ¢(Be, q)];
C=la+#pB&Y(a,q) =¢(B,s) = p(ad, q) # ¢(Be, 5)];
D = [a# B & ¢(ad,q) = P(Be, s) = @(ad, q) # ¢(Be, s)];
E=la#pB&d=c= @(ad,q) # @(Pe,3)];
By =la# 8= ¢(ad,q) # @(B9, s)];
F=la#pB&q=s&P(a,q) =¢(B,s) = ¢(ad,q) # ¢(Be, s)];
=la# B & Y(a,q) =P(B,q) = p(ad, q) # p(Be, q)];
G la # B & q=s & P(ad, q) = Y(Be, s) = p(ad, q) # (B¢, 5)];
=[a# B & P(ad, q) = Y(Be,q) = ¢(ad, q) # p(Be, q)];
H a# B & qg=s5& 0 =c= p(ad,q) # @(Be, 5)];
Hy=la# B &d=c= p(ad, q) # p(Be,q);
Hl_[ # B & q=s5= ¢(ad,q) # ¢(8,s)];
=[a # B = ¢(ad, q) # ¢(89,q)];
=la# B & Y(a,q) =¥(B,s) & ¢P(ad, q) = (B, s) = @(ad, q) # p(Be, s)];
J=la#B&d=c&d(a,q) =v(B,s) = ¢(ad, q) # ¢(Be, s)];
= la# B & Y(a,q) =¥(B,s) = p(ad, q) # ¢(B9, 5)];
K [a # B & 6 = ¢ & P(ad, q) = ¢Y(Be, s) = p(ad, q) # @(Be, 5)];
= [a # B & Y(ad, q) = (B4, s) = @(ad, q) # @(Bd, s)];
L [a# B8 & q=s5& P(a,q) =¢(B,s) & P(ad,q) = P(Be, s) = p(ad, q) # p(Be, 8)];
=la# B &Y(a,q) =¥(B,q) & ¢(ad, q) = Y(Be, q) = ¢(ad,q) # ¢(Be, q)l;
M a#B&qg=s&d=c&(a,q) =v(B,s) = p(ad, q) # ¢(Be,s)];
My=[a#B&d=c&Pp(a,q) =¥(8,9) = ¢(ad,q) # ¢(Be, q);
M1 =la#B&q=s&Y(a,q) =Y(B,s) = p(ad,q) # P(B9, s)];
=[a# B & Y(a,q) =¢(B,q) = @(ad, q) # @(B6,q)];
N a# B & qg=s&d=c&Y(ad,q) =Y(Be,s5) = p(ad,q) # p(Be, 5)];
= [
= [
=
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O=la#B&i=c&Pla,q) =9(B,s) & (ad,q) = ¢(Be, s) = p(ad, q) # p(Be, s)];
O =la# 8 & d(a,q) =9(B,s) & ¥(ad, q) = P(Bd, s) = @(ad, q) # p(B6, s)];
P=la#B&q=5&0=c&P(a,q) =¢(B,s) & P(ad,q) = ¢(Be, s) =

= @(ad, q) # ¢(Be, s));
P=la#p8&d=c&(a,q) =98, q) & (ad,q) = ¥(Be,q) = @(ad, q) # p(Be, q)l;
Pr=la#B8&q=s&¢(a,q) =98, s) & P(ad,q) = (B4, s) = ¢(ad, q) # ¢(89, s)];
Po=la+# B &P(a,q) =¥(B,q) & P(ad,q) = (B0, q) = ¢(ad, q) # p(B6, q)].

Formulas sI' for conditions of the automaton A invertibility of all possible types are
presented in the Table 2. For any words &, ¢ in X* and states ¢, s in ) inequality ¢(&, q) #
# ¢(C, s) is always provided when |£| # ||, therefore in any of these formulas it is possible
to count |a| = |B|. Further we use this possibility without additional reservations.

Table 2

Formulas kI" for conditions of the automaton invertibility of all possible types

1 1 2 3 4 5 6 7 8 9 10 11 12 13
Ui| aA | bA | cA | dA | eA | JA | gA | hA | iA | jA | kA | 1A | mA
U1j72 CLQBQ b2B2 CQBQ dB eB fB gB hB 1B j2B2 kB ZQBQ mB
Us| aC | bC | cC | dC | eC | fC | ¢gC | hC | iC | jC | kC | IC | mC
Uia| aD bD cD dD eD | fD gD hD 1D jD kD ID mD
Ui75 al E1 bE ck dl E]_ eF fE g1 E1 hE ilEl _]E kl E1 lE mE
Ui,6 a2F2 b2F2 02F2 dF el fF gF hF iF j2F2 kF ZQFQ mkF
Ui77 GQGQ b2G2 C2G2 dG eG fG gG hG 1G jQGQ kG ZQGQ mG
ULg (IQHO b2H2 CQHQ d1H1 eH fH ngl hH ilHl jQHQ lel lQHQ mH
Uo | al bl I dI | el | fT | gI | I | il 73 kI I | ml
Uz’,lO a1J1 bJ cJ d1J1 eJ fJ 91J1 hJ i1J1 jJ lil lJ mJ
Ui711 a1K1 bK cK dlKl eK fK g1K1 hK ilKl ]K k‘lKl IK mK
Ui,12 CLQLQ b2L2 CQLQ dL el fL gL hL iL jQLQ kL lQLQ mL
Ui,lg aoMQ b2M2 CQMQ d1M1 eM fM 91M1 hM i1M1 ngg klMl lgMg mM
Uii4| aoNg | balNa | caNa | di Ny eN | fN | 1Ny AN | i1N1 | jaN2 | k11 [oNy | mN
Ui,15 a101 bO cO lel eO fO 9101 hO 7;101 jO k‘101 i1e; mO
Uiie| aoPo | baP2 | coPo | diPy | eP | fP | g1Pr | hP | i1Py | joPo | ki1 | [bP | mP

Let in the Table 2 for any ¢ = 1,2,...,13 and j = 1,2,...,16 element on intersection
of line with U; ; at the head and column with the number ¢ is denoted T;;. Then U, ; = T;.

So, for instance, U;y = aA = VYgVaV¥oVsVpVela # [ = @(ad,q) # @(fe,s)];
U478 = d1H1 = HQVQVCSHSVB[CY 7& B & q =8 = @(04(5, q) 7é @(55,8)], U10713 = j2M2 =
= VYa3oVg¥iIela # B & § =< & Y(a,q) = ¥(5,q) = p(ad, q) # ¢(Pe,q)], and so on.

If in expression for U, ; in (3) the condition v;(q, o, 0) = v,(s, 5,¢) includes into itself
equalities ¢ = s and (or) 0 = ¢, and quantifier prefix x®(q, o, 8)k@ (s, 3,¢) contains
quantifiers d¢, 3s and (or) 39, Je, then, putting down from it these equalities and quantifiers
ds and (or) Je and placing in its conclusion @(ad, q) # ¢(fe, s) respectively s = ¢ and (or)
e = §, we obtain expression, denoted further U;;, for which the implication U;; = U ;
is true. This means that the condition Uj; is sufficient, but not obligatory necessary for
invertibility of type £ and order v; for automaton A. All obtained so sufficient conditions
of invertibility for automaton A are represented in Table 3. In it quantifier prefixes have
the following notation:

by = VgVa3ddVsVB; e = dgVaTodsVE;  hy = VadqddVGde, ko = YodqVaVeVj3;

by = VgV 3oV, eo = JqVadoV; hi1 = Vadq3éVp3s; ko = Vo3qVaVv s,
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c1 = VqIoVaVsVE;  fo = dqI0VadeVs;,  hy = Vadqdovs; Iy = AOVgVaVsVp,
co = Vq3aovaVvp, f1 = 3dqANVadsV3; iy = VaVodgV Ve, lo = OV qVaV j3;
dy = AgVaVoVpVe;  fo = dqIoVavs; 1o = YaVodqVp,; me = AOVadqIeV 5,
dy = gV p; go = YadgVovpVe;  j; =VaddVgVpVs;  my = A6VadqV[3s;
es = dgVadoVPBde; gy = VaTdqVovp; jo = Ya3ddéVqV s, mo = J0VadqVp.

Table 3

Formulas for sufficient conditions of the automaton invertibility of some types

) 2 3 4 5 6 7 8 9 10 11 12 13
Ui deBy | eaBs | foBa | gaBa | haBy | i2B ko B ma By
Ups | iy | aEy enEr | fiEs h1Ey J1Ea LWE, | miE,y
Uig doFy | eaFs | foFy | goFy | holy | iolh ko Iy ma by
Ui,,7 d2Go e2Go J2Ga g2Go haGa | i2Ga k2Go maGa
Uls | boHo | coHo | doHo | eoHo | foHo | goHo | hoHo | ioHo | joHo | koHo | loHo | moHo
Ui | ih c1J1 erJi fidh hiJq J1d1 11 myJy
Uilll b1 Ky a1 Ky e1 K f1Ky h1K; Ji1K1 I Ky m1 K
Ui/,12 da Lo ezl JoLo g2L2 haLo 2L ko La ma Lo
Uiz | boMo | coMo | doMo | eoMo | foMo | goMo | hoMo | io0Mo | joMo | koMo | loMo | moMo
Uiis | boNo | coNo | doNo | eoNo | fnHo | goNo | hoNo | ioNo | joNo | koNo | loNo | moNo
Ulis | 0101 | c10y e101 | f101 h101 7101 1,01 | miO;
Ulg | boPo | coPo | doPy | eoPo | foPo | g0Po | hoPo | ioPo | joPo | koPo | loPo | moPo

6. Problems in the theory of automata cryptanalytical invertibility

ACIDP. Given a cryptanalyical invertibility type (quantifier prefix Kjx;KoxzKsxs,
{z1,29,23} = {q,,d}, and invertibility order v(q,«,d)), as well as an invertibility
delay 7, a number ky € {1,2,3} such that K, = V, xx, = «, a subject direct
transformation g(xq, 2, 23) = (@(ad, q),v(g, a,0)), and a subject inverse transformation
f(e(ad, q),v(q, o, 9)), find out whether f is a proper recovering function, that is, (1) is
true, and hence the automaton under consideration is really invertible of the given type
and with the given delay.

FIDP. Given a cryptanalytical invertibility type (quantifier prefix Kiz;...K,z,), a
number ky € {1,...,n} such that K, = V, and an abstract function g(z1,...,z,), find
out whether there exists a recovering function f such that f(g(z1,...,2,)) = xx,, and if it
exists, then construct it.

For any specific j, classes C; j(7) [9] with all possible ¢ and 7 and automata in them we
call respectively classes of invertibility and invertible automata of one propositionality (j),
or one-propositional (of index j). Due to the fact that, for any predicates P(x) and
R(z,y), implications VaP(z) = JzP(x), YaVyR(z,y) = JaVyR(x,y) and JaVyR(x,y) =
= Vy3dzR(x,y) are true, the inclusion relation is possible between some one-propositional
classes of invertibility with equal delay [9].

The invertibility notion of finite automaton considered in this paper doesn’t foresee
for invertible automaton of obligatory existence of an inverse automaton. Moreover, it is
admitted that the function of recovering input prefix for some types of automata invertibility
can not be finite automaton. In this situation, naturally, the problem arises to find out for
given invertible (of a certain) type automaton whether it has inverse automaton, and if it
has, then to construct it. Decision of this problem, in turn, intends the introduction of the
definition of an inverse automaton for an arbitrary automaton of every invertibility class.
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The important place in this row takes the problem of creation invertible automata

of all possible types. In various formulations of this problem different requirements to
generated automata can be considered — with equal probability in given invertibility class,
with bounded complexity, with a great or, otherwise, small delay of invertibility and so on.
Its solution seems to be impossible without proper decision of the ACIDP.

10.
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