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The chromaticity of the graph G, which is join of the tree Tp and the null graph Oq, is
studied. We prove that G is chromatically unique if and only if 1 6 p 6 3, 1 6 q 6 2;
a graph H and Tp + Op−1 are χ-equivalent if and only if H = T ′p + Op−1, where T ′p
is a tree of order p; H and Tp + Op are χ-equivalent if and only if H ∈ {T ′p + Op,
T ′′p+1 + Op−1}, where T ′p is a tree of order p, T ′′p+1 is a tree of order p + 1. We also
prove that if p 6 q, then χ′(G) = ch′(G) = ∆(G); if ∆(G) = |V (G)| − 1, then
χ′(G) = ch′(G) = ∆(G) if and only if G 6= K3.
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1. Introduction
All graphs considered in the paper are finite undirected graphs without loops or multiple

edges. If G is a graph, then V (G), E(G) (or V and E in short) and G denote its vertex set,
edge set and its complementary graph, respectively. The set of all neighbours of a subset
S ⊆ V (G) is denoted by NG(S) (or N(S) in short). If S = {v}, then N(S) is denoted
by N(v). For a vertex v ∈ V (G), the degree of v is denoted by degG(v) (or deg(v)), it
equals |NG(v)|. The subgraph of G induced by W ⊆ V (G) is denoted by G[W ]. Let R be
a subset of edges in G, |R| = r; denote by G− R the graph obtained by deleting all edges
in R from G.

The null graphs and complete graphs of order n are denoted by On and Kn, respectively.
The K3 is called a triangle. Let t1(G), t2(G), and t3(G) be the numbers of triangles, of
induced subgraphs C4, and of complete subgraphs K4 in G, respectively. Unless otherwise
indicated, our graph-theoretic terminology follows [1].

An acyclic graph, one not containing any cycles, is called forest. A connected forest is
called a tree, a tree of order n is denoted by Tn.

A graph G = (V,E) is called r-partite graph if V admits a partition into r classes
V = V1 ∪ V2 ∪ . . . ∪ Vr such that the subgraphs of G induced by Vi, i = 1, . . . , r, are
empty. If r = 2, then G is called bipartite graph, if r = 3, then G is called tripartite graph.
An r-partite graph in which every two vertices from different partition classes are adjacent
is called complete r-partite graph and is denoted by K|V1|,|V2|,...,|Vr|. The complete r-partite
graph K|V1|,|V2|,...,|Vr| with |V1| = |V2| = . . . = |Vr| = s is denoted by Kr

s .
Let G1 = (V1, E1), G2 = (V2, E2) be two graphs such that V1 ∩ V2 = ∅. Their union

G = G1 ∪G2 has, as expected, V (G) = V1 ∪ V2 and E(G) = E1 ∪E2. Their join is denoted
G1 +G2 and consists of G1 ∪G2 and all edges joining V1 with V2.

Let G1 = (V1, E1), G2 = (V2, E2) be two graphs. We call G1 and G2 isomorphic, and
write G1

∼= G2, if there exists a bijection f : V1 → V2 with uv ∈ E1 if and only if
f(u)f(v) ∈ E2 for all u, v ∈ V1.

Let G = (V,E) be a graph and λ is a positive integer.
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A λ-coloring of G is a bijection f : V (G)→ {1, 2, . . . , λ} such that f(u) 6= f(v) for any
adjacent vertices u, v ∈ V (G). The smallest positive integer λ such that G has a λ-coloring
is called the chromatic number of G and is denoted by χ(G). We say that a graph G is
n-chromatic if n = χ(G).

Let V (G) = {v1, v2, . . . , vn}, two λ-colorings f and g are considered different if and only
if f(vk) 6= g(vk) for some k ∈ {1, 2, . . . , n}. Let P (G, λ) (or simply P (G) if there is no danger
of confusion) denote the number of distinct λ-colorings of G. It is well-known that for any
graph G, P (G, λ) is a polynomial in λ, called the chromatic polynomial of G. The notion
of chromatic polynomials was first introduced by Birkhoff [2] in 1912 as a quantitative
approach to tackle the four-color problem. Two graphs G and H are called chromatically
equivalent (or, in short, χ-equivalent), and we write G ∼ H, if P (G, λ) = P (H,λ).
A graph G is called chromatically unique (χ-unique) if G′ ∼= G (i.e., G′ is isomorphic to G)
for any graph G′ such that G′ ∼ G. For examples, all cycles are χ-unique [3]. The notion
of χ-unique graphs was first introduced and studied by Chao and Whitehead [4] in 1978.
The readers can see the surveys [3, 5, 6] for more information on χ-unique graphs.

An edge coloring of a graph G can be defined similarly. Namely, an edge λ-coloring of a
graph G is a mapping f : E(G) → {1, 2, . . . λ} such that two adjacent edges have distinct
images. The chromatic index of G, denoted by χ′(G), is the smallest positive integer λ such
that G has an edge λ-coloring. In 1964, Vizing [7] proved that χ′(G) is equal to either ∆(G)
or ∆(G) + 1, where ∆(G) is the maximum degree of G. A graph G is said to be Class one
(resp., Class two) if χ′(G) = ∆(G) (resp., ∆(G) + 1). For examples, all cycles Cn with n
even are Class one; all cycles Cn with n odd are Class two. Let (L(e))e∈E(G) be a family of
sets. We call an edge coloring f of G with f(e) ∈ L(e) for all e ∈ E(G) a list edge coloring
from the lists L(e). The least integer k such that G has an edge coloring from any family
of lists of size k is the list-chromatic index of G and is denoted by ch′(G). The idea of list
colorings of graphs is due independently to V.G. Vizing [8] and to P. Erdös, A. L. Rubin,
and H. Taylor [9].

In [10] we have characterized chromatically uniqueness of the graph Kr
2 +Ok, in [11] we

have characterized chromatically uniqueness of the graph G = Kn
2 +Kr, and in [6] we have

determined chromatic index and characterized chromatically uniqueness split graphs.
In this paper, we study the chromaticity of G, which is join of the tree Tp and the null

graph Oq. We prove that G is chromatically unique if and only if 1 6 p 6 3, 1 6 q 6 2;
H and Tp + Op−1 are χ-equivalent if and only if H = T ′p + Op−1, where T ′p is a tree of
order p; H and Tp +Op are χ-equivalent if and only if H ∈ {T ′p +Op, T

′′
p+1 +Op−1}, where

T ′p is a tree of order p, T ′′p+1 is a tree of order p + 1. We also prove that if p 6 q, then
χ′(G) = ch′(G) = ∆(G); if ∆(G) = |V (G)| − 1, then χ′(G) = ch′(G) = ∆(G) if and only if
G 6= K3.

2. Vertex colorings
For a graph G and a positive integer k, a partition {A1, A2, . . . , Ak} of V (G) is called a

k-independent partition in G if each Ai is a non-empty independent set of G. Let α(G, k)
denote the number of k-independent partitions in G. Hence, P (G, λ) =

∑
16k6n

α(G, k)(λ)k,

where (λ)k = λ(λ− 1) . . . (λ− k + 1).
The polynomial σ(G, x) =

∑
16k6n

α(G, k)xk is called the σ-polynomial of G.

The polynomial h(G, x) =
∑

16k6n
α(G, k)xk is called the adjoint polynomial of G.

Let K+
p be the vertex gluing of Kp and K2.
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For convenience, denote σ(G, x) by σ(G), h(G, x) by h(G), and G ∼= H by G = H. The
following lemmas will be used to prove our main results.

Lemma 1 [3]. If G = Kn is the complete graph on n vertices, then χ(G) = n and G
is χ-unique.

Lemma 2. If G = Kn1,n2,...,nr is the complete r-partite graph, then χ(G) = r.
Lemma 3 [12]. Let G and H be two χ-equivalent graphs. Then
(i) |V (G)| = |V (H)|;
(ii) |E(G)| = |E(H)|;
(iii) χ(G) = χ(H);
(iv) G is connected if and only if H is connected;
(v) G is 2-connected if and only if H is 2-connected;
(vi) t1(G) = t1(H);
(vii) t2(G)− 2t3(G) = t2(H)− 2t3(H);
(viii) α(G, k) = α(H, k) for each k = 1, 2, . . .

Lemma 4 [12].
(i) All trees of the same order are χ-equivalent. Further, the graph G of order n is a

tree if and only if P (G, λ) = λ(λ− 1)n−1;
(ii) A tree Tn is χ-unique if and only if 1 6 n 6 3;
(iii) If G = Tn is a tree of order n, then χ(G) = 2.
Lemma 5 [11]. The graph G = Km

2 +Kn is χ-unique.
Lemma 6 [13]. Let G and H be two disjoint graphs. Then
(i) σ(G+H, x) = σ(G, x)σ(H, x);
(ii) h(G ∪H, x) = h(G, x)h(H, x).
Lemma 7 [14]. Let G and H be two graphs. Then
(i) P (G, λ) = P (H,λ) if and only if σ(G, x) = σ(H, x);
(ii) P (G, λ) = P (H,λ) if and only if h(G, x) = h(H, x).
Lemma 8. If p > 2, then χ(Tp +Oq) = 3.
Proof. If p > 2, then the complete graphK3 is a subgraph of G = Tp+Oq. So χ(G) > 3.

Let V (G) = V1 ∪ V2 is a partition of V (G) such that G[V1] = Tp, G[V2] = Oq. The graph
G[V1] is a tree, by (iii) of Lemma 4, G[V1] has a coloring f1 using two colors 1, 2. Set mapping

f : V (G)→ {1, 2, 3}

such that f(v) = f1(v) if v ∈ V1, f(v) = 3 if v ∈ V2. Then f is a 3-coloring of G, i.e.,
χ(G) 6 3. Thus, χ(G) = 3.

Theorem 1. G = Tp +Oq is χ-unique if and only if 1 6 p 6 3, 1 6 q 6 2.
Proof. First we prove the necessity. Suppose that G = Tp + Oq is χ-unique. Suppose

the contrary, that p > 4. Set G1 = (K1 ∪ I1, E1) with

K1 = {v1, v2, . . . , vp}, I1 = {u1, u2, . . . , uq},
E1 = {v1v2, v1v3, . . . , v1vp} ∪ {viuj : i = 1, 2, . . . p, j = 1, 2, . . . q}.

Set G2 = (K2 ∪ I2, E2) with

K2 = {v1, v2, . . . , vp}, I2 = {u1, u2, . . . , uq},
E2 = {v1v2, v2v3, . . . , vp−1vp} ∪ {viuj : i = 1, 2, . . . p, j = 1, 2, . . . q}.
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By (i) of Lemma 4, (i) of Lemma 6, and (i) of Lemma 7, it follows that

P (G1, λ) = P (G2, λ) = P (G, λ).

It is not difficult to see that

∆(G1) = max{deg(u) : u ∈ V (G1)} = deg(v1) = p+ q − 1

and
∆(G2) = max{deg(u) : u ∈ V (G2)} = max{p, q + 2}.

If q > 2, then max{p, q + 2} < p+ q − 1, it follows that ∆(G2) < ∆(G1). So G1 6∼= G2 and
G is not χ-unique, a contradiction.

If q = 1, then ∆(G2) = ∆(G1) = p. It is not difficult to see that

|{u ∈ V (G1) : degG1(u) = p}| = 2 and |{u ∈ V (G2) : degG2(u) = p}| = 1.

It follows that G1 6∼= G2 and G is not χ-unique, a contradiction. Thus, 1 6 p 6 3.
Suppose that q > 3. For p = 3, we set G3 = (K3 ∪ I3, E3) with

K3 = {v1, v2, v3}, I3 = {u1, u2, . . . , uq},
E3 = {v1v2, v2v3} ∪ {viuj : i = 1, 2, 3, j = 1, 2, . . . q},

and set G4 = (K4 ∪ I4, E4) with

K4 = {v1, v2, v3}, I4 = {u1, u2, . . . , uq},
E4 = {v2u1, u1u2, u2u3, . . . , uq−1uq} ∪ {v1v2, v2v3} ∪ {v1uj, v3uj : j = 1, 2, . . . , q}.

It is not difficult to see that G = G3 = T3 + Oq and G4 = Tq+1 + O2. By (i) of Lemma 4,
(i) of Lemma 6, and (i) of Lemma 7, we have

σ(G3, x) = σ(T3 +Oq, x) =

= σ(T3, x)σ(Oq, x) =

= σ(O1 +O2, x)σ(Oq, x) =

= σ(O1, x)σ(O2, x)σ(Oq, x) =

= σ(O1, x)σ(Oq, x)σ(O2, x) =

= σ(O1 +Oq, x)σ(O2, x) =

= σ(Tq+1, x)σ(O2, x) =

= σ(Tq+1 +O2, x) =

= σ(G4, x).

It follows that P (G3, λ) = P (G4, λ). Otherwise,

∆(G3) = max{deg(u) : u ∈ V (G3)} = deg(v2) = q + 2,

∆(G4) = max{deg(u) : u ∈ V (G2)} = deg(v1) = deg(v3) = q + 1.

So G3 6∼= G4 and G is not χ-unique, a contradiction.
For p = 2, we set G5 = (K5 ∪ I5, E5) with

K5 = {v1, v2}, I5 = {u1, u2, . . . , uq},
E5 = {v1v2} ∪ {viuj : i = 1, 2, j = 1, 2, . . . q},
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and set G6 = (K6 ∪ I6, E6) with

K6 = {v1, v2}, I6 = {u1, u2, . . . , uq},
E6 = {v2u1, u1u2, u2u3, . . . , uq−1uq} ∪ {v1v2} ∪ {v1uj : j = 1, 2, . . . q}.

It is clear that P (G5, λ) = P (G6, λ) and

|{u ∈ V (G5) : degG5(u) = q + 1}| = |{v1, v2}| = 2,

|{u ∈ V (G6) : degG6(u) = q + 1}| = |{v1}| = 1.

So G5 6∼= G6 and G is not χ-unique, a contradiction.
If p = 1, then G is a tree Tn with n = q+ 1 > 4. By (ii) of Lemma 4, G is not χ-unique,

a contradiction.
Now we prove the sufficiency. If p = 1 and q = 1, then G = K2, if p = 2 and q = 1, then

G = K3. By Lemma 1, G is χ-unique.
If p = 1 and q = 2, then G = T3. By (ii) of Lemma 4, G is χ-unique.
If p = 2 and q = 2 or p = 3 and q = 1, then G = K1

2 + K2, if p = 3 and q = 2, then
G = K2

2 +K1. By Lemma 5, G is χ-unique.

Theorem 2.
(i) H and Tp + Op−1 are χ-equivalent if and only if H = T ′p + Op−1, where T ′p is a tree

of order p;
(ii) H and Tp +Op are χ-equivalent if and only if H ∈ {T ′p +Op, T

′′
p+1 +Op−1}, where T ′p

is a tree of order p, T ′′p+1 is a tree of order p+ 1.
Proof. If p = 2, then, by Theorem 1, Tp + Op−1 and Tp + Op are χ-unique. It follows

that the theorem is obviously true. Hence we may assume that p > 3.
Suppose that H and G = Tp + Oq are χ-equivalent, where p − 1 6 q 6 p. By (iii)

of Lemma 3 and Lemma 8, χ(H) = 3. So H is a tripartite graph. We may assume that
D = Ka,b,c and R = {e1, e2, . . . , er} ⊆ E(D) such that H = D−R and a 6 b 6 c. It is clear
that

r = |E(D)− |E(H)| = |E(D)| − |E(G)| = ab+ ac+ bc− pq − p+ 1

and
a+ b+ c = |V (D)| = |V (H)| = |V (G)| = p+ q.

Denote by t1(ei) the number of triangles containing the edge ei in D for every i = 1, 2, . . . , r.
It is not difficult to see that t1(ei) 6 c for every i = 1, 2, . . . , r. Then

t1(H) > t1(D)− rc,

and the equality holds only if t1(ei) = c for every i = 1, 2, . . . , r.
By (vi) of Lemma 3, t1(G) = t1(H), it follows that

t1(D)− t1(G) = t1(D)− t1(H) 6 rc.

Since t1(D) = abc, t1(G) = (p− 1)q, we have

f(c) = t1(D)− t1(G)− rc =

= abc− (p− 1)q − (ab+ ac+ bc− pq − p+ 1)c =

= abc− (p− 1)q − [ab+ (p+ q − c)c− pq − p+ 1]c =

= (c− 1)(c− p+ 1)(c− q) 6 0.
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By p > 3 and p − 1 6 q 6 p, it follows that c > (p + q)/3 > 1. Let {V1, V2, V3} be the
3-independent partition in H such that |V1| = a, |V2| = b, |V3| = c. It is not difficult to see
that if f(c) = 0, then t1(ei) = c for every i = 1, 2, . . . , r, so edge ei ∈ R has one end vertex
in V1 and another end vertex in V2. It follows that H = H[V1 ∪ V2] +Oq

(i) If q = p−1, then G = Tp+Op−1. In this case, f(c) = (c−1)(c−p+1)2 > 0, f(c) = 0
if and only if c = p − 1. So t1(ei) = c = p − 1 for every i = 1, 2, . . . , r. By (i) of Lemma 6
and (i) of Lemma 7, we have

σ(H, x) = σ(H[V1 ∪ V2] +Op−1, x) =

= σ(H[V1 ∪ V2], x)σ(Op−1, x) =

= σ(G, x) =

= σ(Tp +Op−1, x) =

= σ(Tp, x)σ(Op−1, x).

It follows that σ(H[V1 ∪ V2], x) = σ(Tp, x). So P (H[V1 ∪ V2], λ) = P (Tp, λ). By (i) of
Lemma 4, H[V1 ∪ V2] = T ′p, where T ′p is a tree of order p. Thus, H = T ′p +Op−1.

It is not difficult to see that if H = T ′p +Op−1, then P (H,λ) = P (Tp +Op−1, λ).
(ii) If q = p, then G = Tp +Op. So f(c) 6 0 if and only if p− 1 6 c 6 p, f(z) = 0 if and

only if c = p− 1 or c = p. Now we consider separately two cases.
C a s e 1 : c = p. We have

σ(H, x) = σ(H[V1 ∪ V2] +Op, x) =

= σ(H[V1 ∪ V2], x)σ(Op, x) =

= σ(G, x) =

= σ(Tp +Op, x) =

= σ(Tp, x)σ(Op, x).

It follows that σ(H[V1 ∪ V2], x) = σ(Tp, x). So P (H[V1 ∪ V2], λ) = P (Tp, λ). By (i) of
Lemma 4, H[V1 ∪ V2] = T ′p, where T ′p is a tree of order p. Thus, H = T ′p +Op.

C a s e 2 : c = p− 1. We have

σ(H, x) = σ(H[V1 ∪ V2] +Op−1, x) =

= σ(H[V1 ∪ V2], x)σ(Op−1, x) =

= σ(G, x) =

= σ(Tp +Op, x) =

= σ(Tp, x)σ(Op, x) =

= σ(O1 +Op−1, x)σ(Op, x) =

= σ(O1, x)σ(Op−1, x)σ(Op, x) =

= σ(O1, x)σ(Op, x)σ(Op−1, x) =

= σ(O1 +Op, x)σ(Op−1, x) =

= σ(Tp+1, x)σ(Op−1, x).

It follows that σ(H[V1 ∪ V2], x) = σ(Tp+1, x). So P (H[V1 ∪ V2], λ) = P (Tp+1, λ). By (i) of
Lemma 4, H[V1∪V2] = T ′′p+1, where T ′′p+1 is a tree of order p+ 1. Thus, H = T ′′p+1 +Op−1. It
is not difficult to see that if H ∈ {T ′p +Op, T

′′
p+1 +Op−1}, then P (H, λ) = P (Tp +Op, λ).
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3. Edge colorings
We need the following lemmas 9–13 to prove our results.
Lemma 9 [15]. Every bipartite graph G satisfies χ′(G) = ∆(G).
Lemma 10 [15]. ch′(G) > χ′(G) for all graphs G.
Lemma 11 [15]. Every bipartite graph G satisfies ch′(G) = χ′(G).
Lemma 12 [16]. If G is a graph of order 2n+ 1 and ∆(G) = 2n, then G is Class one

if and only if |E(G)| > n.
Lemma 13 [12]. If G = Tn is a tree of order n, then |E(G)| = n− 1.
Theorem 3. If p 6 q, then graph G = Tp +Op satisfies
(i) χ′(G) = ∆(G);
(ii) ch′(G) = ∆(G).
Proof. Let V (G) = V1 ∪ V2 is a partition of V (G) such that G[V1] = Tp, G[V2] = Oq,

V1 = {v1, v2, . . . , vp}, V2 = {u1, u2, . . . , uq}. Set G1 = G[V1] and G2 = G − E(G[V1]). It is
not difficult to see that G1 and G2 are bipartite graphs, ∆(G2) = q = degG2

(v) for every
vertex v ∈ V1 and ∆(G) = ∆(G1) + ∆(G2) = ∆(G1) + q = deg(v) for some vertex v ∈ V1.

(i) By (iii) of Lemma 4, χ(G1) = 2, so G1 is a bipartite graph. By Lemma 9, G1 has an
edge coloring f1 using ∆(G1) colors 1, 2, . . . ,∆(G1). Again by Lemma 9, G2 has an edge
coloring f2 using ∆(G2) = q colors ∆(G1) + 1, . . . ,∆(G1) + q. Since ∆(G) = deg(v) for
some vertex v ∈ V1, it is clear that the mapping

f : E(G)→ {1, 2, . . . ,∆(G1),∆(G1) + 1, . . . ,∆(G1) + q}

such that f(e) = f1(e) if e ∈ E(G1) and f(e) = f2(e) if e ∈ E(G2) is an edge coloring of G.
Since ∆(G) = ∆(G1) + q, it follows that χ′(G) = ∆(G).

(ii) By Lemma 10 and (i), we have ch′(G) > ∆(G) = ∆(G1) + q. Now we prove that
ch′(G) 6 ∆(G). Let L(e) be the lists of colors of e ∈ E(G) such that |L(e)| = ∆(G).

Let L1(e) ⊆ L(e) such that |L1(e)| = ∆(G1) for every e ∈ E(G1). Since G1 is a bipartite
graph, by Lemma 9 and Lemma 11, there exists g1 being a list edge coloring of G1 with the
lists of colors L1(e) for every e ∈ E(G1).

For every i = 1, 2, . . . , p, the subgraph induced by the edges of G1 incident with vi
is denoted by G1(vi). It is clear that |g1(G1(vi))| 6 ∆(G1). For every i = 1, 2, . . . , p, j =
= 1, 2, . . . , q, set L′(viuj) = L(viuj)\g1(G1(vi)). It follows that |L′(viuj)| > ∆(G)−∆(G1) =
= q. Let L2(viuj) ⊆ L′(viuj) such that |L2(viuj)| = ∆(G2) = q for every i = 1, 2, . . . , p,
j = 1, 2, . . . , q. By Lemma 11, there exists g2 being a list edge coloring of G2 with the lists
of colors L2(viuj) for every i = 1, 2, . . . , p, j = 1, 2, . . . , q. Let g be the edge coloring of G
such that g(e) = g1(e) if e ∈ E(G1) and g(e) = g2(e) if e ∈ E(G2). Then g is a list edge
coloring of G with the lists of colors L(e) for every e ∈ E(G), i.e., ch′(G) 6 ∆(G). Thus,
ch′(G) = ∆(G).

Theorem 4. Let G = Tp +Op be a graph with ∆(G) = p+ q − 1. Then

χ′(G) = ch′(G) = ∆(G)

if and only if G 6= K3.
Proof. Let V (G) = V1 ∪ V2 is a partition of V (G) such that G[V1] = Tp, G[V2] = Oq,

V1 = {v1, v2, . . . , vp}, V2 = {u1, u2, . . . , uq}. Set G1 = G[V1] and G2 = G − E(G[V1]). It is
not difficult to see that G1 and G2 are bipartite graphs and ∆(G) = p+ q− 1 = deg(v) for
some vertex v ∈ V1. It follows that ∆(G1) = p− 1.
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Suppose that χ′(G) = ch′(G) = ∆(G). We have chi′(K3) = ch′(K3) = 3. So G 6= K3.
Now suppose that G 6= K3. If p 6 q, then by Theorem 3, χ′(G) = ch′(G) = ∆(G).

So we may assume that p > q. If p = 2, then q = 1, so G = K3, a contradiction. It follows
that p > 3. Without loss of generality we may assume that ∆(G1) = degG1

(v1), so ∆(G) =
= deg(v1). Since ∆(G1) = p−1, it is not difficult to see that E(G1) = {v1v2, v1v3, . . . , v1vp}.
We consider separately two cases.

C a s e 1 : p = q + 1.
If q = 1, then p = 2, so G = K3, a contradiction. So we may assume that q > 2.

By Lemma 13, it is not difficult to see that |E(G)| = q2 − q. Since q > 2, it follows that
|E(G)| > q. By Lemma 12, G is Class one.

By Lemma 10, ch′(G) > χ′(G) = ∆(G). Let L(e) be the lists of colors of e ∈ E(G) such
that |L(e)| = ∆(G). Set G3 = G−E(G[{v2, v3, . . . , vp}∪V2]) and G4 = G[{v2, v3, . . . , vp}∪
∪ V2]. It is clear that G3 and G4 are bipartite graphs with ∆(G3) = deg(v1) = ∆(G) and
∆(G4) = q. By Lemma 9 and Lemma 11, there exists g3 being a list edge coloring of G3

with the lists of colors L(e) for every e ∈ E(G3). For every i = 2, 3, . . . , p, j = 1, 2, . . . , q, set
L′(viuj) = L(viuj)\{g3(v1vi), g3(v1uj)}. It follows that |L′(viuj)| > ∆(G)−2 = p+q−3 > q
for every i = 2, 3, . . . , p, j = 1, 2, . . . , q. Let L4(viuj) ⊆ L′(viuj) such that |L4(viuj)| = q for
every i = 2, 3, . . . , p, j = 1, 2, . . . , q. By Lemma 11, there exists g4 being a list edge coloring
of G4 with the lists of colors L2(viuj) for every i = 2, 3, . . . , p, j = 1, 2, . . . , q. Let g be the
edge coloring of G such that g(e) = g3(e) if e ∈ E(G3) and g(e) = g4(e) if e ∈ E(G4).
Then g is a list edge coloring of G with the lists of colors L(e) for every e ∈ E(G), i.e.,
ch′(G) 6 ∆(G). Thus, ch′(G) = ∆(G).

C a s e 2 : p > q + 2.
It is clear that G[v1 ∪ V2] = T ′q+1, where T ′q+1 is a tree of order q + 1. Therefore, G =

= T ′q+1 +Op−1. Since q + 1 < p− 1, by Theorem 3, χ′(G) = ch′(G) = ∆(G).

Conclusion
The coloring problems are interesting topics in graph theory. Coloring graphs found

application in many practical problems, for example, coding theory or security. Clearly,
to estimate the chromatic as well as the chromatic uniqueness is very important. So far
there have been many research results on this topic for different graph layers. However, the
problem has not been generally solved, and further research is needed. This paper explores
some of the coloring problems with graph G, which is join of the tree Tp and the null
graph Oq, contributes to enriching the research results on the coloring problems.
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