УДК 537.632.5:535.337 DOI: 10.17223/00213411/63/12/9

А.И. АБРАМОЧКИН, В.В. ТАТУР, А.А. ТИХОМИРОВ

ОСОБЕННОСТИ СТАБИЛИЗАЦИИ ИЗЛУЧЕНИЯ РТУТНОЙ КАПИЛЛЯРНОЙ ЛАМПЫ В АНАЛИЗАТОРЕ ПАРОВ РТУТИ НА ОСНОВЕ ЗЕЕМАНОВСКОЙ АТОМНОЙ АБСОРБЦИОННОЙ СПЕКТРОСКОПИИ *

Экспериментально исследована возможность повышения чувствительности анализатора паров ртути в атмосферном воздухе, использующего в качестве источника излучения капиллярную лампу с естественным изотопным составом ртути при поперечном эффекте Зеемана. Стабилизация режима излучения лампы обеспечивается за счет раздельного контроля температуры капилляра и колбы лампы. Достигнутая чувствительность анализатора составляет 14 нг/м³ на временном интервале более 40 мин.

Ключевые слова: анализатор паров ртути, ртутная капиллярная лампа, естественный изотопный состав, поперечный эффект Зеемана, излучение, стабилизация.

Введение

В обзоре последних достижений по созданию оперативных анализаторов для измерения концентрации паров атомарной ртути в атмосферном воздухе [1] показано, что наиболее быстродействующими и высокочувствительными являются анализаторы, основанные на методе атомноабсорбционной спектроскопии с использованием в качестве источника ртутной капиллярной лампы (РКЛ) при эффекте Зеемана [2].

Нами была исследована возможность применения в таком анализаторе в качестве источника излучения РКЛ с естественным изотопным составом [3–5] при поперечном эффекте Зеемана и на ее основе разработана новая модификация анализатора паров ртути ДОГ-07 [6]. При этом дифференциальная методика реализуется за счет того, что интенсивности излучения I_{π} всех π компонент зеемановского расщепления изотопов ртути в излучении РКЛ остаются внутри суммарного контура линии поглощения смеси изотопов, содержащихся в атмосферной ртути, а суммарные интенсивности излучения I_{σ} всех σ^+ - и σ^- -компонент смещаются на края этого контура (вправо и влево) [3]. Кроме того, все излучения π -, σ - и σ -компонент являются линейнополяризованными, что позволяет упростить схемно-технические решения анализатора ДОГ-07 по сравнению с анализатором PA-915+, серийно выпускаемым ООО «Люмэкс» и использующим в качестве источника излучений РКЛ с изотопом ²⁰⁴Hg при продольном эффекте Зеемана [7]. При этом излучаемые σ^+ и σ^- -компоненты зеемановского расщепления имеют круговую поляризацию, которая затем для дальнейшего использования преобразовывается в линейную. Однако в созданном анализаторе [6] сохранился недостаток, присущий анализатору РА-915+ – долговременная нестабильность излучения и дрейф нулевого уровня измеряемой концентрации паров ртути, что ограничивает его чувствительность в пределах ±30 нг/м³. В настоящей работе показана возможность дополнительной стабилизации излучения РКЛ и, соответственно, повышения чувствительности анализатора.

Установка и методика исследований

В [5, 6] было показано, что выравнивание интенсивностей I_{σ} и I_{π} , излучаемых РКЛ, и обеспечение их долговременной стабильности уменьшает дрейф нулевого уровня измеряемой концентрации паров ртути при использовании для ее вычисления соотношения

$$N_{\rm Hg} = K \ln \left(I'_{\,\sigma} / I'_{\,\pi} \right), \tag{1}$$

где K — коэффициент пропорциональности (аппаратурная постоянная), который составляет величину порядка $n\cdot 10^5$ (в нашем случае $1.8\cdot 10^5$); I'_{σ} и I'_{π} — интенсивности излучений суммы σ^+ и σ^- компонент и π -компоненты соответственно, прошедших через измерительную кювету. Большая величина K налагает высокие требования к погрешностям измерения значений I'_{σ} и I'_{π} .

Простым термостатированием РКЛ не удалось достигнуть необходимой стабильности отношения интенсивностей I_{σ} и I_{π} , излучаемых РКЛ. Проведенные исследования показали, что стаби-

^{*} Работа выполнена в рамках государственного задания ИМКЭС СО РАН.

Уважаемые читатели!

Доступ к полнотекстовой версии журнала «Известия высших учебных заведений. Физика» осуществляется на платформе Научной электронной библиотеки eLIBRARY.RU на платной основе:

https://elibrary.ru/contents.asp?titleid=7725