2021 Математика и механика № 69

УДК 514.76 DOI 10.17223/19988621/69/4 AMS MSC 53C15, 53D10, 53C25, 53C50

Н.К. Смоленцев, И.Ю. Шагабудинова

О ПАРАСАСАКИЕВЫХ СТРУКТУРАХ НА ПЯТИМЕРНЫХ АЛГЕБРАХ ЛИ

Рассматриваются парасасакиевы структуры на пятимерных контактных алгебрах Ли \mathfrak{g} с ненулевым центром. Такие алгебры Ли являются центральными расширениями четырехмерных паракэлеровых алгебр Ли (\mathfrak{h}, ω). В работе предложена классификация пятимерных парасасакиевых алгебр Ли с нетривиальным центром, основанная на классификации паракэлеровых структур J на симплектических алгебрах Ли (\mathfrak{h}, ω).

Ключевые слова: паракомплексная структура, левоинвариантная паракэлерова структура, параконтактная структура, левоинвариантная парасасакиева структура.

1. Введение

Комплексные и контактные многообразия – одни из самых активных областей исследований в дифференциальной геометрии. В последние годы все большее число исследователей привлекают их паракомплексные и параконтактные аналоги [1-4, 14]. Если мы имеем дело с группами Ли, то естественно рассматривать левоинвариантные структуры, которые определяются эндоморфизмами алгебр Ли. Структуры на группах Ли малых размерностей представляют особый интерес ввиду возможностей их классификации. В частности, четырехмерные комплексные алгебры Ли, симплектические и псевдокэлеровы алгебры Ли были классифицированы в работах Овандо [5-7]. Комплексные и паракомплексные структуры на четырехмерных обобщенных симметрических пространствах изучались в [8]. В работе Д. Калварузо [9] приведена классификация паракэлеровых структур на четырехмерных группах Ли. Она основывается на классификации структур произведения на четырехмерных алгебрах Ли [10]. Для каждой заданной структуры произведения J Кальварузо, используя классификацию четырехмерных симплектических алгебр Ли, нашел все возможные симплектические структуры ю, согласованные с данной паракомплексной структурой Ј. В работе [14] рассмотрены парасасакиевы структуры на пятимерных группах Ли. Для шестимерных и семимерных алгебр Ли пока мало информации о паракомплексных и соответственно о параконтактных алгебрах Ли.

В данной работе мы обращаемся к вопросу о классификации пятимерных парасасакиевых алгебр Ли с нетривиальным центром. Как известно, они являются центральными расширениями $\mathbf{g} = \mathbf{h} \times_{\omega} \mathbf{R}$ симплектических алгебр Ли (\mathbf{h}, ω) . Также известно [4], что параконтактная метрическая структура $(\mathbf{h}, \xi, \varphi, g)$ на центральном расширении $\mathbf{g} = \mathbf{h} \times_{\omega} \mathbf{R}$. является парасасакиевой тогда и только тогда, когда симплектическая паракомплексная алгебра Ли (\mathbf{h}, ω, J) является паракэлеровой. Поэтому вопрос о классификации пятимерных парасасакиевых алгебр Ли сводится к вопросу нахождения всех паракомплексных структур J на каждой симплектической алгебре Ли (\mathbf{h}, ω) . В разделе 4 данной работы такие структуры J найдены

в явном виде. Они определяют все возможные аффиноры ϕ парасасакиевых структур (η, ξ, ϕ, g) на центральных расширениях $\mathfrak{g} = \mathfrak{h} \times_{\omega} \mathbf{R}$ симплектических алгебр Ли (\mathfrak{h}, ω) , что и дает классификацию пятимерных парасасакиевых алгебр Ли с нетривиальным центром.

2. Паракомплексные структуры

Пусть J- поле эндоморфизмов касательного расслоения TM многообразия M размерности 2n, такое, что $J^2=Id$. В этом случае J имеет действительные собственные числа ± 1 и соответствующие собственные распределения T^+M и T^-M . Если ранги собственных распределений $T^\pm M$ равны, то J называется *почти параком-плексной* структурой на многообразии M.

Почти паракомплексная структура J называется интегрируемой, если распределения $T^\pm M$ инволютивны. В этом случае J называется паракомплексной структурой. Почти паракомплексная структура J интегрируема тогда и только тогда, когда кручение Нейенхейса $N_J(X,Y) = [X,Y] + [JX,JY] - J[JX,Y] - J[X,JY]$ обращается в нуль для всех векторных полей X,Y на M. Паракэлерово многообразие можно определить как псевдориманово многообразие (M,g) с кососимметрической паракомплексной структурой J, для которого фундаментальная форма $\omega(X,Y) = g(X,JY)$ замкнута. Свойство кососимметричности J обычно записывают в виде g(JX,JY) = -g(X,Y). Метрика g является псевдоримановой сигнатуры (n,n). Метрика g определяется через ω и J: $g(X,Y) = \omega(X,JY)$. Поэтому паракэлеровову структуру на M часто задают парой (ω,J) , где ω — симплектическая форма, а J — паракомплексная структура, согласованная с ω , т.е. такая, что $\omega(JX,JY) = -\omega(X,Y)$. В работе [1] представлен обзор теории паракомплексных структуры на однородных многообразиях. Обзор теории паракомплексных структур представлен в работе [3].

Левоинвариантная паракэлерова структура на группе Ли G — это тройка (g, ω, J) , состоящая из левоинвариантной псевдоримановой метрики g, левоинвариантной симплектической формы ω и кососимметричной левоинвариантной паракомплексной структуры J, причем $g(X,Y) = \omega(X,JY)$ для любых левоинвариантных векторных полей X и Y на G. Из левоинвариантности рассматриваемых объектов следует, что паракэлерова структура (g, ω, J) может быть задана значениями ω , J и g на алгебре Ли $\mathfrak g$ группы Ли G. Тогда $(\mathfrak g, \omega, J, g)$ называется n

Отметим, что из разложения $TM = T^{+}M \oplus T^{-}M$ и свойства инволютивности собственных распределений $T^{+}M$ и $T^{-}M$ следует, что любая napaкомплексная структура J на алгебре Ли $\mathfrak g$ приводит к разложению $\mathfrak g$ в прямую сумму подалгебр

$$\mathfrak{g}=\mathfrak{g}_+\oplus \mathfrak{g}_-$$
, где $J|\mathfrak{g}_+=Id,\,J|\mathfrak{g}_-=-Id.$

Как уже упоминалось, структуры на группах Ли малых размерностей представляют особый интерес ввиду возможностей их классификации. В работе [6] найдены все четырехмерные симплектические группы Ли. Паракомплексные структуры на четырехмерных разрешимых алгебрах Ли получены в работе [10]. В работе [9] найдены все возможные симплектические структуры, согласованные с паракомплексной структурой. Учитывая все эти результаты, получается следующий список четырехмерных симплектических алгебр Ли, допускающих паракэлерову структуру (таблица). В этой таблице представлены ненулевые скобки Ли алгебр в базисе e_1 , e_2 , e_3 , e_4 и симплектическая структура в дуальном базисе e^1 , e^2 , e^3 , e^4 .

	No	Скобки Ли	Симплектическая структура
1	$\mathbf{r}_2\mathbf{r}_2$	$[e_1,e_2]=e_2, [e_3,e_4]=e_4$	$\omega = e^1 \wedge e^2 + \lambda e^1 \wedge e^3 + e^3 \wedge e^4, \lambda \ge 0$
2	\mathfrak{rh}_3	$[e_1,e_2] = e_3$	$\omega = e^1 \wedge e^4 + e^2 \wedge e^3$
3	$\mathbf{rr}_{3,0}$	$[e_1,e_2]=e_2, [e_1,e_3]=0$	$\omega = e^1 \wedge e^2 + e^3 \wedge e^4$
4	$rr_{3,-1}$	$[e_1,e_2] = e_2, [e_1,e_3] = -e_3$	$\omega = e^1 \wedge e^4 + e^2 \wedge e^3$
5	r' ₂	$[e_1,e_3] = e_3, [e_1,e_4] = e_4, [e_2,e_3] = e_4,$ $[e_2,e_4] = -e_3$	$\omega = e^1 \wedge e^4 + e^2 \wedge e^3$
6	${f r}_{4,0}$	$[e_4,e_1]=e_1, [e_4,e_2]=0, [e_4,e_3]=e_2$	$\omega_{+} = e^{1} \wedge e^{4} + e^{2} \wedge e^{3}$, $\omega_{-} = e^{1} \wedge e^{4} - e^{2} \wedge e^{3}$
7	$\mathbf{r}_{4,-1}$	$[e_4,e_1] = e_1, [e_4,e_2] = -e_2, [e_4,e_3] = e_2 - e_3$	$\omega = e^1 \wedge e^3 + e^2 \wedge e^4$
8	$\mathbf{r}_{4,-1,\beta}$	$[e_4,e_1] = e_1, [e_4,e_2] = -e_2, [e_4,e_3] = \beta e_3$	$\omega = e^1 \wedge e^2 + e^3 \wedge e^4, -1 < \beta < 0$
9	$\mathbf{r}_{4,-1,-1}$	$[e_4,e_1] = e_1, [e_4,e_2] = -e_2, [e_4,e_3] = -e_3$	$\omega = e^1 \wedge e^2 + e^3 \wedge e^4$
10	$\mathbf{r}_{4,-lpha,lpha}$	$[e_4,e_1]=e_1, [e_4,e_2]=-\alpha e_2, [e_4,e_3]=\alpha e_3$	$\omega = e^1 \wedge e^4 + e^2 \wedge e^3, \ 0 < \alpha < 1$
11	$b_{4,1}$	$[e_1,e_2] = e_3, [e_4,e_3] = e_3, [e_4,e_1] = e_1,$ $[e_4,e_2] = 0$	$\omega_1 = e^1 \wedge e^2 - e^3 \wedge e^4, \ \omega_2 = e^1 \wedge e^2 - e^3 \wedge e^4 + e^2 \wedge e^4$
12	b _{4,2}	$[e_1,e_2] = e_3, [e_4,e_3] = e_3, [e_4,e_1] = 2e_1,$ $[e_4,e_2] = -e_2$	$\omega_1 = e^1 \wedge e^2 - e^3 \wedge e^4,$ $\omega_2 = e^1 \wedge e^4 + e^2 \wedge e^3, \ \omega_3 = e^1 \wedge e^4 - e^2 \wedge e^3$
13	${f b}_{4,\lambda}$	$[e_1,e_2] = e_3, [e_4,e_3] = e_3, [e_4,e_1] = \lambda e_1,$ $[e_4,e_2] = (1-\lambda)e_2$	$\omega = e^1 \wedge e^4 + e^2 \wedge e^3, \ \lambda \ge 1/2, \ \lambda \ne 1,2$
14	\mathfrak{h}_4	$[e_1,e_2] = e_3, [e_4,e_3] = e_3, [e_4,e_1] = \frac{1}{2}e_1,$ $[e_4,e_2] = e_1 + \frac{1}{2}e_2$	$ \omega_{+} = e^{1} \wedge e^{2} - e^{3} \wedge e^{4}, $ $ \omega_{+} = -e^{1} \wedge e^{2} + e^{3} \wedge e^{4} $
15	\Re_4	·	$\omega = e^1 \wedge e^2 + e^3 \wedge e^4$

Четырехмерные симплектические алгебры Ли, допускающие паракэлерову структуру

Обозначения в этом списке: $\mathbf{r}_2 = \mathrm{aff}(\mathbf{R})$ – алгебра Ли аффинных преобразований прямой \mathbf{R} ; $\mathbf{r'}_2$ – вещественная алгебра Ли, лежащая в основе комплексной алгебры Ли $\mathrm{aff}(\mathbf{C})$; $\mathbf{rr}_{3,0}$, $\mathbf{rr}_{3,-1}$ и and \mathbf{rh}_3 – тривиальные расширения алгебры Ли $\mathbf{e}(2)$ группы движений \mathbf{R}^2 , алгебры Ли $\mathbf{e}(1,1)$ группы движений двумерного пространства Минковского и алгебры Ли Гейзенберга \mathfrak{h}_3 соответственно.

3. Параконтактные структуры

Дифференцируемое (2n+1)-мерное многообразие M класса C^{∞} называется контактным многообразием, если на нем задана дифференциальная 1-форма η , такая что $\eta \wedge (d\eta)^n \neq 0$ всюду на M^{2n+1} . Контактная форма η определяет на многообразии M^{2n+1} распределение $D = \{X \in TM \mid \eta(X) = 0\}$ ранга 2n, которое называется контактным распределением. Контактное многообразие M имеет всюду ненулевое векторное поле ξ , которое определяется свойствами $\eta(\xi) = 1$ и $d\eta(\xi,X) = 0$ для всех векторных полей X на M. Поле ξ называется полем Puбa контактной структуры. Легко видеть, что $L_{\xi}\eta = 0$. Подробнее о контактных структурах см. в [12].

Параконтактной структурой на контактном многообразии M^{2n+1} называется тройка (η, ξ, ϕ) , где η – контактная 1-форма, ξ – поле Риба и ϕ – эндоморфизм TM, называемый обычно аффинором, обладающие свойством

$$\varphi^2 = I - \eta \otimes \xi.$$

Кроме того предполагается, что аффинор ϕ действует на слоях контактного распределения $D=\mathrm{Ker}(\eta)$ как паракомплексная структура, т.е. $\phi|_D=Id_D$ и ранги собственных распределений D^+ и D^- равны.

Определение 1. Если M^{2n+1} контактное многообразие с контактной формой η , то параконтактной метрической структурой называется четверка (η, ξ, φ, g) ,

где ξ — поле Риба, g — псевдориманова метрика на M^{2n+1} и ϕ — аффинор на M, для которых имеют место следующие свойства:

$$\varphi^2 = I - \eta \otimes \xi, d\eta(X,Y) = g(\varphi X,Y), g(\varphi X, \varphi Y) = -g(X,Y) + \eta(X)\eta(Y).$$

Из второго и третьего свойств сразу следует, что ассоциированная метрика g для параконтактной структуры полностью определяется аффинором ϕ :

$$g(X,Y) = -d\eta(X,\varphi Y) + \eta(X)\eta(Y).$$

Отметим, что для векторных полей X и Y, лежащих в контактном распределении D, выполняются равенства:

$$d\eta(\phi X, \phi Y) = -d\eta(X, Y)$$
 и $g(\phi X, \phi Y) = -g(X, Y)$.

Определим понятие парасасакиевой структуры по аналогии со структурой Сасаки в контактной геометрии. Пусть (M, η, ξ, φ) – параконтактное многообразие. Рассмотрим прямое произведение $M \times \mathbf{R}$. Векторное поле на $M \times \mathbf{R}$ представим в виде $(X, f \partial_t)$, где X – касательный к M^{2n+1} , t – координата на \mathbf{R} и f – функция на $M \times \mathbf{R}$.

Определение 2 [4]. Параконтактная структура (η, ξ, ϕ) на M называется нормальной, если интегрируема почти паракомплексная структура J на $M \times \mathbf{R}$, определенная формулой

$$J(X, f\partial_t) = (\varphi X - f\xi, -\eta(X)\partial_t).$$

Нормальная параконтактная метрическая структура (η, ξ, φ, g) называется парасасакиевой.

Параконтактные структуры на центральных расширениях алгебр Ли. Левоинвариантные контактные структуры на группах Ли определяются своими значениями на алгебре Ли. В этом смысле мы будем говорить о контактных алгебрах Ли (\mathfrak{g} , \mathfrak{q}). Как известно [13], контактная алгебра Ли с нетривиальным центром есть центральное расширение симплектической алгебры Ли (\mathfrak{h} , ω) при помощи 2-коцикла ω . Напомним, что центральное расширение $\mathfrak{g} = \mathfrak{h} \times_{\omega} \mathbf{R}$ есть прямое произведение $\mathfrak{h} \times \mathbf{R}$, на котором скобки Ли задаются следующим образом:

- $\bullet [X, \xi]_{\mathfrak{g}} = 0,$
- $[X, Y]_{\mathfrak{g}} = [X, Y]_{\mathfrak{h}} + \omega(X, Y)$ для любых $X, Y \in \mathfrak{h}$,

где $\xi = \partial_t -$ единичный вектор из **R**.

На алгебре Ли $\mathbf{g} = \mathbf{h} \times_{\omega} \mathbf{R}$ контактная форма задается формой $\mathbf{h} = \boldsymbol{\xi}^*$, т.е. такой формой, что $\mathbf{h}(\boldsymbol{\xi}) = 1$ и $\mathbf{h}(\boldsymbol{h}) = 0$. Поле $\boldsymbol{\xi} = \partial_t$ является полем Риба. Контактное распределение D — это подпространство $\mathbf{h} \subset \mathbf{g}$. Если $x = X + \lambda \boldsymbol{\xi}$ и $y = Y + \mu \boldsymbol{\xi}$, где $Y, Y \in \mathbf{h}$, $\lambda, \mu \in \mathbf{R}$, тогда

$$d\eta(x, y) = -\eta([x, y]) = -\xi^*([X, Y]_{\xi} + \omega(X, Y) \xi) = -\omega(X, Y).$$

Поскольку аффинор ϕ параконтактной структуры определяется фактически своим действием на контактном распределении $D=\mathfrak{h}$ как оператор паракомплексной структуры, то для задания аффинора ϕ на $\mathfrak{g}=\mathfrak{h}\times_{\omega}\mathbf{R}$ можно использовать почти паракомплексную структуру J на \mathfrak{h} следующим образом: если $x=X+\lambda\xi$, где $X\in\mathfrak{h}$, то $\phi(x)=JX$. Таким образом, аффинор ϕ имеет блочный вид:

$$\varphi = \begin{pmatrix} J & 0 \\ 0 & 0 \end{pmatrix}.$$

Если почти паракомплексная структура J на $\mathfrak h$ будет еще и согласованной с ω , т. е. обладать свойством $\omega(JX,JY)=-\omega(X,Y)$, то мы получим параконтактную (псевдориманову) метрическую структуру (η,ξ,ϕ,g) на $\mathfrak g=\mathfrak h\times_{\omega}\mathbf R$, определенную формулой

$$g(X,Y) = -d\eta(X, \varphi Y) + \eta(X)\eta(Y).$$

Теория параконтактных метрических структур в большой степени аналогична классической теории контактных метрических структур. Однако есть и различия, поэтому аналоги основных фактов контактной геометрии требуют доказательств. В частности, хорошо известно, что контактная метрическая структура (η , ξ , φ , g) на центральном расширении $\mathfrak{g} = \mathfrak{h} \times_{\omega} \mathbf{R}$. является сасакиевой тогда и только тогда, когда симплектическая алгебра (\mathfrak{h} , ω ,J) является кэлеровой. Аналогичный факт имеет место и для параконтактных структур, его доказательство приведено в работе [4].

Теорема 1 [4]. Параконтактная метрическая структура (η, ξ, ϕ, g) на центральном расширении $\mathfrak{g} = \mathfrak{h} \times_{\omega} \mathbf{R}$. является парасасакиевой тогда и только тогда, когда симплектическая алгебра \mathcal{J} и $(\mathfrak{h}, \omega, \mathcal{J})$ является паракэлеровой.

В работе [4] показано также, что тензор кривизны парасасакиевой структуры на центральном расширении $\mathbf{g} = \mathbf{h} \times_{\omega} \mathbf{R}$ выражается через тензор кривизны паракэлеровой структуры на \mathbf{h} .

Теорема 2 [4]. Пусть (ω, J, h) — паракэлерова структура на алгебре Ли \mathfrak{h} и $(\mathfrak{h}, \xi, \varphi, g)$ — соответствующая ей контактная парасасакиева структура на центральном расширении $\mathfrak{g} = \mathfrak{h} \times_{\omega} \mathbf{R}$. Тогда тензор кривизны R на \mathfrak{g} выражается через тензор кривизны $R_{\mathfrak{h}}$ на \mathfrak{h} , форму ω и почти паракомплексную структуру J на \mathfrak{h} следующим образом: для любых $X, Y \in \mathfrak{h}$,

$$R(X,Y)Z = R_{\mathfrak{h}}(X,Y)Z - \frac{1}{4}h(X,JZ)JY + \frac{1}{4}h(Y,JZ)JX - \frac{1}{2}h(X,JY)JZ,$$

$$R(X,Y)\xi = 0, R(X,\xi)Z = \frac{1}{4}g(X,Z)\xi, R(X,\xi)\xi = -\frac{1}{4}X,$$

Теорема 3 [4]. Пусть (ω, J, h) — паракэлерова структура на алгебре Ли $\mathfrak h$ и $(\mathfrak y, \xi, \varphi, g)$ — соответствующая ей параконтактная структура Сасаки на центральном расширении $\mathfrak g = \mathfrak h \times_{\omega} \mathbf R$. Тогда тензор Риччи Ric на $\mathfrak g$ выражается через тензор Риччи Ric $\mathfrak h$ $\mathfrak h$ форму ω и почти паракомплексную структуру J на $\mathfrak h$ следующим образом:

$$Ric(Y,Z) = Ric_{\mathfrak{h}}(Y,Z) + \frac{1}{2}h(Y,Z), Ric(Y,\xi) = 0, Ric(\xi,\xi) = -n/2.$$

Следующая теорема представляет основной результат данной работы.

Теорема 4. Любая парасасакиева структура (\mathfrak{g} \mathfrak{h} , ξ , φ , g) на пятимерной алгебре Ли \mathfrak{g} с нетривиальным центром изоморфна центральному расширению $\mathfrak{g} = \mathfrak{h} \times_{\omega} \mathbf{R}$ одной из алгебр Ли (\mathfrak{h} , ω), указанных в таблице 1. При этом поле Риба есть $\xi = \partial_t$, контактная форма $\mathfrak{h} = \xi^*$, аффинор имеет вид $\varphi = \begin{pmatrix} J & 0 \\ 0 & 0 \end{pmatrix}$, где J представлена в списке 4.1 - 4.15 раздела 4 и ассоциированная метрика g опреде-

представлена в списке 4.1-4.15 раздела 4 и ассоциированная метрика g определяется по формуле $g(X,Y)=-d\eta(X,\phi Y)+\eta(X)\eta(Y)$. Доказательство. Из теоремы 1 следует, что для классификации парасасакие-

Доказательство. Из теоремы I следует, что для классификации парасасакиевых структур на (η, ξ, φ, g) на контактных алгебрах Ли $\mathfrak{g} = \mathfrak{h} \times_{\omega} \mathbf{R}$ достаточно предъявить классификацию паракэлеровых структур J на (\mathfrak{h}, ω) . Аффинор φ парасасакиевой структуры на $\mathfrak{g} = \mathfrak{h} \times_{\omega} \mathbf{R}$ определяется паракомплексной структурой J и имеет указанный выше блочный вид. Поэтому для классификации парасасакиевых структур на $\mathfrak{g} = \mathfrak{h} \times_{\omega} \mathbf{R}$ достаточно для каждой симплектической алгебры Ли (\mathfrak{h}, ω) найти все согласованные с ω паракомплексные структуры J, т.е. такие эндоморфизмы J: $\mathfrak{h} \to \mathfrak{h}$, которые обладают свойствами:

- $1. J^2 = Id.$
- 2. $\omega(JX, Y) + \omega(X, JY) = 0$.
- 3. [X, Y] + [JX, JY] J[JX, Y] J[X, JY] = 0.

Тогда (\mathfrak{h} , ω , J) образует паракэлерову структуру на алгебре Ли \mathfrak{h} , а (\mathfrak{h} , ξ , φ , g) – парасасакиеву структуру на $\mathfrak{g} = \mathfrak{h} \times_{\omega} \mathbf{R}$.

В случае четырехмерных симплектических алгебр Ли (\mathfrak{h} , ω) вычисление всех согласованных с ω паракомплексных структур J может быть проведено в явном виде для всех алгебр Ли (\mathfrak{h} , ω), допускающих паракомплексную структуру (таблица). Явные выражения всех согласованных с ω паракомплексных структур J приведены в разделе 4. Это дает полную классификацию парасасакиевых структур на (\mathfrak{h} , \mathfrak{h} , \mathfrak{h} , \mathfrak{h}) на пятимерных параконтактных алгебрах Ли \mathfrak{g} с ненулевым центром, т.е. являющихся центральными расширениями $\mathfrak{g} = \mathfrak{h} \times_{\omega} \mathbf{R}$.

Рассмотрим, например, алгебру Ли $\mathbf{g} = \mathbf{r}\mathfrak{h}_3 \times_{\omega} \mathbf{R}$, где $\mathbf{r}\mathfrak{h}_3$ – вторая алгебра Ли в таблице, $\omega = e^1 \wedge e^4 + e^2 \wedge e^3$. Базис \mathbf{g} : e_1 , e_2 , e_3 , e_4 , e_5 , где e_1 , e_2 , e_3 , e_4 – базис $\mathbf{r}\mathfrak{h}_3$ и $e_5 = \partial_t$ – касательный вектор к \mathbf{R} . Тогда контактная форма есть $\mathbf{\eta} = e^5$, $d\mathbf{\eta} = -e^1 \wedge e^4 - e^2 \wedge e^3$, поле Риба – это $e_5 = \partial_t$, ненулевые скобки Ли алгебры $\mathbf{g} = \mathbf{r}\mathfrak{h}_3 \times_{\omega} \mathbf{R}$ следующие: $[e_1,e_2] = e_3$, $[e_1,e_4] = e_5$, $[e_2,e_3] = e_5$. Алгебра Ли $\mathbf{g} = \mathbf{r}\mathfrak{h}_3 \times_{\omega} \mathbf{R}$ допускает две парасасакиевы структуры ($\mathbf{\eta}$, $\mathbf{\xi}$, $\mathbf{\varphi}$, \mathbf{g}), зависящие от четырех параметров \mathbf{a} , \mathbf{b} , \mathbf{c} , \mathbf{d} , $\mathbf{b} \neq \mathbf{0}$, с аффинорами $\mathbf{\varphi}$ вида (см. пункт 4.2):

$$\phi_1 = \begin{bmatrix} a & -b & 0 & 0 & 0 \\ \frac{a^2 - 1}{b} & -a & 0 & 0 & 0 \\ d & c & a & b & 0 \\ -\frac{ca^2 + 2abd - c}{b^2} & d & -\frac{a^2 - 1}{b} & -a & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \ \phi_2 = \begin{bmatrix} 1 & -b & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ -\frac{bd}{2} & c & 1 & b & 0 \\ d & -\frac{bd}{2} & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

и ассоциированными метриками $g_i(X,Y) = -d\eta(X, \varphi_i Y) + \eta(X)\eta(Y), i = 1,2.$

4. Четырехмерные паракэлеровы алгебры Ли

В этом разделе мы дадим классификацию четырехмерных паракэлеровых алгебр Ли. Она отличается от классификации, предложенной Д. Калварузо [9], тем, что для каждой симплектической алгебры Ли (\mathfrak{h} , ω) таблицы мы находим все согласованные с ω паракомплексные структуры J, т.е. такие эндоморфизмы J: $\mathfrak{h} \to \mathfrak{h}$, которые обладают свойствами 1-3, указанными в конце раздела 3. Преимущество такого подхода заключается в том, что полученные паракомплексные структуры J можно использовать для определения аффиноров φ парасасакиевых структур на пятимерных параконтактных алгебрах Ли \mathfrak{g} с ненулевым центром.

Ясно, что паракомплексная структура J определяется с точностью до знака. Мы будем указывать только одну J из двух $\pm J$. Паракомплексные структуры $J = J^i_{\ j} e_i \otimes e^j$ будем представлять матрицами в базисе $\{e_i\}$ алгебры Ли \mathfrak{h} . Тогда условия 1-3 на матрицу J выражаются формулами:

- 1. $J_k^i J_j^k = \delta_j^i$.
- 2. $J_i^k \omega_{ki} + \omega_{is} J_i^s = 0$.

3.
$$C_{ij}^k + J_i^l J_j^m C_{lm}^k - J_i^l J_m^k C_{lj}^m - J_j^l J_m^k C_{il}^m = 0$$
,

где C_{ii}^m – структурные константы алгебры Ли \mathfrak{h} и δ_i^i – единичная матрица.

Решение уравнений 1-3 проведено в системе Maple. Для каждой полученной паракэлеровой структуры (\mathfrak{h} , ω , J, g) вычислены также тензоры кривизны и Риччи. Напомним, что тензор кривизны определяется формулой $R(X,Y) = [\nabla_X, \nabla_Y] - \nabla_{[X,Y]}$. В случае левоинвариантной метрики g_{ij} тензор кривизны вычисляется по

формуле
$$R_{ijk}^{\ \ s} = \Gamma_{jk}^m \Gamma_{im}^s - \Gamma_{ik}^m \Gamma_{jm}^s - C_{ij}^m \Gamma_{mk}^s$$
, где $\Gamma_{ij}^m = \frac{1}{2} g^{km} \left(C_{ij}^p g_{pk} + C_{ki}^p g_{pj} + C_{kj}^p g_{ip} \right)$

— символы Кристоффеля. Тензор Риччи — это свертка тензора кривизны по первому и четвертому (верхнему) индексам, $Ric_{jk} = R_{ijk}{}^i$. Мы рассматриваем тензор Риччи как тензор типа (1,1), т.е. как оператор Риччи $RIC = Ric \cdot g^{-1}$. Мы представляем тензор Риччи, если он имеет не слишком сложный вид.

Вычисления показывают, что оператор J паракомплексной структуры часто является блочным, имеет в качестве инвариантных подпространств $\mathbf{R}\{e_1,e_2\}$ и $\mathbf{R}\{e_3,e_4\}$ и действует на этих подпространствах матрицами следующего вида:

$$J_{-}(a) = \begin{bmatrix} 1 & 0 \\ a & -1 \end{bmatrix}, \ J_{+}(a) = \begin{bmatrix} 1 & a \\ 0 & -1 \end{bmatrix},$$
$$J_{-}(a,b) = \begin{bmatrix} a & b \\ -\frac{a^{2}-1}{b} & -a \end{bmatrix}, \ J_{+}(a,b) = \begin{bmatrix} a & -\frac{a^{2}-1}{b} \\ b & -a \end{bmatrix},$$

где $a,b\in \mathbf{R}$. Это простейшие паракомплексные структуры на плоскости \mathbf{R}^2 , согласованные с 2-формой $e^1\wedge e^2$. Блочный оператор J, составленный из этих матриц, мы будем обозначать как прямое произведение блоков. Например, мы пишем, $J=J_-(a)\times J_+(b)$, если J действует как $J_-(a)$ на $\mathbf{R}\{e_1,e_2\}$ и как $J_+(b)$ на $\mathbf{R}\{e_3,e_4\}$. Единичную матрицу порядка k будем обозначать символом Id_k .

4.1. Алгебра Ли
$${\bf r}_2{\bf r}_2$$

Ненулевые скобки Ли: $[e_1,e_2]=e_2$, $[e_3,e_4]=e_4$. Симплектическая структура $\omega=e^1\wedge e^2+\lambda e^1\wedge e^3+e^3\wedge e^4$, $\lambda\geq 0$. Случаи $\lambda>0$ и $\lambda=0$ существенно различны.

Случай $\lambda > 0$. Существует три паракомплексные структуры J, которые вместе с 2-формой ω дают три паракэлеровы структуры, зависящие от параметров a и b, все нулевой кривизны:

$$J_{1.1} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ a & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & b & -1 \end{bmatrix}, \quad J_{1.2} = \begin{bmatrix} -1 & 0 & 2 & 0 \\ -a & 1 & a & 0 \\ 0 & 0 & 1 & 0 \\ a & -2 & b & -1 \end{bmatrix}, \quad J_{1.3} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ a & 1 & b & 2 \\ -2 & 0 & 1 & 0 \\ b & 0 & -b & -1 \end{bmatrix}.$$

Случай $\lambda = 0$. Существует 5 паракэлеровых структур.

1. Паракомплексная структура, которая вместе с 2-формой ω дает паракэлерову структуру с эрмитовым тензором Риччи (т.е. Ric(JX,JY) = Ric(X,Y)) и с оператором Риччи $RIC = Ric \cdot g^{-1}$ вида, указанного ниже

$$J_{2,1} = \begin{bmatrix} -a & b \\ -\frac{a^2 - 1}{b} & a \end{bmatrix} \times \begin{bmatrix} c & -\frac{c^2 - 1}{d} \\ d & -c \end{bmatrix}, \quad RIC_{2,1} = (-b \cdot Id_2) \times \frac{c^2 - 1}{d} \cdot Id_2.$$

2. Эйнштейнова паракэлерова структура

$$J_{2,2} = \begin{bmatrix} a+1 & b & c-1 & b \\ -\frac{a(a+2)}{b} & -a-1 & -\frac{a(c-1)}{b} & -a \\ a & b & c & b \\ -\frac{a(c-1)}{b} & 1-c & -\frac{c^2-1}{b} & -c \end{bmatrix},$$

$$RIC_{2.2} = -\frac{3b}{2}Id_4.$$

3. Паракэлерова структура с эрмитовым тензором Риччи

$$J_{2,3} = \begin{bmatrix} 1 & 0 \\ a & -1 \end{bmatrix} \times \begin{vmatrix} b & -\frac{b^2 - 1}{c} \\ c & -b \end{vmatrix}, RIC_{2,3} = \frac{b^2 - 1}{c} (e_3 \otimes e^3 + e_4 \otimes e^4).$$

4. Паракэлерова структура с эрмитовым тензором Риччи. При b=c является эйнштейновой:

$$J_{2.4} = \begin{bmatrix} -a & b \\ -\frac{a^2 - 1}{b} & a \end{bmatrix} \times \begin{bmatrix} -1 & c \\ 0 & 1 \end{bmatrix}, \ RIC_{2,4} = (-b \cdot Id_2) \times (-c \cdot Id_2)$$

5. Паракэлерова структура нулевой кривизны

$$J_{2.5} = e_1 \otimes e^1 - e_2 \otimes e^2 - e_3 \otimes e^3 + e_4 \otimes e^4 + e_2 \otimes (ae^1 + be^3 - 2e^4) + 2e_3 \otimes e^1 + e_4 \otimes (be^1 - be^3).$$

Ненулевые скобки Ли: $[e_1,e_2]=e_3$. Симплектическая структура $\omega=e^1\wedge e^4+e^2\wedge e^3$. Имеется две паракэлеровы структуры нулевой кривизны:

$$J_{1} = \begin{bmatrix} a & -b & 0 & 0 \\ \frac{a^{2}-1}{b} & -a & 0 & 0 \\ d & c & a & b \\ -\frac{ca^{2}+2abd-c}{b^{2}} & d & -\frac{a^{2}-1}{b} & -a \end{bmatrix}, J_{2} = \begin{bmatrix} 1 & -b & 0 & 0 \\ 0 & -1 & 0 & 0 \\ -\frac{bd}{2} & c & 1 & b \\ d & -\frac{bd}{2} & 0 & -1 \end{bmatrix}.$$

Ненулевые скобки Ли: $[e_1,e_2]=e_2$, $[e_1,e_3]=0$. Симплектическая структура $\omega=e^1\wedge e^2+e^3\wedge e^4$. Две паракомплексные структуры J.

1. Паракэлерова структура с эрмитовым тензором Риччи

$$J_{1} = \begin{bmatrix} -a & c \\ -\frac{a^{2}-1}{a} & a \end{bmatrix} \times \begin{bmatrix} b & -\frac{b^{2}-1}{d} \\ d & -b \end{bmatrix}, RIC_{1} = -c(e_{1} \otimes e^{1} + e_{2} \otimes e^{2}).$$

2. Паракэлерова структура нулевой кривизны

$$J_2 = \begin{bmatrix} -1 & 0 \\ a & 1 \end{bmatrix} \times \begin{bmatrix} b & -\frac{b^2 - 1}{c} \\ c & -b \end{bmatrix}.$$

Ненулевые скобки Ли: $[e_1,e_2] = e_2$, $[e_1,e_3] = -e_3$. Симплектическая структура $\omega = e^1 \wedge e^4 + e^2 \wedge e^3$. Три согласованные паракомплексные структуры J.

1. Две паракэлеровы структуры с нулевым тензором Риччи с инвариантными паракомплексными подпространствами $\mathbf{R}\{e_1,e_4\}$ и $\mathbf{R}\{e_2,e_3\}$

$$J_1 = (e_1 + be_4) \otimes e^1 - e_4 \otimes e^4 + (-e_2 + ae_3) \otimes e^2 + e_3 \otimes e^3,$$

$$J_2 = (-e_1 + be_4) \otimes e^1 + e_4 \otimes e^4 - e_2 \otimes e^2 + (ae_2 + e_3) \otimes e^3.$$

2. Паракэлерова структура нулевой кривизны с инвариантными подпространствами $\mathbf{R}\{e_1,e_4\}$ и $\mathbf{R}\{e_2,e_3\}$

$$J_3 = (-ae_1 + be_4) \otimes e^1 + (-\frac{a^2 - 1}{b}e_1 + ae_4) \otimes e^4 - e_2 \otimes e^2 + e_3 \otimes e^3$$
.

Ненулевые скобки Ли: $[e_1,e_3]=e_3$, $[e_1,e_4]=e_4$, $[e_2,e_3]=e_4$, $[e_2,e_4]=-e_3$. Симплектическая структура $\omega=e^1\wedge e^4+e^2\wedge e^3$. Три согласованные паракомплексные структуры J.

1. Паракэлерова структура с эрмитовым тензором Риччи

$$J = \begin{bmatrix} -a & b & c & -d \\ -b & -a & d & c \\ J_1^3 & J_2^3 & a & -b \\ -J_2^3 & J_1^3 & b & a \end{bmatrix}, \ RIC = 2 \begin{bmatrix} d & -c & 0 & 0 \\ c & d & 0 & 0 \\ 0 & 0 & d & -c \\ 0 & 0 & c & d \end{bmatrix},$$

где
$$J_1^3 = -\frac{2abd + c(a^2 - b^2 - 1)}{d^2 + c^2}$$
, $J_2^3 = \frac{2abc - d(a^2 - b^2 - 1)}{d^2 + c^2}$.

2. Паракэлерова эйнштейнова структура

$$J = \begin{bmatrix} -\frac{ab+c^2+2}{2} & -c & 0 & b \\ 0 & -1 & 0 & 0 \\ -\frac{c(ab+c^2+4)}{2b} & a & 1 & c \\ J_1^4 & -\frac{c(ab+c^2+4)}{2b} & 0 & \frac{ab+c^2+2}{2} \end{bmatrix}, \ RIC = -\frac{3b}{2}Id_4,$$

где
$$J_1^4 = -rac{a^2b^2 + 2abc^2 + c^4 + 4ab + 4c^2}{4b}$$
 .

3. Паракэлерова структура нулевой кривизны

$$J = (-e_1 + ae_3 - be_4) \otimes e^1 + (-e_2 + be_3 + ae_4) \otimes e^2 + e_3 \otimes e^3 + e_4 \otimes e^4.$$

Ненулевые скобки Ли: $[e_4,e_1]=e_1,\ [e_4,e_2]=0,\ [e_4,e_3]=e_2$. Две симплектические структуры $\omega_+=e^1\wedge e^4+e^2\wedge e^3$, $\omega_-=e^1\wedge e^4-e^2\wedge e^3$. Две паракэлеровы структуры с нулевым тензором Риччи и с одной паракомплексной структурой с инвариантными подпространствами $\mathbf{R}\{e_1,e_4\}$ и $\mathbf{R}\{e_2,e_3\}$

$$J = e_1 \otimes e^1 + (ae_1 - e_4) \otimes e^4 - e_2 \otimes e^2 + (be_2 + e^3) \otimes e^3$$
.

4.7. Алгебра Ли
$$r_{4-1}$$

Ненулевые скобки Ли: $[e_4,e_1]=e_1$, $[e_4,e_2]=-e_2$, $[e_4,e_3]=e_2-e_3$. Симплектическая структура $\omega=e^1\wedge e^3+e^2\wedge e^4$. Паракэлерова структура с нулевым тензором Риччи и с инвариантными подпространствами $\mathbf{R}\{e_1,e_3\}$ и $\mathbf{R}\{e_2,e_4\}$

$$J = -e_1 \otimes e^1 + (ae_1 + e_3) \otimes e^3 + e_2 \otimes e^2 + (be_2 - e_4) \otimes e^4.$$

Ненулевые скобки Ли: $[e_4,e_1]=e_1,\ [e_4,e_2]=-e_2,\ [e_4,e_3]=\beta e_3.$ Симплектическая структура $\omega=e^1\wedge e^2+e^3\wedge e^4$, $-1<\beta<0$. Три паракомплексные структуры J.

1. Паракэлерова структура с эрмитовым тензором Риччи

$$J_{1} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} a & -\frac{a^{2}-1}{b} \\ b & -a \end{bmatrix}, RIC_{1} = b\beta^{2} (e_{3} \otimes e^{3} + e_{4} \otimes e^{4}).$$

2. Две паракэлеровы структуры с нулевым тензором Риччи

$$J_2 = \begin{bmatrix} 1 & 0 \\ a & -1 \end{bmatrix} \times \begin{bmatrix} 1 & b \\ 0 & -1 \end{bmatrix}, \ J_3 = \begin{bmatrix} -1 & a \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & b \\ 0 & -1 \end{bmatrix}.$$

Ненулевые скобки Ли: $[e_4,e_1]=e_1$, $[e_4,e_2]=-e_2$, $[e_4,e_3]=-e_3$. Симплектическая структура $\omega=e^1\wedge e^2+e^3\wedge e^4$. Пять согласованных паракомплексных структур J.

1. Паракэлерова структура с эрмитовым тензором Риччи

$$J_1 = \begin{bmatrix} -1 & -\frac{a^2}{b} & a & -\frac{a(c-1)}{b} \\ 0 & 1 & 0 & 0 \\ 0 & -\frac{a(c-1)}{b} & c & -\frac{c^2-1}{b} \\ 0 & -a & b & -c \end{bmatrix}, \ RIC_1 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -a & 0 \\ 0 & 0 & b & 0 \\ a & 0 & 0 & b \end{bmatrix}.$$

2. Три паракэлеровы структуры с нулевым тензором Риччи

$$J_{2} = \begin{bmatrix} a & 0 & 0 & -\frac{a^{2}-1}{b} \\ c & -a & b & -d \\ d & -\frac{a^{2}-1}{b} & a & \frac{c(a^{2}-1)-2abd}{b^{2}} \\ b & 0 & 0 & -a \end{bmatrix},$$

$$J_{3} = \begin{bmatrix} -1 & a & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & b \\ 0 & 0 & 0 & -1 \end{bmatrix}, \ J_{4} = \begin{bmatrix} -1 & 0 & 0 & \frac{2a}{b} \\ b & 1 & 0 & -a \\ a & \frac{2a}{b} & -1 & c \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

3. Паракэлерова структура нулевой кривизны

$$J = e_1 \otimes e^1 + (-e_2 + ae_3) \otimes e^2 + e_3 \otimes e^3 + (ae_1 + be_3 - e_4) \otimes e^4.$$

Ненулевые скобки Ли: $[e_4,e_1]=e_1$, $[e_4,e_2]=-\alpha e_2$, $[e_4,e_3]=\alpha e_3$. Симплектическая структура $\omega=e^1\wedge e^4+e^2\wedge e^3$, $0<\alpha<1$. Три паракомплексные структуры.

1. Паракэлерова структура с эрмитовым тензором Риччи и с паракомплексными подпространствами $\mathbf{R}\{e_1,e_4\}$ и $\mathbf{R}\{e_2,e_3\}$:

$$J_{1} = (-ae_{1} + be_{4}) \otimes e^{1} + (-\frac{a^{2} - 1}{b}e_{1} + ae_{4}) \otimes e^{4} - e_{2} \otimes e^{2} + e_{3} \otimes e^{3},$$

$$RIC_{1,2} = b(e_{1} \otimes e^{1} + e_{4} \otimes e^{4}).$$

2. Две паракэлеровы структуры с нулевым тензором Риччи и с паракомплексными подпространствами $\mathbf{R}\{e_1,e_4\}$ и $\mathbf{R}\{e_2,e_3\}$

$$J_2 = e_1 \otimes e^1 + (ae_1 - e_4) \otimes e^4 - e_2 \otimes e^2 + (be_2 + e_3) \otimes e^3,$$

$$J_3 = e_1 \otimes e^1 + (ae_1 - e_4) \otimes e^4 + (e_2 + be_3) \otimes e^2 - e_3 \otimes e^3.$$

Ненулевые скобки Ли $[e_1,e_2]=e_3,\ [e_4,e_3]=e_3,\ [e_4,e_1]=e_1.$ Две симплектические структуры $\omega_1=e^1\wedge e^2-e^3\wedge e^4$, $\omega_2=e^1\wedge e^2-e^3\wedge e^4+e^2\wedge e^4.$

- **4.11.1.** Симплектическая структура $\omega_1 = e^1 \wedge e^2 e^3 \wedge e^4$. Пять паракэлеровых структур.
 - 1. Паракэлерова эйнштейнова структура

$$J_{1,1} = \begin{bmatrix} 1 & \frac{a^2}{b} & a & -\frac{a(c+1)}{b} \\ 0 & -1 & 0 & 0 \\ 0 & \frac{a(c+1)}{b} & c & -\frac{c^2-1}{b} \\ 0 & a & b & -c \end{bmatrix}, \ RIC_{1,1} = -\frac{3b}{2}Id_4.$$

2. Паракэлерова структура с эрмитовым тензором Риччи

$$J_{1,2} = \begin{bmatrix} -a & 0 & 0 & \frac{a^2 - 1}{b} \\ c & a & b & d \\ d & -\frac{a^2 - 1}{b} & -a & -\frac{2abd + c(a^2 - 1)}{b} \\ -b & 0 & 0 & a \end{bmatrix},$$

$$RIC_{1,2} = 2be_1 \otimes e^3 - 2be_4 \otimes e^2$$
.

3. Паракэлерова структура с нулевым тензором Риччи

$$J_{1,3} = \begin{bmatrix} 1 & 0 & 0 & \frac{2a}{b} \\ b & -1 & 0 & a \\ a & -\frac{2a}{b} & 1 & c \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

4. Две паракэлеровы структуры нулевой кривизны

$$J_{1,4} = \begin{bmatrix} -1 & a & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & b \\ 0 & 0 & 0 & -1 \end{bmatrix}, \ J_{1,5} = \begin{bmatrix} -1 & 0 & 0 & -a \\ 0 & 1 & 0 & 0 \\ 0 & a & -1 & b \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

4.11.2. Симплектическая структура $\omega_2 = e^1 \wedge e^2 - e^3 \wedge e^4 + e^2 \wedge e^4$. Одна паракэлерова структура нулевой кривизны

$$J_2 = \begin{bmatrix} 1 & a \\ 0 & -1 \end{bmatrix} \times \begin{bmatrix} -1 & b \\ 0 & 1 \end{bmatrix}.$$

4.12. Алгебра Ли **b**₄₂

Ненулевые скобки Ли: $[e_1,e_2]=e_3$, $[e_4,e_3]=e_3$, $[e_4,e_1]=2e_1$, $[e_4,e_2]=-e_2$. Три симплектические структуры $\omega_1=e^1\wedge e^2-e^3\wedge e^4$, $\omega_2=e^1\wedge e^4+e^2\wedge e^3$, $\omega_3=e^1\wedge e^4-e^2\wedge e^3$.

1. Симплектическая структура $\omega_1 = e^1 \wedge e^2 - e^3 \wedge e^4$. Три паракэлеровы структуры. Эйнштейнова структура

$$J_{1,1} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} a & b \\ -\frac{a^2 - 1}{b} & -a \end{bmatrix},$$

$$RIC_{1,1} = \frac{3(a^2 - 1)}{2h}Id_4$$
.

Две Риччи-плоские структуры

$$J_{1,2} = \begin{bmatrix} -1 & a \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & b \\ 0 & -1 \end{bmatrix}, \ J_{1,3} = \begin{bmatrix} 1 & 0 \\ a & -1 \end{bmatrix} \times \begin{bmatrix} 1 & b \\ 0 & -1 \end{bmatrix}.$$

2. Симплектическая структура $\omega_2 = e^1 \wedge e^4 + e^2 \wedge e^3$. Существуют две паракэлеровы структуры с паракомплексными подпространствами $\mathbf{R}\{e_1,e_4\}$ и $\mathbf{R}\{e_2,e_3\}$

$$J_{2,1} = \begin{bmatrix} a & 0 & 0 & 2\frac{a^2 - 1}{b} \\ 0 & -a & b & 0 \\ 0 & -\frac{a^2 - 1}{b} & a & 0 \\ -b/2 & 0 & 0 & -a \end{bmatrix}, RIC_{1,2} = 3be_1 \otimes e^1 - 3be_4 \otimes e^4,$$

$$J_{2,2} = \begin{bmatrix} -a & 0 & 0 & -b(a+1) \\ 0 & 1 & 0 & 0 \\ 0 & b & -1 & 0 \\ \frac{a-1}{b} & 0 & 0 & a \end{bmatrix}, RIC_{1,2} = 4\frac{a-1}{b}(e_1 \otimes e^1 - e_4 \otimes e^4).$$

3. Симплектическая структура $\omega_3 = e^1 \wedge e^4 - e^2 \wedge e^3$. Девять паракэлеровых структур ненулевой кривизны

$$J_{3,1} = J_{2,1}, \ J_{3,2} = \begin{bmatrix} a & 0 & 0 & -b(a+1) \\ 0 & -1 & 0 & 0 \\ 0 & b & 1 & 0 \\ \frac{a-1}{b} & 0 & 0 & -a \end{bmatrix},$$

$$J_{3,3} = \begin{bmatrix} 1 & a & 0 & a \\ 0 & 1 & 0 & 0 \\ 2 & b & -1 & a \\ 0 & -2 & 0 & -1 \end{bmatrix}, \ J_{3,4} = \begin{bmatrix} 1 & a & 0 & -a \\ 0 & 1 & 0 & 0 \\ -2 & b & -1 & a \\ 0 & 2 & 0 & -1 \end{bmatrix}, \ J_{3,5} = \begin{bmatrix} 0 & a & 1 & b \\ 0 & 0 & 0 & -1 \\ 1 & b & 0 & a \\ 0 & -1 & 0 & 0 \end{bmatrix},$$

$$J_{3,6} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ a & 1 & a & 0 \\ 0 & 0 & -1 & 0 \\ a & 0 & a & 1 \end{bmatrix}, \ J_{3,7} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ a & 1 & -a & 0 \\ 0 & 0 & -1 & 0 \\ -a & 0 & a & 1 \end{bmatrix},$$

$$J_{3,8} = \begin{bmatrix} a-1 & b & a & -\frac{2b(a-2)}{a} \\ \frac{a^2}{2b} & \frac{a}{2} + 1 & \frac{a^2}{2b} & -a \\ -\frac{a}{2} & -\frac{b(a+4)}{2a} & -\frac{a}{2} - 1 & b \\ \frac{a^2}{2b} & \frac{a}{2} & \frac{a^2}{2b} & 1-a \end{bmatrix}, J_{3,9} = \begin{bmatrix} -a-1 & b & a & \frac{2b(a+2)}{a} \\ \frac{a^2}{2b} & -\frac{a}{2} + 1 & -\frac{a^2}{2b} & -a \\ -\frac{a}{2} & \frac{b(a-4)}{2a} & \frac{a}{2} - 1 & b \\ -\frac{a^2}{2b} & \frac{a}{2} & \frac{a^2}{2b} & a+1 \end{bmatrix}.$$

Ненулевые скобки Ли: $[e_1,e_2]=e_3$, $[e_4,e_3]=e_3$, $[e_4,e_1]=\lambda e_1$, $[e_4,e_2]=(1-\lambda)e_2$, $\lambda\geq 1/2$, $\lambda\neq 1,2$. Симплектическая структура $\omega=e^1\wedge e^2-e^3\wedge e^4$. Три паракэлеровы структуры ненулевой кривизны. Две Риччи-плоские метрики

$$J_1 = \begin{bmatrix} 1 & a & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & b \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ J_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ a & -1 & 0 & 0 \\ 0 & 0 & 1 & b \\ 0 & 0 & 0 & -1 \end{bmatrix}.$$

Эйнштейнова метрика

$$J_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & a & \frac{1-a^2}{b} \\ 0 & 0 & b & -a \end{bmatrix}, \ RIC_3 = -\frac{3b}{2}Id_4 \ .$$

4.14. Алгебра Ли **b**₄

Ненулевые скобки Ли: $[e_1,e_2]=e_3$, $[e_4,e_3]=e_3$, $[e_4,e_1]=\frac{1}{2}e_1$, $[e_4,e_2]=e_1+\frac{1}{2}e_2$. Симплектическая структура $\omega=\pm(e^1\wedge e^2-e^3\wedge e^4)$. Одна паракэлерова структура с нулевым тензором Риччи

$$J = \begin{bmatrix} -1 & a \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & b \\ 0 & -1 \end{bmatrix}.$$

4.15. Алгебра Ли **%**₄

Симплектическая структура $\omega = e^1 \wedge e^2 + e^3 \wedge e^4$ на \mathbf{R}^4 . Любая паракомплексная структура J на \mathbf{R}^4 , согласованная с ω , определяет паракэлерову структуру нулевой кривизны.

ЛИТЕРАТУРА

- 1. *Алексеевский Д.В.*, *Медори К.*, *Томассини А*. Однородные пара-кэлеровы многообразия Эйнштейна // Успехи математических наук. 2009. Т. 64. Вып. 1(385). С. 3–50. URL: https://doi.org/10.4213/rm9262.
- Calvaruso G. and Fino A. Complex and paracomplex structures on homogeneous pseudo-Riemannian four-manifolds // Int. J. Math. 2013. V. 24. 1250130. 28 p. URL: https://doi.org/ 10.1142/S0129167X12501303.
- Cruceanu V., Fortuny P. and Gadea P.M. A survey on paracomplex geometry // Rocky Mount. J. Math. 1996. V. 26. P. 83–115.
- Смоленцев Н.К. Левоинвариантные пара-сасакиевы структуры на группах Ли // Вестник Томского государственного университета. Математика и механика. 2019. № 62. С. 27–37. DOI: 10.17223/19988621/62/3.
- Ovando G. Invariant complex structures on solvable real Lie groups // Manuscripta Math. 2000. V. 103. P. 19–30. URL: https://doi.org/10.1007/s002290070026.
- Ovando G. Four-dimensional symplectic Lie algebras // Beiträge Algebra Geom. V. 47. 2006. No. 2. P. 419–434. URL: https://arxiv.org/abs/math/0407501.

- Ovando G. Invariant pseudo-Kähler metrics in dimension four // J. Lie Theory. 2006. V. 16. P. 371–391.
- 8. *Calvaruso G.* Symplectic, complex and Kähler structures on four-dimensional generalized symmetric spaces // Diff. Geom. Appl. 2011. V. 29. P. 758–769. URL: https://doi.org/10.1016/j.difgeo.2011.08.004.
- 9. *Calvaruso G.* A complete classification of four-dimensional para-Kähler Lie algebras // Complex Manifolds, 2015. V. 2. Iss. 1. P. 733–748. DOI: 10.1515/coma-2015-0001.
- Andrada A., Barberis M.L., Dotti I.G., Ovando G. Product structures on four-dimensional solvable Lie algebras // Homology, Homotopy and Applications. 2005. No. 7. P. 9–37. DOI: 10.4310/HHA.2005.y7.n1.a2.
- Kobayashi S. and Nomizu K. Foundations of Differential Geometry. Vol. 1 and 2. New York; London: Interscience Publ., 1963.
- 12. *Blair D.E.* Contact Manifolds in Riemannian Geometry. Lecture Notes in Mathematics. Berlin; Heidelberg; New York: Springer-Verlag, 1976. ISBN 978-3-540-38154-9.
- Diatta A. Left invariant contact structures on Lie groups // Diff. Geom. and its Appl. 2008.
 V. 26. Iss. 5. P. 544–552 (arXiv: math. DG/0403555 v2 24 Sep 2004). URL: https://doi.org/10.1016/j.difgeo.2008.04.001
- 14. Calvaruso G., Perrone A. Five-dimensional paracontact Lie algebras // Diff. Geom. and Appl. 2016. V. 45. P. 115–129. URL: https://doi.org/10.1016/j.difgeo.2016.01.001.

Статья поступила 08.06.2020

Smolentsev N. K., Shagabudinova I.Y. (2021) ON PARASASAKIAN STRUCTURES ON FIVE-DIMENSIONAL LIE ALGEBRAS. *Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika* [Tomsk State University Journal of Mathematics and Mechanics]. 69. pp. 37–52

DOI 10.17223/19988621/69/4

Keywords: para-complex structure; left-invariant para-Kähler structure; para-contact structure; left-invariant para-Sasakian structures.

In this paper, we consider para-Sasakian structures on five-dimensional Lie algebras with a nontrivial center. As is known, they are central extensions $\mathbf{g} = \mathbf{h} \times_{\omega} \mathbf{R}$ of symplectic Lie algebras (\mathbf{h}, ω) . It is also known that a paracontact metric structure (η, ξ, φ, g) on a central extension $\mathbf{g} = \mathbf{h} \times_{\omega} \mathbf{R}$ is para-Sasakian if and only if the symplectic para-complex Lie algebra (\mathbf{h}, ω, J) is para-

Kähler. In this case, the affinor φ has the block form $\varphi = \begin{pmatrix} J & 0 \\ 0 & 0 \end{pmatrix}$. Therefore, it suffices to present

a para-complex structure J in order to find the affinor φ . The associated metric g is found by the formula $g(X,Y) = -d\eta(X,\varphi Y) + \eta(X)\eta(Y)$. Therefore, the question of classification of five-dimensional para-Sasakian Lie algebras is reduced to the question of classification of para-Kähler structures J on four-dimensional symplectic Lie algebras (\mathfrak{h}, ω) . In this paper, such a classification is obtained, and the para-complex structures J are found explicitly for each Lie algebra (\mathfrak{h}, ω) . The resulting structures J define all possible affinors φ of para-Sasakian structures (η, ξ, φ, g) on central extensions $\mathfrak{g} = \mathfrak{h} \times_{\omega} \mathbf{R}$ of symplectic Lie algebras (\mathfrak{h}, ω) , which gives the classification of five-dimensional para-Sasakian Lie algebras with a nontrivial center.

AMS Mathematical Subject Classification: 53C15, 53D10, 53C25, 53C50

Nikolay K. SMOLENTSEV (Doctor of Physics and Mathematics, Professor of Department of Fundamental Mathematics, Kemerovo State University, Kemerovo, Russia. E-mail: smolennk@mail.ru.

Irina Y. SHAGABUDINOVA (graduate student of Department of Fundamental Mathematics, Kemerovo State University, Kemerovo, Russia. E-mail: shagabudinovai@mail.ru

REFERENCES

- Alekseevsky D.V., Medori C., Tomassini A. (2009) Homogeneous para-Kähler Einstein manifolds. Russian Mathematical Surveys. 64(1). pp. 1–43. URL: https://doi.org/ 10.4213/rm9262
- Calvaruso G. and Fino A. (2013) Complex and paracomplex structures on homogeneous pseudo-Riemannian four-manifolds, *International Journal of Mathematics*. 24. 1250130. URL: https://doi.org/10.1142/S0129167X12501303.
- 3. Cruceanu V., Fortuny P. and Gadea P.M. (1996) A survey on paracomplex geometry. *Rocky Mountain Journal of Mathematics*. 26. pp. 83–115.
- Smolentsev N.K. (2019) Levoinvariantnyye para-sasakiyevy struktury na gruppakh Li [Left-invariant para-Sasakian structures on Lie groups]. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika Tomsk State University Journal of Mathematics and Mechanics. 62. pp. 27–37. DOI: 10.17223/19988621/62/3.
- 5. Ovando G. (2000) Invariant complex structures on solvable real Lie groups. *Manuscripta Mathematica*. 103. pp. 19–30. URL: https://doi.org/10.1007/s002290070026.
- 6. Ovando G. (2006) Four-dimensional symplectic Lie algebras. *Beiträge zur Algebra und Geometrie*. 47(2). pp. 419–434. URL: https://arxiv.org/abs/math/0407501.
- Ovando G. (2006) Invariant pseudo-Kähler metrics in dimension four. *Journal of Lie Theory*. 16. pp. 371–391.
- 8. Calvaruso G. (2011) Symplectic, complex and Kähler structures on four-dimensional generalized symmetric spaces. *Differential Geometry and its Applications*. 29(6). pp. 758–769. URL: https://doi.org/10.1016/j.difgeo.2011.08.004.
- 9. Calvaruso G. (2015) A complete classification of four-dimensional paraKähler Lie algebras. *Complex Manifolds*. 2(1). pp. 733–748. DOI: 10.1515/coma-2015-0001.
- Andrada A., Barberis M.L., Dotti I.G., Ovando G. (2005) Product structures on four-dimensional solvable Lie algebras. *Homology*, *Homotopy and Applications*. 7(1). pp. 9–37. DOI: 10.4310/HHA.2005.v7.n1.a2.
- 11. Kobayashi S. and Nomizu K. (1963) Foundations of Differential Geometry. Vol. 1 and 2. New York: Interscience Publishers.
- 12. Blair D.E. (1976) Contact Manifolds in Riemannian Geometry. Lecture Notes in Mathematics. Springer-Verlag.
- 13. Diatta A. (2008) Left invariant contact structures on Lie groups. *Differential Geometry and its Applications*. 26(5). pp. 544–552. URL: https://doi.org/10.1016/j.difgeo.2008.04.001.
- 14. Calvaruso G., Perrone A. (2016) Five-dimensional paracontact Lie algebras. *Differential Geometry and its Applications*. 45. pp. 115–129. DOI: https://doi.org/10.1016/j.difgeo. 2016.01.001.

Received: June 8, 2020