ОСНОВНЫЕ ВИДЫ ТЕХНОГЕННОГО ВОЗДЕЙСТВИЯ НА ВОДНЫЕ БИОРЕСУРСЫ ПРИ ОСВОЕНИИ МИНЕРАЛЬНО-СЫРЬЕВОЙ БАЗЫ

В.А. Заделёнов*, М.А. Трофимова*, И.В. Космаков**

*Научно-исследовательский институт экологии рыбохозяйственных водосмов и наземных биосистем при Красноярском госуниверситете (НИИ ЭРВНБ), **Научно-исследовательское предприятие по экологии природных систем (НИП ЭПРИС

Сообщества водных организмов точко отражают изменения гидрологического и гидрохимического режимов под влиянием антропогенного фактора. Наиболее рельефно последствия негативного воздействия проявляются в экосистемах северных широт из-за хрупкого равновесия внутри этих систем. Обсуждаются последствия техногенных воздействий, возникающих при освоснии минерально-сырьевой базы, на гидробноценозы малых рек бассейна Енисея.

ВВЕДЕНИЕ

Работа связана с изучением влияния антропогенного фактора на экологические условия и структурно-функциональное состояние водных экосистем. До настоящего времени отсутствуют оценки масштабности, не выявлены основные механизмы комплексного воздействия влияний, остаются малоизученными причинно-следственные связи, играющие существенную роль в деградации экосистем. Масштабы антропогенного воздействия на водные экосистемы высоких широт при низких скоростях биогеохимических трансформаций веществ дают возможность оценить общие последствия негативных факторов на водные экосистемы Евразии.

1. ВИДЫ НЕГАТИВНОГО ВОЗДЕЙСТВИЯ

В связи с возрастающим объемом геологоразведочных, поисково-оценочных и работ по добыче полезных ископаемых на территории Красноярского региона, уже на этапе подготовки проектов на перечисленные виды работ необходимо иметь базовую информацию о состоянии окружающей среды. Такие материалы по большинству водотоков либо отсутствуют, либо отражают картину 20—30-летней давности. Основная задача в настоящий момент заключается в более подробном, комплексном изучении водных и наземных экосистем северных широт [1]. Это позволит объективно оценить последствия негативного воздействия горных работ, в частности, на водные биоресурсы.

Основные виды негативного воздействия на водные биосистемы при проведении подобных работ подразделяются на прямые и опосредованные. К прямым относятся:

1. Нарушение дна водотоков [2-4]. Происходит при проведении работ непосредственно в русловой части водотока. Основной пресс в данном случае испытывают организмы донной фауны, поскольку структура донных сообществ, условия их обитания и количественные характеристики определяются фракционным составом грунтов и особенностями отдельных биотопов. Этот вид негативного воздействия приводит к сокращению кормовых ресурсов, снижению, в связи с этим, рыбопродуктивности водоема.

При нарушении русловой части в районе нерестилищ происходит потеря потомства рыб, в большинстве случаев нерестилища полностью теряют свою функцию в результате исчезновения нерестового субстрата.

2. Образование «шлейфа мутности» [5]. При добыче полезных ископаемых (например, разработка россыпного месторождения гидромеханизированным способом) в водоемы сбрасываются технологические воды, содержащие минеральные взвеси в повышенных, по сравнению с бытовыми, концентрациях. Эти вещества оказывают влияние на гидробиоценозы не только непосредственно в районе разработок, но и на нижележащих участках реки. В загрязненных минеральными взвесями участках водотоков снижается численность и биомасса организмов бентоса, обедняется его видовой состав за счет выпадения реофильных форм, происходит редукция ихтиоценозов - ценные лососевидные рыбы замещаются малоценными. Водосм теряет свою значимость в качестве мест нагула и нереста лососевидных рыб.

Опосредованным негативным воздействием является сокращение естественного стока [6]. Ведение открытых горных работ приводит к значительным нарушениям поверхности земли. При этом нарушастся почвенный покров, иногда вплоть до коренных пород, оказывается уничтоженной растительность, изменяется в целом гидрологический режим. Образуется специфический, характерный для открытых горных работ, техногенный отвально-карьерный ландшафт.

Негативное воздействие на природную среду выражается в изменении гидрологического режима окружающей территории, проявляющегося в виде иссушения, либо заболачивания и загрязнения окружающих территорий продуктами водной и ветровой эрозии. В конечном счете, комплекс факторов приводит не только к снижению биологической продуктивности ландшафтов, но и к значительной перестройке окружающих экосистем вплоть до выведения их из хозяйственного оборота. Изменение гидрологического режима проявляется в сокращении естественного стока с нарушенной поверхности, следствием чего является снижение величины рыбопродукции, так как существует прямая зависимость между рыбопродуктивностью водоема и объемом его водной массы.

2. ХАРАКТЕРИСТИКА ПОСЛЕДСТВИЙ ТЕХНОГЕННОГО ВОЗДЕЙСТВИЯ НА ВОДНЫЕ БИОЦЕНОЗЫ

Отмеченные виды воздействия имеют место на всех водотоках Красноярского края, где проводятся гидромеханизированные работы. Степень воздействия таких работ проявляется в зависимости от: длигельности периода проведения разработок; глубины воздействия на экосистему (например, в гидросистемах Большого Пита, Каменки, Мурожной, Тси и др. отрабатываются одни и те же россыпные месторождения, начиная с середины XIX века); интенсивности разработок; гидрологических особенностей водотока и климатических условий региона.

На первых этапах воздействия антропогенного фактора состав фауны не меняется, но с изменением физико-химических условий среды менястся структура биоценоза. Наиболее толерантные виды увеличивают биомассу и численность, становятся доминантными; стенобионтные, оксифильные виды теряют прежнее значение. На этой фазе загрязнения, продолжительность которой зависит как от степени и качества загрязнения, так и от гидрологических особенностей водотока, биомасса и продукция бентоса могут даже возрасти или, по крайней мере, незначительно уменьшиться [7]. Но сдвиги в структуре донных биоценозов уже свидетельствуют о начале трудно обратимых процессов загрязнения.

Затем из речных биоценозов под влиянием загрязнения начинают выпадать наименее толерантные стенобионтные виды, организмы-индикаторы чистой воды. Примером подобной редукции могут служить донные биоценозы гидросистем Большого Пита, где биомасса зообентоса в загрязненной зоне по сравнению с условно чистой сократилась в среднем на 20% [8]. При сравнении видового состава, биомассы и численности зообентоса «чистой» зоны с «грязной» в р. Большой Пит отмечено изменение видового состава донных организмов. В зоне действия сточных вод не встречено 44 вида организмов, обитающих в «чистой» зоне. Среди них - личинки мошек Psilozia sp., поденки рода Ephemerella, хирономиды Eukiefferiella sp., Stempellina subglabripennis (Brinelin), ручейник Oligoplectrodes potanini и другие. Значительно снизилась биомасса и численность некоторых других организмов. Например, плотность поденок Seratella rufa (Imanishi) составляла в «чистой» зоне более 400 экз./м², в «грязной» – 50 экз./м². Аналогичны изменения численности ручейника Arctopsyhe Iadogensis, являющегося достоверным показателем чистой воды. Плотность этого вида уменьшилась с 833 экз./м² в «чистой» зоне до 74 экз./м² – в «грязной» [9].

Напротив, численность и биомасса других видов возросли в зоне, подверженной действию сточных вод. К ним относятся: веснянки Allonarcus reticulata Burm, поденки Ephemera orientalis McLachlan, хирономиды Cricotopus gr. algarum и другие. Биомасса их достигает значительных величин, в частности ручейника Glossos oma sp. – 20,7 г/м². Отмечено увеличение роли моллюсков в «грязной» зоне. Пределы колебаний численности организмов бентоса в «чистой» и «грязной» зонах реки соответственно составляли 1029–15757 экз./м² и 300–4250 экз./м². Средняя биомасса бентоса за вегетационный период – 14,1 г/м² и 11,3 г/м²[7].

Исчезновение, вымирание видов-индикаторов, характеризующих относительно малую сапробность воды и заселение ее полисапробными организмами, — это уже конечное звено, указывающее на глубоко защедшие изменения, после которых жизнь в реке прекращается. Изменения подобного порядка произошли в биоценозах р.Теи — биомасса донных сообществ в загрязненной зоне сократилась более чем в 100 раз по сравнению с таковой в условно чистой зоне, основу донного населения по численности и по биомассе составляли олигохеты.

На условно «чистых» участках численность организмов зообентоса колебалась по датам и станциям от 568 до 1820 экз./м², биомасса — от 0.268 до 3.032 г/м². Доминировали личинки поденок (Acentrella sp., Efemerella sp.). веснянок (Isoperla sp., Arcynopterix sp., Nemoura sp.), ручейников (Oligoplectrodes sp.), планарии. Изменения в структуре зообентоса в результате загрязнения сточными водами, содержащими большое количество минеральных взвесей, были весьма существенными. В устье р. Енашимо (приток р. Теи) при среднем содержании взвешенных веществ в летний период 0.4 г/л зообентос был количественно и качественно чрезвычайно обеднен: плотность составляла 10-450 экз./м², биомасса -0.004-1.003 г/м². Доминировали личинки хирономид и олигохеты. Сходная картина наблюдалась и на других участках р. Теи, загрязненных сточными водами, - видовой состав организмов обеднялся в сторону преобладания пелофильных форм и уменьшения плотности биоценоза. Биомасса на участке «чистой» зоны (среднее течение) была 2,487 г/м², «грязной» зоны – 0,023 г/м².

Более глубоким нарушениям подвергся приток р. Каменки – р. Удерей, который в результате многолетних разработок полностью потерял свое рыбохозяйственное значение [6].

Аналогичные изменения происходят и в ихтиоценозах рассматриваемых рек. В горных и предгорных водотоках ихтиофауна представлена, в основном, лососевидными рыбами (таймень, ленок, хариус), причем хариус обеспечивает до 80% численности рыбного населения. Кроме того, характерными представителями являются подкаменщики, голец (вьюновые), речной гольян – типичные реофилы.

В загрязненных минеральными взвесями участках рек происходит редукция ихтионенозов – ценные лососевидные рыбы замещаются малоценными карповыми и шукой. Водоем теряет свою значимость в качестве мест нагула и нереста лососевидных рыб. Фактически подобные изменения отмечены для всех гидросистем, подверженных влиянию гидромеханизиро-

ванных работ. В наименее затронутых хозяйственной деятельностью водотоках (рр. Б. Пит, Сисим, Мана, Кимбирка) появляется елец. В водотоках, испытывающих более продолжительное воздействие, происходит практически полная замена лососевидных окунем, щукой и карповыми, вплоть до полного исчезновения ихтиофауны (приток р. Теи – р. Енашимо; р. Удерей) [7].

ЗАКЛЮЧЕНИЕ

В процессе проведения горных работ на малых водотоках нарушаются гидрологический и гидрохимический режимы. Кормовая база рыб ухудшается вследствие уничтожения русловой части водотоков, а также повышенного содержания в водах минеральных

взвешенных веществ. На загрязненных участках отмечается обеднение видового состава и снижение численности организмов зообентоса. Кроме того, нарушаются экологически обусловленные взаимосвязи наземных и водных экосистем. Численность лососевидных рыб во всех водоемах, подверженных влиянию горных работ, сокращается из-за изменения экологических условий нереста и сокращения кормовой базы. При длительном техногенном воздействии происходят необратимые изменения, вплоть до полной редукции ихтиоценозов.

Наиболее рельефно последствия негативного воздействия проявляются в экосистемах высоких широт, которые остро реагируют на антропогенное вмешательство в силу весьма хрупкого равновесия внутри этих систем.

Литература

- 1. Заделёнов В.А., Трофимова М.А. Оценка изменений в экосистемах рек Красноярского края, возникающих в результате горных работ, и способы их предотвращения // В сб.: Проблемы использования и охраны природных ресурсов Центральной Сибири. Красноярск: КНИИГиМС. 1999. С. 199–204.
- 2. Аршаница Н.М., Калиничева В.Г. Влияние дноуглубительных работ на ихтиофауну // В сб.: Влияние гидромеханизированных работ на рыбохозяйственные водоемы. Л.: ГосНИОРХ, 1987. Вып. 255. С. 49–54.
- Панов В.Е. Влияние добычи песка на макрозообентос некоторых рек Северо-Запада европейской части СССР // В сб. Влияние гидромеханизированных работ на рыбохозяйственные водоемы. Л.: ГосНИОРХ, 1987. Вып. 255. С. 21–28.
- 4. Калиничева В.Г. Влияние взвещенных веществ на рыб (икра, личинки, сеголетки) // В сб. Влияние гидромеханизированных работ на рыбохозяйственные водоемы. Л.: ГосНИОРХ, 1987. Вып. 255. С. 55-58,
- 5. Понкратов С.Ф. Определение зоны мутности при выемке и перемещении грунта в руслах крупных рек // В сб.: Рыбохозяйственные исследования на водоемах Красноярского края. Л.: ГосНИОРХ, 1989. Вып. 296. С. 148–156.
- 6. Водогрецкий В.Е. Влияние агромелиоративных мероприятий на сток и методика его расчета. Труды ГГУ, 1974. Вып. 221. С. 47-104.
- 7. Заделёнов В.А., Бурнев С.Л., Клеуш В.О., Куклин А.А., Штейнберг Е.А. Влияние разработок россыпных месторождений на продукционные характеристики и ихтиофауну горных рек центральной части Красноярского края // В сб.: Рыбохозяйственные исследования на водоемах Красноярского края / Тр.ГосНИОРХ. Л., 1989. Т. 296. С. 113—119.
- Заделёнов В.А., Бурнев С.Л. Влияние разработок россыпных месторождений на биоценозы правобережных притоков Енисея // В сб.: Гидромеханизированные работы и дамлинг / Мат. Всес. конф. М., 1991. С. 76–79.