ГИДРОЛОГИЧЕСКИЙ РЕЖИМ И ВОДНЫЙ БАЛАНС ОЗЕРА БЕЛОЕ

И.В. Космаков*, В.Ф. Космакова**

*Научно-исследовательское предприятие по экологии природных систем (НИП ЭПРИС, **Красноярский научно-исследовательский центр Среднесибирского УГМС

Рассмотрен гидрологический режим и водный баланс озера Белое. Получены эмпирические формулы для определения температуры поверхности воды и воздуха над водой, скорости ветра, парциального давления водяного пара и испарения. Приведен многолетний водный баланс озера.

ОБЩАЯ ХАРАКТЕРИСТИКА ОЗЕРА

Озеро Белое расположено в бассейне р. Сереж, являющейся притоком р. Чулым. Окружающая местность представлена массивом озер и болот, расположенных в слабохолмистой лесостепи, переходящей на юге и западе в горно-таежную область отрогов Кузнецкого Алатау. Северный и южный берега озера низкие, заболоченные, заросшие камышом и тростником. Западный берег озера гористый, обрывистый, покрыт смещанным лесом. Восточный берег представляет собой холмистую степь с пахотными угодьями и куртинами лиственных деревьев и кустарников.

Озеро представляет собой вытянутый и несколько искривленный эллипс, длинная ось которого на севере отклоняется к занаду, на юге — к востоку. Площадь водосбора озера равна 1510 км². Длина озера — 18 км, наибольшая ширина составляет 5 км, глубина — около трех метров. Площадь поверхности воды озера равна 74,8 км², объем — 196 млн м³. Берег слабо изрезан, длина береговой линии — 41 км.

Ложе озера – блюдцеобразное, рельеф дна ровный. По характеру водообмена озеро Белое относится к проточным озерам, в него впадают четыре реки и ряд ключей, а вытекает одна река Сереж (рис. 1).

Климат в бассейне озера резко континентальный. Средняя годовая температура воздуха здесь изменяется от 0.4° С до -1.2° С. Температура воздуха самого холодного месяца, января, колеблется от -16° С до -19.5° С, а самого теплого, июля, – от 17.2° С до 17.7° С.

Устойчивый переход температуры воздуха через 0°С весной обычно происходит в середине апреля, а осенью - в середине октября.

Ветер в районе озера преобладает западных и южных направлений, его скорость обычно колеблется в пределах 2-4 м/с. Наибольшие значения скорости отмечаются в переходные периоды: весной – в апреле-мае и осенью – в октябре-ноябре. Величины скорости более 15 м/с наблюдаются по 2-4 дня почти ежемесячно.

Наблюдения за уровнем и температурой воды у берега на озере Белое были начаты в августе 1933 г. В течение 1977—1988 гг. на акватории водоема Шарыповской экспедицией Красноярского УГМС производились наблюдения за метеоэлементами, за испаре-

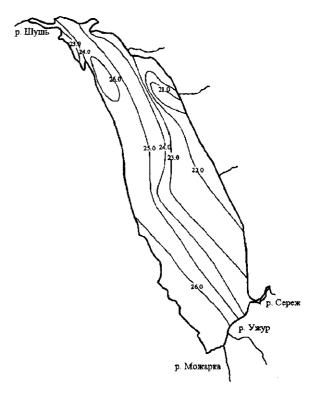


Рис. 1. Температура поверхности воды оз. Белое 4 июля 1980 г.

нием с помощью плавучего испарителя ГГИ-3000 и за температурой воды как на поверхности, так и по глубине.

ЛЕДОВЫЙ РЕЖИМ

Первые ледовые образования на озере наблюдаются в среднем 20 октября, а 27 октября уже устанавливается ледовый покров. Период ледостава продолжается 184 дня, а иногда и более 200 суток. Самое позднее замерзание отмечалось 19 ноября 1971 г. Полностью очищается поверхность воды от льда 13 мая. Период свободный от ледяных образований составляет от 130 до 189 дней, в среднем – 160 суток (табл. 1).

С момента образования ледового покрова его толщина быстро растет и к середине февраля достигает 100 см, а к концу зимы в отдельные годы превышает 140 см. Снежный покров на льду обычно невысокий (10–20 см), однако в первые месяцы ледоставного

Таблица 1

Средние многолетние характеристики ледовых явлений на оз. Белое

V	Дата начала	Дата ледостава	Дата очищения	Продолжительность периода		
Характеристика	ледообразования		от льда	ледостава	свободного от льда	
Средняя	20.10	27.10	13.05	184	160	
Ранняя (наибольшая)	1.10	12.10	26.04	229	189	
Поздняя (наименьшая)	6.11	19.11	31.05	150	130	

периода (ноябрь-декабрь) его высота может быть значительной и достигать 40–50 см.

ТЕМПЕРАТУРНЫЙ РЕЖИМ ОЗЕРА

Термический режим озера не отличается значительными особенностями. Начало периода весеннего нагревания приходится на конец марта - начало апреля, когда устанавливается положительный тепловой поток. В это время начинается уменьшение толщины льда на озере, а температура подо льдом может повышаться до 0,4–0,5°С [6]. Нагревание поначалу идет медленно, но после очищения поверхности воды от льда (в среднем 13 мая) температура воды повышается очень быстро, и уже 15 мая ее значения у берега переходят через 4°С (табл. 2).

После окончательного перехода температуры воды через 4°С начинается период летнего прогревания и уже 29 мая значения температуры воды переходят через 10°С. Нагрев продолжается, в среднем, до конца второй декады июля, а наибольшая температура воды достигает 29°С. Характер распределения температуры поверхности воды в период наибольшего нагрева представлен на рис. 1.

Характерной особенностью периода летнего прогревания является наличие прямой температурной стратификации, которая время от времени нарушается воздействием ветра. В этом случае вертикальные градиенты температуры воды резко уменьшаются, иногда до 0°С/м. При штиле и ясной погоде нагревание поверхности воды идет очень интенсивно. В этом случае градиент температуры воды по глубине может превышать 2°С/м. Так, 4 июля 1980 г. различие значений температуры воды на поверхности и у дна составило 6°С, градиент при этом был равен 2,4°С/м.

После того, как тепловой поток на поверхности озера становится отрицательным, начинается период охлаждения. При этом отметим, что с ранней весны и до сентября продолжается аккумуляция тепла грунтами, слагающими дно озера. При температуре воды менее 16°C охлаждение происходит в условиях близ-

ких к гомотермии. Окончательный переход значений температуры воды через 4°C происходит 9 октября.

20 октября на озере появляются первые ледовые образования, а 27 октября устанавливается прочный ледовый покров. С этого момента начинается повышение температуры воды подо льдом в связи с теплопритоком от грунгов дна в воду. При этом температура воды у дна может превышать 3°С. Затем до начала весны идет медленное понижение температуры воды подо льдом.

ИСПАРЕНИЕ С ПОВЕРХНОСТИ ОЗЕРА

Испарение с поверхности водоемов является одним из важных компонентов расходной части уравнения водного баланса. Доля испарения при значительной площади водной поверхности, по сравнению с другими компонентами, может быть велика.

Для оценки испарения чаще всего используются эмпирические и полуэмпирические формулы, основанные на использовании данных гидрометсорологических наблюдений.

Обычно испарение с озер (E, мм), в соответствии с работами [2–5,7], рассчитывается по формуле ГГИ:

$$E = 0.14 \cdot \eta \cdot (e_a - e_b) (1 + 0.72 \cdot W_b), \qquad (1)$$

где e_0 – максимальное парциальное давление водяного пара, определенное по температуре поверхности воды в озере, гПа; e_2 – парциальное давление водяного пара в воздухе на высоте 2 м над поверхностью воды, гПа; W_2 – скорость ветра над озером на высоте 2 м, м/с; η – количество суток в расчетном перноде.

Температура поверхности воды озера Белое нами определена по полученной связи между средней температурой поверхности воды озера (T_o), определенной по данным термических съемок, и температурой воды у берега (T_1), по данным водомерного поста Корнилово. График связи имеет вид прямой линии (рис. 2), теснота связи характеризуется коэффициентом корреляции, равным 0,99, а уравнение выглядит следующим образом:

Таблица 2 Даты перехода температуры воды через фиксированные градации

Характеристика	Даты перехода значений температуры воды через градации						
	весной			осенью			
	0.2°C	4°C	10°C	10°C	4°C	0.2°C	
Средняя	30.04	15.05	29.05	20.09	9.10	27.10	
Ранняя	9.04	23.04	11.05	4.09	29.09	11,10	
Позлияя	17.05	5.06	25.06	610	6.11	16.11	

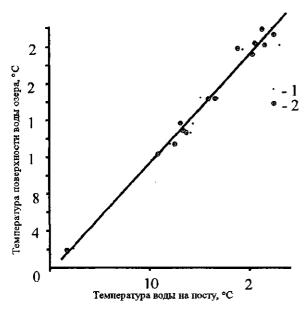


Рис. 2. Зависимость средней температуры поверхности озера от температуры поверхности воды на береговых постах: 1 — Корнилово; 2 — Белоозерское

$$T_0 = 1, 1 \cdot T_1 - 0, 7.$$
 (2)

Эмпирическая зависимость парциального давления водяного пара в воздухе на высоте 2 м над поверхностью воды (e₂) от парциального давления водяного пара (e₁), измеренного на метеорологической станции Шарыпово, находящейся в 20 км к западу от озера, получена на основании полевых и экспедиционных исследований Шарыповской экспедиции и НИП "ЭПРИС". Аналитическое выражение этой зависимости имеет вид:

$$e_2 = 0.0132 \cdot e_1^2 + 0.537 \cdot e_1 + 4.25.$$
 (3)

Индекс корреляции этой зависимости, как мера тесноты связи, равен 0,95.

При определении скорости ветра над водной поверхностью нами использован общепринятый метод [2, 4, 5, 7], при котором скорость ветра на высоте 2 м над водой (W_2), определяется по уравнению

$$W_2 = K_1 \cdot K_2 \cdot K_3 \cdot W_1, \tag{4}$$

где W_1 — скорость ветра на метеостанции Шарыпово по флюгеру, м/с; K_1 — коэффициент, учитывающий степень защищенности метеорологической станции; K_2 — коэффициент, характеризующий рельеф в месте расположения станции; K_3 — коэффициент, зависящий от средней длины разгона воздушного потока над водоемом и защищенности берегов водоема растительностью.

Для условий озера Белое формула (4) выглядит следующим образом:

$$W_2 = 1.24 \cdot W_1. \tag{5}$$

По данным экспедиционных исследований, отнопление средней скорости ветра за период наблюдений, измеренной на высоте 2 м над водной поверхностью, к средней скорости ветра за этот же период, измеренной на метеорологической станции Шарыпово, равно 1,24, что подтверждает субъективную оценку коэффициента в формуле (5).

В формуле Р.И. Гета [1]

$$E = (0.183 - 0.00072 \cdot T) \cdot (e_0 - e_2) W_2^{0.881}, \quad (6)$$

где $T=0,5\cdot (T_o+T_2)$, T_o- температура поверхности воды озера, T_2- температура воздуха на высоте 2 м над водной поверхностью, которая нами определена по зависимости

$$T_2 = 0.949 \cdot T_1 + 1.6$$
 (7)

от T_1 – температуры воздуха на метеорологической станции Шарыпово.

Теснота связи по уравнению (7) характеризуется коэффициентом корреляции 0,99, а разница между фактическими и рассчитанными значениями температуры воздуха над озером находится в пределах от – 0,6 до +0,8°C и не превышает 5,2%.

Имеющиеся данные позволили установить эмпирическую связь между значениями испарения на плавучем испарителе (E_o) и показаниями испарителя ГТИ-3000, установленного на суше в г. Назарово (E_n). Теснота полученной прямолинейной связи характеризуется коэффициентом корреляции 0,99 (рис. 3), а уравнение имеет вид;

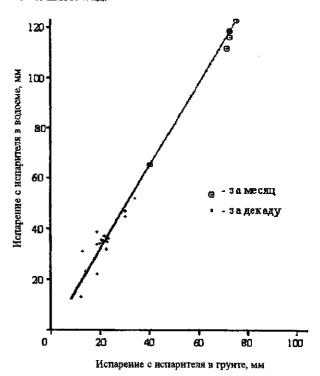


Рис. 3. Связь значений испарения с водной поверхности испарителей, установленных в Белом озере и в грунте на территории г. Назарово

$$E_{a} = 1,59 \cdot E_{u} + 1,21.$$
 (8)

Для определения испарения с водной поверхности озера Белое уравнение (8) запишется следующим образом:

$$E = 1,54 \cdot E_{u} + 1,17.$$
 (9)

Формула (9) пригодна для расчетов испарения с поверхности водоема с июня по сентябрь. В табл. 3 приведены значения испарения с поверхности воды озера Белое, рассчитанные по разным формулам.

Таблица 3 Средний слой испарения с поверхности оз. Белое, за 1979--1989 гг., мм

Формула	VI	VΠ	VIII	ĪΧ	Сумма
(1)	120	145	112	50	427
(2)	123	141	108	52	424
(9)	131	137	113	73	454

Сравнение полученных значений испарения позволяет судить о достоверности рассчитанных параметров, входящих в формулы (1) и (6), и дает основание считать правильными расчеты, выполненные по формуле (1).

ВОДНЫЙ БАЛАНС ОЗЕРА

Основной задачей данной работы является оценка притока подземных вод в озеро в связи с проектируемым водозабором из месторождения подземных вод расположенного неподалеку от водоема, для водоснабжения г. Шарыпово. Средством для определения данного параметра является уравнение водного баланса.

Уравнение водного баланса запишем в следующем виде:

$$\Pi_0 + \Pi_0 + O - \Pi_0 - H \pm A_0 = \Pi_0 \pm H,$$
 (10)

где $\Pi_{\rm o}$ — основной приток, $\Pi_{\rm e}$ — приток с неизученной части водосбора, $\Pi_{\rm n}$ — приток подземных вод, O — осадки на зеркало озера, $\Pi_{\rm p}$ — поверхностный сток воды из озера, И — испарение с поверхности озера, $A_{\rm o}$ — аккумуляция воды в озере, H — невязка баланса.

Основной приток воды в озеро определен нами по сумме расходов воды рек, впадающих в водоем, на которых на период расчета имелись наблюдения. До 1988 г. поверхностный приток регистрировался с площади 1070 км², с 1988 г. – с площади 846 км².

Оценка притока с неизученной площади водосбора производилась по среднему арифметическому модулю стока рек. Достоинством этого способа является то, что все реки-аналоги имеют одинаковый вес.

При расчете стока с неизученной площади формулы выглядят следующим образом:

$$Q_6 = 0.133 \cdot Q_1 + 1.533 \cdot Q_2 + 2.319 \cdot Q_3$$
 (11)

и начиная с 1988 г.:

$$Q_6 = 0.243 \cdot Q_4 + 2.134 \cdot Q_2 + 3.241 \cdot Q_3,$$
 (12)

где Q_6 – сток с неизученной плошади; Q_1 , Q_2 , Q_3 и Q_4 – средние месячные расходы воды на реках: Ужур – д. Можары, Можарка – д. Можары, р. Шушь – д. Шушь и Ужур – д. Локшино соответственно.

Известно, что над водной поверхностью водоемов осадков выпадает меньше, чем над сушей, но различия в их суммах не превышают 5-6%, что находится в пределах обшей точности измерений. Полагая, что для озера Белое это различие столь же незначительно, количество осадков на поверхность озера определено нами как среднее арифметическое из показаний 7 станций и постов, расположенных неподалеку от водоема.

Сток воды из озера регистрируется на р. Сереж у д. Корнилово. Пост расположен в 300 м ниже водопропускного устройства Рыбводхоза, которое регулирует сброс воды из озера.

Сток воды из озера за месячный интервал времени определяется по формуле

$$\Pi_{n} = 0.0864 \cdot \eta \cdot Q_{r}, \tag{13}$$

где $\Pi_{\rm p}$ – объем стока воды за месяц, млн м³; ${\rm Q_{\rm g}}$ – средний месячный расход воды на посту Корнилово, м³/с; η – число дней в месяце.

Испарение (мм) с поверхности воды озера получено нами по формуле ГГИ (1).

Исходные величины для формулы (1) включающие парциальное давление водяного пара на высоте 2 м над водой и скорость ветра над водной поверхностью, определены по эмпирическим связям, установленным между фактическими значениями указанных переменных над водной поверхностью и измеренными на метеорологической станции Шарыпово, расположенной в 20 км к западу от озера. Температура поверхности озера получена по зависимости от температуры воды, измеренной у берега.

Значения испарения со снега (И, мм) получены по формуле П.П. Кузьмина [2, 4, 7]:

$$H = \eta \cdot (0.18 + 0.10 \cdot W_{10}) (e_0 - e_2),$$
 (14)

где все обозначения те же, что и в формуле (1), но исходные данные приняты по метеостанции Шарыпово.

Оценка изменений объема воды в озере произведена по разности объемов воды, в начале и конце расчетного периода. Для определения этих объемов нами получены кривые площадей и объемов воды (рис. 4), основой для которых послужила батиметрическая карта озера масштаба 1: 10 000.

По результатам приведенных расчетов составлен многолетний водный баланс озера Белое (табл. 4). При этом подземный приток определен как остаточный член уравнения водного баланса. В среднем годовой приток подземных вод равен 100 мм, или 0,24 м³/с.

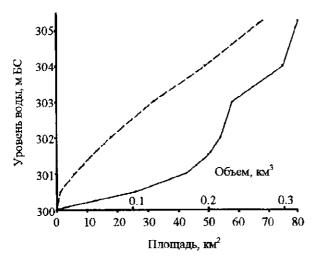


Рис. 4. Кривые зависимостей объема и площади водной поверхности Белого озера

Конечно, полученные величины параметров водного баланса требуют уточнения. Для этого необходимы детальное обследование всего водосбора озсра, инвентаризация всех имеющихся водотоков и организация ряда гидрометеорологических наблюдений.

Таблица 4

Средний многолетний водный баланс озера Белое за 1977–1990 гг., мм

Месяц	Характеристика								
	Осповной приток	Приток с неизученной площади	Осадки	Сток из озера	Испарение	Аккумуляция в чаще озера	Подземный приток		
Январь	24	21	16	56	5	0	0		
Февраль	18	17	12	43	2	1	3		
Апрель	163	91	31	136	31	-136	18		
Май	66	53	46	177	31	17	26		
Июнь	61	52	63	138	122	78	6		
Июль	65	48	91	166	157	60	59		
Август	68	53	64	104	124	47	-4		
Сентябрь	48	30	43	92	57	30	-2		
Октябрь	36	34	42	88	6	-30	12		
Ноябрь	32	25	24	63	9	-6	-3		
Декабрь	22	20	19	56	4	-1	0		
Год	628	468	465	1171	560	60	110		

Литература

- 1. Гета Р.И. Применение теории подобия к расчету испарения с водной поверхности // Метеорология и гидрология. 1979. № 2. С. 88–96.
- 2. Нежиковский Р.А. Гидрологические расчеты и прогнозы при эксплуатации водохранилищ. Л.: Гидрометеоиздат, 1976. 191 с.
- 3. Озеро Кубенское / Под ред. Т.И. Малинина, И.М. Распопова. Л.: Наука, 1977. 308 с.
- 4. Рекомендации по расчетам водного баланса крупных озер и водохранилищ. Л.: Гидрометеоиздат, 1989. 99 с.
- 5. Руководство по гидрологическим расчетам при проектировании водохранилищ. Л.: Гидрометеоиздат, 1980, 366 с.
- 6. Тихомиров А.И. Термика крупных озер. Л.: Наука, 1982. 232 с.
- 7. Указания по расчету испарения с поверхности водоемов. Л.: Гидромстеоиздат, 1969. 83 с.