
2021

ПРИКЛАДНАЯ ДИСКРЕТНАЯ МАТЕМАТИКА

Теоретические основы прикладной дискретной математики № 52

UDC 512.54 DOI 10.17223/20710410/52/2
ALGORITHMIC THEORY OF SOLVABLE GROUPS1

V.A. Roman’kov

Dostoevsky Omsk State University, Omsk, Russia

E-mail: romankov48@mail.ru

The purpose of this survey is to give some picture of what is known about algorithmic
and decision problems in the theory of solvable groups. We will provide a number
of references to various results, which are presented without proof. Naturally, the
choice of the material reported on reflects the author’s interests and many worthy
contributions to the field will unfortunately go without mentioning. In addition to
achievements in solving classical algorithmic problems, the survey presents results on
other issues. Attention is paid to various aspects of modern theory related to the
complexity of algorithms, their practical implementation, random choice, asymptotic
properties. Results are given on various issues related to mathematical logic and
model theory. In particular, a special section of the survey is devoted to elementary
and universal theories of solvable groups. Special attention is paid to algorithmic ques-
tions regarding rational subsets of groups. Results on algorithmic problems related
to homomorphisms, automorphisms, and endomorphisms of groups are presented in
sufficient detail.
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1. Introduction
Awareness of the algebraic nature of many important concepts of topology and function

theory in the 1880s led to the formation of a combinatorial group theory. Groups, already
represented in the works of F. Klein, H. Poincare and other mathematicians, gained the
right to independence after W. Dick discovered a universal way to define them using
generators and defining relations [50]. H. Poincare [198, 199] established the first contacts
between combinatorial topology and group theory. He introduced the fundamental groups
of manifolds into consideration, while at the same time finitely defined groups of finite
simplicial complexes were distinguished as effective objects. E. S. Fedorov [58] discovered
a remarkable application of groups to the geometry of crystals. F. Klein proposed in his
inaugural lecture in 1872 at the University of Erlangen (Germany) the famous Erlangen
program, classifying geometries by their basic symmetry groups [106]. This program is an
influential synthesis of much of the mathematics of the time.

It turned out that many important topology problems are algorithmic in nature. At the
very beginning of the twentieth century, the basic algorithmic problems were formulated for
a class of finitely defined groups. The word problem was posed by M. Dehn [42]: Is there an
algorithm that, from two arbitrary group words from the generating elements of the group,
determines whether they define the same element of the group? H. Tietze [250] developed
the Tietze transformations for group presentations, and was the first to pose the group
isomorphism problem: Is there an algorithm that finds out, from two arbitrary finite group

1Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-
11-50063.
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assignments by generating elements and defining relations, whether these assignments define
isomorphic groups?

From the very beginning, combinatorial group theory was closely intertwined with
computability theory. We are currently seeing many new successful interactions between
group theory and computer science. Complexity theory and automata theory began to play
more important role in the group theory, especially in the algorithmic directions. Questions
of random choice and asymptotic properties of groups have acquired significant importance.
On the other hand, various mathematical fields such as algebraic cryptography and data
compression have led to new questions in group theory.

More than thirty-five years ago, the author, together with V.N. Remeslennikov,
published the survey [210], devoted to the algorithmic and model-theoretic questions
in group theory. The survey is widespread, its objective was to give a fairly complete
description of group-theoretic results of an algorithmic nature in their historical
development, as well as to present the methods of model-theoretical research in group
theory. These two lines of research are closely interrelated and have a common focus, as
they seek to answer one general question: what properties and characteristics of groups can
be effectively identified? Some aspects of this research are reflected in [152, 186].

The content of the papers [186, 210] and the monograph [152]

V.N. Remeslennikov

is largely due to the significantly increased interest in research in
combinatorial group theory at that time. This area was formed in
the 60–70s of the twentieth century. Two monographs with the same
title “Combinatorial group theory” written by W. Magnus, A. Karrass
and D. Solitar [132], and by R. Lyndon and P. Shupp [125] played
a significant role in its formation. The title of [132] has a subtitle
“Representation of groups in terms of generators and relations”. These
monographs laid the foundations for combinatorial group theory as one of the most actively
developing areas of group theory and mathematics in general in the following decades
to our time. Both monographs were translated into Russian and subsequently reprinted
several times. W. Magnus et al.’s book focuses on representing groups in terms of generators
and defining relations. The authors consider free constructions: free groups and products,
free amalgamated products, Higman—Neumann—Neumann (HNN) extensions. The term
“combinatorial” itself arose from the frequent and significant use of combinatorial methods.
The book touched on algorithmic problems, from the classic Dehn problems to problems
that only arose at that time. The value of the book [132] for the further development of the
combinatorial group theory is very great. It is a tutorial, a problem source, and a research
sample.

The book [125] is clearly an important contribution to the mathematical literature.
It contains proof of Whitehead’s theorems and related theorems by J. McCool, proof of the
Karrass — Solitar theorem on subgroups of free products with one amalgamated subgroup
by Nielsen methods and its obvious promise applications. It also contains discussion of
cohomology, graph-theoretical connections, discussion of HNN extensions, elegant treatment
of one-relator groups, proof of the Higman embedding theorem, connections with logic, the
use of van Kampen diagrams and the consideration of small cancellation theory and its
applications are very good advances.

The history of combinatorial group theory is described by W. Magnus and B. Chandler
in [34]. Results on combinatorial algebra are presented in the monograph by L.A. Bokut
and G.P. Kukin [32]. O. Kharlampovich and M. Sapir presented in [103] a survey of results
on algorithmic problems in varieties of algebraic systems.
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The origins of the theory of solvable (some authors use the term “soluble”) groups go back
to the first half of the nineteenth century, when Évariste Galois determined a necessary and
sufficient condition for a polynomial to be solvable by radicals, thereby solving a problem
standing for 350 years. His work laid the foundations for Galois theory and group theory, two
major branches of abstract algebra. He realized that the algebraic solution to a polynomial
equation is related to the structure of a group of permutations associated with the roots of
the polynomial, the Galois group of the polynomial. He found that an equation could be
solved in radicals if one can find a series of subgroups of its Galois group, each one normal
in its successor with abelian quotient, or its Galois group is solvable.

This proved to be a fertile approach, which later mathematicians

Évariste Galois

adapted to many other fields of mathematics besides the theory of
equations to which Galois originally applied it. The achievements
of Galois theory stimulated intensive study of permutation groups,
and indeed in the early stages of its development, group theory was
preoccupied almost exclusively with finite groups.

However, under the influence of geometry, topology, and the
theory of differential equations, there arose a pressing need to consider
infinite groups of transformations. The theory of infinite groups began

to develop in the 20s of the twentieth century. Free groups first arose in the study of
hyperbolic geometry, as examples of Fuchsian groups (discrete groups acting by isometries
on the hyperbolic plane). The algebraic study of free groups was initiated by Jakob Nielsen
in 1920s, who gave them their name and established many of their basic properties [179, 180].
Otto Schreier published an algebraic proof of the Nielsen — Schreier theorem in [243]. Max
Dehn realized the connection of groups with topology, and obtained the first proof of the
Nielsen — Schreier theorem [42]. Kurt Reidemeister included a comprehensive treatment of
free groups in [204] and in his book [205], the first monograph on combinatorial group
theory and topology. Parametric groups made their appearance in the works of S. Lie [114].

In the 1930s of the twentieth ccentury, WilhelmMagnus invented the connection between
the lower central series of free groups and free Lie algebras (see [133]).

From the Preface of [133]: “Magnus has had such a profound

Wilhelm Magnus

influence on combinatorial group theory because many of his ideas,
startingly and strikingly simple, have provided not only deep insights
into a very difficult subject but also powerful methods for dealing with
these difficulties. His ideas have also found application in topology,
K-theory, the theory of Lie and associative algebras, computational
complexity, and also in logic. The expert in group theory, however, will
be astonished to find that this reprinting of Magnus’ papers contains
a very large amount of very important work on diffraction problems
and related topics in analysis. Indeed Magnus is one of the very few
mathematicians who has done significant work in two completely different fields. There is a
large number of mathematicians who know Magnus for his work in analysis but are totally
unaware of his work in group theory. His books, his teaching, his many doctoral students,
his effect on the thinking of his colleagues both in private conversation and in seminars
have also helped to establish him as a mathematician of the first rank and enriched the
mathematical community.” —G. Baumslag and B. Chandler.

Intensive research on solvable groups began in the 30s of the twentieth century. This
research was initiated by P. Hall, who just completed his great sequence of papers on finite
solvable groups [83]. His PhD-student K.A. Hirsch published a sequence of five papers [85 –
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89], where he introduced and investigated polycyclic groups. From the very beginning it
became clear that the theory of infinite solvable groups needs in some original methods
of studying. It turned out later that the methods come from ring theory, matrix group
theory and homological algebra. Thus, the theory of infinite solvable groups has a broader
connection in algebra.

In 1950s A. I. Mal’cev established the basic theory of solvable

A. I. Mal’cev is a great
mathematician known
for his fundamental achi-
evements in algebra and
mathematical logic. He
is one of the founders
of the general theory of
algebraic systems and
model theory and the
founder of the Siberian
School of Algebra and
Logic.

matrix groups [141]. He also invented the notion of a rank and
investigated solvable groups of finite rank [139]. He showed the
undecidability of the elementary theory of finite groups, of free
nilpotent groups, of free soluble groups and many others. This
Mal’cev’s works determined the perspective direction of research for
many years.

At the same time, P. Hall made a significant contribution to the
development of the theory of soluble groups. Namely, he published a
series of papers [78 – 82] on finitely generated solvable and nilpotent
groups. In these papers, he proved a number of results that are
important in theory and determine further research in this area.

Since that time the solvable group theory became one of the
central topics in group theory.

Solvable groups are interesting not only in and of themselves. They
are an effective tool for investigating more general objects of group
theory. Suffice it to recall the Sylow subgroups, solvable radicals,
Borel subgroups and so on. Below we give two examples of the results
obtained by passing to solvable factor groups.

The following result was proposed by M. Dehn and proved by his student, W. Magnus,
in his doctoral thesis (see [129]). It is well-known as the freedom theorem of Magnus or

The Freiheitssatz: Let
G = 〈x1, . . . , xn : r〉

be a group presentation given by n generators xi and a single cyclically reduced relator r.
If x1 appears in r, then the subgroup of G generated by x2, . . . , xn is a free group, freely
generated by x2, . . . , xn.

Magnus’ method of proof of the Freiheitssatz relies on free amalgamation products of
groups. This method initiated the use of these products in the study of infinite discrete
groups.

N. S. Romanovskii used a different approach in his proving the generalized freedom
theorem for groups with several relations (solution of the Lyndon problem) [217]: Let the
group

G = 〈x1, . . . , xn : r1, . . . , rm〉

have deficiency d = n−m > 0. Then there exist a subset of d of the given generators which
freely generates a subgroup of G isomorphic to Fd. A similar assertion was also proved for
groups defined by generators and relations in varieties of solvable and nilpotent groups and
pro-p groups. He essentially used solvable groups as a tool for these proofs.

In [228], the author proved that the automorphism group of the free pro-p group F̃r(p)
of rank r > 2 is topologically infinitely generated. A similar assertion was also proved for
free profinite groups F̃r and for free metabelian pro-p groups Mr(p). His methods of proofs
are also related to solvable groups.
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The modern theory of solvable groups is presented in the monograph [113] by
J.C. Lennox and D. J. S. Robinson. See also the author’s monograph [239]. The theory of
nilpotent groups is presented in the lectures [9] by G. Baumslag and [82] by P. Hall.

The main object of research in the monograph by E. I. Timoshenko [256] — free
groups in varieties of solvable groups and their universal theories. In addition, groups
of automorphisms and semigroups of endomorphisms of solvable groups are described. A
significant part of the results belongs to the author of the monograph.

Algebraic geometry over groups arose in the mid-90s of the twentieth century in the
works of B. I. Plotkin [194, 195] on the one hand and in the works of G. Baumslag,
V.N. Remeslennikov, A.G. Myasnikov and O.G. Kharlampovich [17, 168, 101, 102] on the
other. The current state of algebraic geometry over groups and more generally over algebraic
systems is presented in [196, 197], and in [41].

2. Algorithmic problems
In the very beginning of the twentieth century M. Dehn and H. Titze proposed the

following three algorithmic problems:
— The word problem (Dehn [42]): Given a group presentation G = 〈X : R〉 and words

w(X), u(X) in the alphabet X determine if w(X) =G u(X).
— The conjugacy problem (Dehn [42]): Given a group presentation G = 〈X : R〉 and

words w(X), u(X) in the alphabet X determine if there exists some g(X) such that
g(X)−1w(X)g(X) =G u(X).

— The isomorphism problem (Tietze [250]): Given two group presentations G = 〈X : R〉
and H = 〈Y : S〉 determine if they define isomorphic groups.

Subsequently, the following problem began to be added to this list of problems:
— The subgroup membership problem: Given a group presentation G = 〈X : R〉 and a

finite set of words g(X), w1(X), . . . , wk(X) in the alphabet X find out whether or not
g(X) ∈ gp(w1(X), . . . , wk(X)).

The subgroup membership problem is often called the generalized word problem or simply
the membership problem in the literature of combinatorial group theory.

Until the 1950s of the twentieth century only positive results could

Max Dehn

be obtained since totally new methods were needed even to state
the problem of finding a group with unsoluble word problem with
the formal precision. In particular, W. Magnus published in [130] a
complete proof of the solution of the word problem for the class of
one-relator groups.

The proof of the algorithmic undecidability of the word problem
in the class of all finitely defined groups, obtained by Petr Sergeevich
Novikov in 1952 is one of the best results in algorithmic group theory
and mathematics in general.

Theorem 1 (P. S. Novikov [187, 188]). There exists a finitely presented group G such
that the word problem for G is undecidable.

A wonderful example of P. S. Novikov was of fundamental importance for further
research on algorithmic issues in group theory. Obviously conjugacy and membership
problems are also unsolvable in the class of finitely presented groups.

W.W. Boone gave in [33] an independent proof of Novikov’s result. See [267] for some
other results on the word problem in groups.
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Let us especially note the importance of the work of S. I. Adian [1], in which a number
of algorithmic problems are solved. In particular, he showed the undecidability of the
isomorphism problem in the class of finitely defined groups. S. I. Adian in some his proofs
based on the idea of the following Markov property.

Markov Property: An abstract property P of finitely presented groups is a Markov
property if there are two finitely presented groups G+ and G− such that
— G+ has property P;
— G− cannot be embedded as a subgroup in any finitely presentable group with property P.

Theorem 2 (S. I. Adian [1]). If P is a Markov property of finitely presented groups,
then P is not recursively recognisable.

Therefore, the following properties of finitely defined groups are not recognized
recursively, namely: to be trivial (finite, abelian, nilpotent, solvable, free, torsion-free, or
residually finite) group, having a solvable word problem, and so on.

M.O. Rabin [201] proved similar results, which are now called the Adian—Rabin
theorem.

S. I. Adian and V.G. Durnev [2] presented a detailed survey of results concerning the
main decision problems of group theory and semigroup theory. They discuss results on the
word problem, isomorphism problem, recognition problems, and other algorithmic questions
related to them. The classical theorems of A.A. Markov and E. L. Post, P. S. Novikov,
S. I. Adian and M.O. Rabin, G. Higman, W. Magnus, and R.C. Lyndon are given with
complete proofs.

Further in the paper, we do not present here other results of algorithmic theory
pertaining to classes of groups other than solvable.

For simplicity, we will simplify expressions, speaking not about group representations,
but about groups, not about words in the generators of a given representation, but about
group elements, etc.

After the obtained negative results on the solvability of algorithmic problems in the
class of all finitely defined groups, the interest of researchers was turned to various classes
of groups. The methods of assigning groups have expanded. The algorithmic problems
themselves became more diverse. Algorithmic problems of the following two types began to
be considered:
— Decision problems: Given a property P and an object O, find out whether or not the

object O has the property P.
— Search problems: Given the property P and the information “O satisfies P”, find out at

least one specific implementation of P to O.
For example, if we know that elements w and u are conjugate in the group G, the search
problem is to find a conjugating element g ∈ G such that g−1wg = u.

The issues of solvability of search problems are especially important for applications and
algorithms used in practice. For theory and practical applications, the complexity of the
algorithms is essential. At present, the issues of the complexity of algorithms, in particular —
computational complexity, have become of paramount importance. There is a huge amount
of research in this area. Some results related to the complexity of algorithms for solvable
groups will be touched upon in this review.

Friendly definitions:
— Sol = solvable groups;
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— ThAlg(Sol) — Algorithmic theory of Sol = Information about Sol-groups, their elements,
subgroups, subsets, structure, etc., that can, in principle at least, be obtained by machine
computation, namely Turing machines, automata, computers, and so on.
Relative presentation in the variety L:

G = 〈x1, . . . , xn : {rλ : λ ∈ Λ};L〉.

That is
G = F (X,L)/ncl{rλ : λ ∈ Λ},

where F (X,L) is a free group in the variety L with basis X = {x1, . . . , xn}, and Λ is finite
or, more generally, recursive enumerable set.

Presentation by generators:

G = gp(g1, . . . , gn) 6 Ḡ,

where Ḡ is some bigger group, for example, Ḡ = GLn(K), the general linear (matrix) group
over K, or Ḡ = π1(S), the fundamental group of a topological space S.

Presentation by action:
G = Aut(H),

where H is some other group (more generally, some structure), or

G = π1(S),

where S is some topological space.
Classical algorithmic problems:
For a group G:

— The word problem (WP): w = 1?
— The conjugacy problem (CP): ∃g : g−1wg = u?
— The membership problem (MP): w ∈ H 6 G?

For a class of groups C:
— The isomorphism problem (IP): G ' H?

We also highlight the following two problems concerning automorphisms and
homomorphisms, which can also be considered classical because of their high importance.
The first problem is formulated for an arbitrary group G:
— The automorphic conjugacy problem (J.H.C. Whitehead [266]): Is there an algorithm

that finds out from two arbitrary group words from the generating elements of the group,
do they determine automorphically conjugate elements of the group? In other words, is
there an automorphism of a group that takes one of the given elements to another?

The automorphism problem for a free group Fr of rank r was algorithmically solved by
J.H.C. Whitehead himself in a classic 1936 paper [266] and his solution came to be known
as Whitehead’s algorithm. This proof was topological.

Subsequently, E. S. Rapaport [202] and later, based on her work, P. J. Higgins and
R.C. Lyndon in [84] gave a purely combinatorial and algebraic re-interpretation of
Whitehead’s algorithm. The exposition of Whitehead’s algorithm in the book of R. Lyndon
and P. Schupp [125] is based on this combinatorial approach.

In 1946, Emil Post [200] invented the following
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The Post correspondence problem (PCP). Given an alphabet Σ, an instance of PCP is
a finite set of pairs of strings (gi, hi), where 1 6 i 6 s, over Σ. A solution to this instance
is a sequence of selections i1, i2, . . . (repetition is possible) such that

gi1gi2 . . . gin = hi1hi2 . . . hin .

Is an effective procedure answering for any instance on the question: Does a solution
exist for this instance?

It was also proved in [200] that PCP in the classical setting is unsolvable.
This gives rise to a more general definition often found in the literature, according to

which any two homomorphisms α, β with a common domain F and a common codomain G
form an instance of the Post correspondence problem, which now asks whether there exists
a nonempty word w ∈ F such that α(w) = β(w).

Obviously, PCP can be posed for a free algebraic system F .
PCP(F ): For a pair of endomorphisms α, β ∈ End(F ), is there a (nontrivial) element

(word) w ∈ F such that α(w) = β(w)?
Moreover, PCP can be formulated for any algebraic system A as follows. Let F (A) be

a free algebraic system in the variety Var(A) generated by A, and α, β : F (A) → A be a
pair of homomorphisms.

PCP(A): Is there a (nontrivial) element (word) w ∈ F (A) such that α(w) = β(w)?
Thus, we can formulate PCP for any group G.

— Let F (G) be a free group in the variety Var(G) generated by G, and α, β : F (G) → G
be a pair of homomorphisms. Is there a nontrivial element w ∈ F (G) such that α(w) =
= β(w)?

In this paper we give a special Section 7 devoted to the Post correspondence problem and
its generalizations.

A word u(x) = u(x1, . . . , xr) in certain variables x = (x1, . . . , xr) is called an identity in
a group G if under substitution of any sequence g = (g1, . . . , gr) of elements of G into u(x) in
place of x we obtain the equality u(g) = 1. In other words, G satisfies the identity u(x) ≡ 1.
A quasi-identity is an implication of the form u1(x) = 1 ∧ . . . ∧ un(x) = 1→ u(x) = 1.

The I-theory (Q-theory) of a class C of groups is the totality of all identities (quasi-
identities) that are true on all the groups in C.

A. I. Mal’cev posed in [108] (Question 2.40 (a)) the following identity (quasi-identity)
problem: Does there exist a finitely axiomatizable variety of groups whose I-theory
(Q-theory) is non-decidable?

Further decision problems:
For a group G:

— The twisted conjugacy problem (TCP): For endomorphism ϕ ∈ End(G)) and elements
g, f ∈ G to decide whether there exists an element x ∈ G such that ϕ(x)g = fx.

— The bi-twisted conjugacy problem (BTCP): For endomorphisms ϕ, ψ ∈ End(G)) and
elements g, f ∈ G to decide whether there exists an element x ∈ G such that ϕ(x)g =
= fψ(x).

— The generation and presentation problem (GPP):
Find generators or presentation of a subgroup, centralizer, an automorphism group, etc.

— The equation problem (EqP):

∃x1 . . . ∃xn
(
w(x1, . . . , xn) = 1

)
?
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— The endomorphism (automorphism) problem (EndoP or AutoP):

∃ϕ ∈ End(G) (Aut(G))
(
ϕ(g) = f

)
?

For a class C of groups:
— The epimorphism problem (EpiP): ∃ϕ ∈ Hom(G,H)

(
ϕ(G) = H

)
?

Recall that a group G is called residually finite if for each nontrivial element g ∈ G there
exists a finite group K and a homomorphism ϕ : G→ K such that ϕ(g) 6= 1. A. I. Mal’cev
proved that every finitely presented residually finite group G has the decidable WP [142].

3. Finitely generated nilpotent and polycyclic groups
In his series of papers [78 – 72] P. Hall established a remarkable connection between the

theory of polycyclic groups and commutative algebra.
He noted that, since the class of finitely presented groups is closed

Philip Hall

under extensions, polycyclic groups are finitely presented. These
groups satisfies max, the maximal condition for subgroups, and they
admit many other nice properties.

A. I. Mal’cev [142] showed that residual finiteness of some
recursive enumerable property P of a group G implies decidability
of P in G. Subsequently, many proofs of the solvability of algorithmic
problems were based on the corresponding finite residuality.

Classical decision problems. Positive solutions:
— M.F. Newman [178]: the conjugacy problem is solvable for any finitely generated

nilpotent group.
— S. Blackburn [31]: every finitely generated nilpotent group G is conjugacy separable, i.e.,

residually finite with respect to the conjugacy property. In other words, for every pair
g, f ∈ G of elements that are not conjugate in G there is a homomorphism µ : G→ K
onto finite group K for which µ(g), µ(f) are not conjugate in K.

— V.N. Remeslennikov [206] and E. Formanek [59]: every polycyclic group is conjugacy
separable. Therefore, the conjugacy problem for any polycyclic group is decidable.
Let Fin(G) denote the set of isomorphism classes of finite quotients of the group G. Two

groups G and H are said to have the same finite quotients if Fin(G) = Fin(H). Obviously,
for a finitely generated abelian group A we have Fin(A) = {A}. G.A. Noskov proved that
Fin(M) = {M} for any free metabelian group M [184].

P. F. Pickel constructed infinitely many nonisomorphic finitely presented metabelian
groups with the same finite quotients, using modules over a suitably chosen ring [193].
These groups also give an example of infinitely many nonisomorphic split extensions of a
fixed finitely presented metabelian group by a fixed finite abelian group, all having the same
finite quotients. G. Baumslag proved that there exists non-isomorphic meta-cyclic groups G
and H for which Fin(G) = Fin(H) [10].

F. Grunewald and P. Zalesskii introduced in [72] a notion of a genus g(C, G) for a class
of groups C and G ∈ C. It consists of isomorphism classes of groups from C having the
same profinite completion as G. They showed finiteness results for g(C, G) for several
important families of groups including finitely generated virtually free groups. They also
developed formulas for the number of elements in g(C, G) in various cases. By these they
found interesting examples where g(C, G) contains only one element.

Let G be a finitely generated group. By G̃ we denote the profinite completion of G,
G and G̃ have the same finite quotients. The key result to formalize the precise connection
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between the collection of finite quotients of G and those of G̃ is the following. Suppose that
G and H are finitely generated abstract groups. Then G̃ and H̃ are isomorphic if and only
if Fin(G) = Fin(H). This is basically proved in [47]. A.W. Reid [203] introduced the mild
difference in the statement by emploing the great result by N. Nikolov and D. Segal [182]
to replace topological isomorphism with isomorphism.

Now we list the known positive results on the Isomorphism problem for the classes N
and P of finitely generated nilpotent and polycyclic groups, respectively:
— P. F. Pickel [192] proved that the genus of every finitely generated nilpotent group N

is finite. Consequencly, the isomorphism problem to a fixed finitely generated nilpotent
group N is decidable.

— F. Grunewald, P. F. Pickel, and D. Segal [69] established that every g(PF)-class of
polycyclic-by-finite groups is the union of finitely many isomorphism classes.

— F. Grunewald and D. Segal [70, 71] constructed some rather general algorithms, which
can (in theory) be applied in diverse situations. In particular, they gave an algorithm
that solves the isomorphism problem for finitely generated nilpotent groups.

— R.A. Sarkisjan [241, 242] independently solved the isomorphism problem for finitely
generated nilpotent groups under certain conditions, the validity of which was not known
at that time. Later it turned out that the condition is met.
Theorem 3 (D. Segal [244]). There is an algorithm which does the following: given a

finitely presented virtually polycyclic groupG, given elements a1, . . . , an, b1, . . . , bn ofG, and
given finitely generated subgroups A1, . . . , Am, B1, . . . , Bm of G, it decides whether there
exists an automorphism α of G such that α(ai) = bi (and α(Ai) = Bi) for i = 1, . . . , n, and
j = 1, . . . ,m.

As a consequence of this statement, we obtain that the isomorphism problem for the
class of virtually polycyclic groups is decidable. Indeed, the solvability of the classical
isomorphism problem for virtually polycyclic groups is an immediate consequence of
Theorem 3: For any pair of groups A and B we can write down a presentation for G = A×B,
and observe that A ' B if and only if there exists an automorphism α of G with α(A) = B.

The Further decision problems. Positive and negative solutions:
— V.A. Roman’kov [231] proved that TCP is solvable for any polycyclic group. He also

proved in [225] that EqP and EndoP are not solvable for free nilpotent groups of class
> 9.

— V.N. Remeslennikov [208] established that EpiP is not solvable for the variety N2 of
nilpotent groups of class > 2.
Theorem 4 (G. Baumslag, F. B. Cannonito, D. J. S. Robinson, and D. Segal [12]).
Let G = 〈x1, . . . , xn|r1, . . . , rm〉 be a presentation of a polycyclic group. Then there is a

uniform algorithm which, when given a finite subset U of G, produces a finite presentation of
gp(U). Hence we can efficiently find a polycyclic presentation of G, the Hirsch number h(G),
the Fitting (Fitt(G)) and Frattini (Fratt(G)) subgroups, the center C(G), decide if G is
torsion-free, and so on.

For nilpotent groups, an algorithm to solve the conjugacy problems for subgroups is
described in [115].

G. Baumslag, C. F. Miller III, and G. Ostheimer [16] described an algorithm for deciding
whether or not a given finitely generated torsion-free nilpotent group is decomposable as
the direct product of nontrivial subgroups.



26 V. A. Roman’kov

Let O be a binomial ring, i.e., an integral domain containing the ring of integers Z and
containing with every element λ all binomial coefficients(

λ

n

)
=
λ(λ− 1) · · · (λ− n+ 1)

n!
, n ∈ N.

P. Hall [82] itroduced the class of nilpotent O-power groups.

Gilbert Baumslag, an
outstanding mathemati-
cian and great enthusi-
ast of solvable groups
and algorithms.

M. I. Kargapolov et al. [95] solved in a uniform way various
algorithmic problems for O-power groups: word, conjugacy, and
membership problems, determination of theO-periodic part, determination
of intersection of two O-subgroups, and description of the O-
subgroups in terms of generators and defining relations. Note, that in
the case O = Z we have the usual nilpotent groups.

See other results the O-power groups and its generalizations in
[4, 111, 134, 135], etc.

4. Metabelian groups
P. Hall [78] proved that every finitely generated metabelian group G satisfies maxn (the

maximal property for normal subgroups). Therefore, G is finitely defined in the variety A2

of all metabelian groups.
The basis of any finitely generated metabelian group G is its commutant G′, which can

be considered as a module over a finitely generated commutative group ring Z[G/G′]. Since
this ring is Noetherian, G′ as a module is finitely generated. Therefore, there exists a finite
description of the commutant G′, despite the fact that it is not always finitely generated as
a subgroup. The following theorem is of fundamental importance.

Theorem 5 (G. Baumslag, F. B. Cannonito, and D. J. S. Robinson [11]). There is an
algorithm that, given a finitely generated metabelian group G by generating elements and
defining relations, finds a finite representation of Z[G/G′]-module G′.

Corollary 1. This statement has a number of consequences. There is an algorithm,
that:

1) finds the center of C(G) and its finite representation, an algorithm that finds a
finite set of elements whose normal closure in the group coincides with the Fitting
subgroup Fitt(G);

2) determines the presence of nontrivial elements of finite order, which determines the
order for a given element, determines all possible finite orders of elements of a group;

3) ascertaining the conjugacy of two sets of group elements (using one of Noskov’s
lemmas);

4) finding the Frattini subgroup Fratt(G).
On the whole, this allows us to speak of a satisfactory basic algorithmic theory of finitely

generated metabelian groups.
W. Magnus invented his famous Magnus embedding, which became a very efficient

instrument in the theory of solvable groups.
The Classical decision problems. Positive solutions:

— WP: P. Hall [81] proved that every finitely generated abelian-by-nilpotent group is
residually finite. In particular, finitely generated metabelian groups are always residually
finite. Since every finitely generated metabelian group G is finitely presented in A2,
therefore, the word problem is decidable in G.
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— E. I. Timoshenko presented in [253] a direct algorithm that solves the word problem in
an arbitrary finitely generated metabelian group.

— CP: G.A. Noskov [183] proved that the conjugacy problem is decidable in an arbitrary
finitely generated metabelian group.

— MP: N. S. Romanovskii [216] proved that the membership problem is decidable in an
arbitrary finitely generated metabelian group. In [218], he proved that the membership
problem is decidable in an arbitrary abelian-by-nilpotent group.

— M. I. Kargapolov and E. I. Timoshenko [96] proved that in general case a finitely
generated metabelian group is not conjugate separable.

5. Solvable groups of arbitrary length
The Classical decision problems. Positive solutions:

— O. Kharlampovich [98]: The WP is decidable in any subvariety of N2A. (Consequently
R. Bieri and R. Strebel [27] proved that every finitely presented group G ∈ N2A is
residually finite.)

— C.K. Gupta and N. S. Romanovskii [222]: Any polynilpotent group with a single
primitive defining relation has a decidable word problem.
The Classical decision problems. Negative solutions:
V.N. Remeslennikov [207] constructed an example of a group finitely defined in the

variety A5 with an unsolvable word problem. In addition, a finitely defined in A4 group G
and a finitely generated subgroup H 6 G were given, such that the membership problem
with respect to H is unsolvable.

Theorem 6 (O. Kharlampovich [97]). There is a finitely presented solvable groupG of
class 3 in which WP is undecidable. More exactly, G can be chosen in the centrally-nilpotent
of class 2-by-abelian variety ZN2A defined by identity [[[x1, x2], [x3, x4]], [x5, x6]], y] ≡ 1 [99].
Thus, WP is unsolvable in the variety N3A.

O. Kharlampovich demonstrated how results of M. Minsky from

Olga Kharlampovich

recursion theory works in constructing counter examples in the
solvable group theory.

Subsequently, this was proved in a different way by G. Baumslag,
D. Gildenhuys, and R. Strebel [13, 14]. They constructed a finitely
presented solvable of class 3 group G and a recursive set of words
w1, . . . , wn, . . . in generators of G such that wpi = 1 with p a prime
and wi ∈ C(G) for which there is no algorithm to decide if a given wi
equals the identity in G. This group can also be used to show that
the IP is undecidable in the finitely presented solvable groups of class 3.

In [27], R. Bieri and R. Strebel constructed for every finitely generated ZQ-module A,
where Q is a finitely generated abelian group of torsion-free rank n, a subset of the unit
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sphere Sn−1 ⊆ Rn. This subset is equivalent to the set of equivalence classes [ν] of valuations
(homomorphisms) ν : Q→ R+. One can attach to every finitely generated Q-module A the
set

ΣA = {[ν] : A is finitely generated overQν},
where Qν = {g ∈ Q : ν(g) > 0}. In [27], the relations between geometric properties of ΣA

and algebraic properties of A are investigated. In particular, this invariant determines which
metabelian groups are finitely presented. For generalizations of concepts and results of the
paper [27] see [28, 26].

In [15], an algorithm is presented which decides for a free metabeliab group (or, more
generally, for the wreath product of two free abelian groups) whether the intersection of two
finitely generated subgroups is finitely generated or trivial. The existence of an algorithm
that solves this question for metabelian groups in general is unknown.

Free solvable groups of finite ranks
The Classical decision problems. Positive and negative solutions:

— M. I. Kargapolov and V.N. Remeslennikov [94] proved that the conjugacy problem
is solvable for any free solvable group. V.N. Remeslennikov and V.G. Sokolov [211]
established that any free solvable group is conjugacy separable.

— U.U. Umirbaev [261] constructed an example of a group G with undecidable word
problem which is finitely presented in a variety of solvable groups S3 of class > 3.
This group G is defined by the relations from the last commutator subgroup of the
corresponduing free solvable group. Early S.A. Agalakov [3] proved that there are a
finitely generated not finitely separated subgroups in each non-abelian free solvable
group of class d > 3.
The identity problem for the class of solvable groups was solved by Yu.G. Kleiman

[104, 105].
Theorem 7 (Yu.G. Kleiman [104, 105]). There exists a finitely based variety of

groups D ⊆ A7 in whose free noncyclic groups the equality problem (hence also the identity
problem) is unsolvable. Furthermore, it is possible to find a word v(x) such that there exists
no algorithm for determining whether or not an arbitrary identity u(x) ≡ 1 follows from
v(x) ≡ 1.

Fox derivatives
For a given positive integer r and for the free group Fr with basis {f1, . . . , fr} the Fox

derivatives are defined as follows.
For j = 1, . . . , r, the (left) Fox derivative associated with fj is the linear map

Dj : Z[Fr]→ Z[Fr] satisfying the conditions

Dj(fj) = 1, Dj(fi) = 0 for i 6= j,

Dj(uv) = Dj(u) + uDj(v) for all u, v ∈ Fr.

Obviously, an element u ∈ Fr is trivial if and only if Di(u) = 0 for all i = 1, . . . , r. Also
note that for an arbitrary element g of Fn and every j = 1, . . . , n, Dj(g

−1) = −g−1Dj(g).
An introduction to the theory of the Fox derivatives and possible applications of them can
be found in [239, 256].

The trivialization homomorphism ε : Z[Fr] → Z is defined on the generators of Fn by
fiε = 1 for all i = 1, . . . , r and extended linearly to the group ring ZFn.

The Fox derivatives appear in another setting as well. Let ∆Fr denote the fundamental
ideal of the group ring Z[Fr]. It is a free left Z[Fr]-module with a free basis consisting of
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{f1 − 1, . . . , fr − 1}. This it leads us to the following formula which is called the main
identity for the Fox derivatives:

r∑
i=1

Di(α)(fi − 1) = α− αε,

where α ∈ ZFr. Conversely, if for any element f ∈ Fr and αi ∈ Z[Fr] we have equality
r∑
i=1

αi(fi − 1) = f − 1,

then Di(f) = αi for i = 1, . . . , r.
Let Mr = Fr/F

′′
r be a free metabelian group of rank r and Ar = Mr/M

′
r ' Fr/F

′
r

be a free abelian group of rank r. Further, denote by π : Mr → Ar, π
′ : Fr → Ar and

π′′ : Fr → Mr the canonical epimorphisms. Let {a1, . . . , ar} and {x1, . . . , xr} be the bases
for An and Mn obtained by π′ and π′′. The maps π, π′ and π′′ can be extended linearly to
π : ZMr → ZAr, π′ : ZFr → ZAr and π′′ : ZFr → ZMr. The kernels of π′ and π′′ are the
ideals of ZFr generated by the elements u− 1 with u ∈ F ′r and u ∈ F ′′r , respectively.

For every j = 1, . . . , r the free Fox derivative Dj induces a linear map dj : ZMr → ZAr.
These maps also are called the free Fox derivatives.

Magnus embedding
One of the most powerful approaches to study free solvable groups is via the Magnus

embedding. Originally W. Magnus established in [131] an embedding of a group Ḡ of type

Fr/R
′ into the groupM(G, Tr) =

(
G Tr
0 1

)
, where G = Fr/R is a finite group, and Tr is a

free module over Z[Fr] with basis {t1, . . . , tr}. This map is called theMagnus embedding. The
finiteness restriction on G can be easily eliminated (see [77]). Also the Magnus embedding
can be naturally extended to Ḡ → M(G, T ) where Ḡ is a group of the type F/R′, and
G = F/R. Here F = F|Λ| has a basis {fλ|λ ∈ Λ} of arbitrary cardinality |Λ|, and the free
module T = T|Λ| over ZG has a basis {tλ|λ ∈ Λ}. In the following usually Λ = {1, . . . , r},
and F = Fr.

A.L. Shmel’kin [246] (see [109]) interpreted the Magnus theorem as an embedding β of
the group Ḡ in the wreath product W = ArwrG in the following way.

Let
β̄ : Fr → W

be defined by the map
β̄(fi) = ai · µ(fi) for i = 1, . . . , r,

where µ : Fr → G is the canonical epimorphism, and {a1, . . . , ar} is the basis of Ar
corresponding to the basis {f1, . . . , fr} for Fr.

Then by the Magnus theorem, ker(β) = R′, hence β induces an embedding β : G→ W.
Recall that W is isomorphic to M(G, Tr). The embedding β above is defined in this

setting by the map

β(µ′(fi)) =

(
µ(fi) ti

0 1

)
,

where µ′ : Fr → G is the canonical epimorphism.
Easy to prove that every matrix A ∈ β(G) has the form

A =

 µ(f)
r∑
i=1

µ(Di(f)) ti

0 1

 =

 µ̄(f ′)
r∑
i=1

di(f
′) ti

0 1

 ,
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where f ′ = µ′(f) is arbitrary element of G, µ : G → G is the canonical epimorphism, and
di are the induced free Fox derivatives with values in ZG.

It turned out (see [8, 211] for metabelian case and [30]) that the group G is well embedded
in M(G, Tr). Namely, the image of G in M(G, Tr) under the Magnus embedding can be
described as follows.

A matrix

A =

 1
r∑
i=1

αiti

0 1

 ∈M(G, Tr)

belongs to the image β(G) if and only if

r∑
i=1

αi(µ(fi)− 1) = 0.

Therefore, a matrix

A =

 g
r∑
i=1

αiti

0 1

 ∈M(G, Tr)

belongs to the image β(G) if and only if

r∑
i=1

αi(µ(fi)− 1) = g − 1.

6. Equations
Solvability problem for equations in various classes of groups has been actively

researched for many years. First general results on equations in groups appeared in the 1960s
in the works of R. Lyndon [122 – 124] and A. I. Mal’cev [144]. In the 1970s G. S. Makanin
[137, 138] proved the solvability of the systems equations for free monoids and free groups.
In recent years, significant progress has been made in the computational complexity and
structure of solution sets.

For a general survey of the current state of the theory of solvability

R.C. Lyndon

of equations and systems of equations in groups, see the observing
paper by the author [232] and his monograph [239].

The Diophantine problem in a group G is the task to determine
whether or not a given finite system of equations with constants in G
has a solution in G. This problem is decidable if there is an algorithm
that given a finite system E of equations with constants in G decides
whether or not E has a solution in G.

Equations in nilpotent groups
Denote by N the class of all nilpotent groups. As above Nc denotes the variety of all

nilpotent groups of class 6 c. In particular N1 coincides with the class A of all abelian
groups.

A. I. Mal’cev [140] proved that any equation of the form xm = g where g is an element
of a torsion-free nilpotent group G ∈ Nc, m ∈ N, has a solution in some torsion-free
nilpotent group H ∈ Nc, H > G. Moreover, there is a divisible torsion-free nilpotent group
G̃ ∈ Nc, least by inclusion, containing the group G. Such a group G̃ is uniquely defined up
to isomorphism and is called the Mal’cev completion of G.

Clearly every abelian group embeds into a divisible abelian group.
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Since every finitely generated nilpotent group G ∈ Nc embeds into a direct product of
a torsion-free nilpotent group G0 and a finite direct product

∏
p

Gp of finite p-groups Gp

(p are primes) also of class c, every equation of the form xm = g, as above, has a solution
in a some nilpotent overgroup H of G. Indeed, we can embed G0 in a torsion-free complete
nilpotent group H0 keeping the class c by [140], and embed every p-group Gp into a finite
p-group Hp containing a solution of the considering equation. Note that we need only to
extend Gp with roots of equations of the form xp

k
= gp. Then we set H = H0 ×

∏
p

Hp. But

in general, H has class greater than c. Therefore, any finitely generated nilpotent group can
be embedded into a divisible nilpotent group.

A system of m = k equations is called unimodular if the matrix consisting of the sums
of exponentials of the unknowns with which they enter the equations, has determinant 1.

A.L. Shmel’kin [247] established that any unimodular system of equations over a
nilpotent group G has an unique solution in G.

Theorem 8 (V.A. Roman’kov [225, 226]). The following statements hold:
— Let Nr,c be a free nilpotent group of rank r > 2 and class c > 9 with basis {x1, . . . , xr}.

Then there is an algorithm which for every Diophantine equation D(ζ1, . . . , ζn) = 0
gives a split equation g(z1, . . . , zp) = f over the group Nr,c that has a solution in Nr,c if
and only if D(ζ1, . . . , ζn) = 0 has a solution in integers. An element f can be chosen in
the subgroup gp(x1, x2) of Nr,c.

— Let Mr be the free metabelian group of rank r > 2 with basis {x1, . . . , xr}. Then there
is an algorithm which for every Diophantine equation D(ζ1, . . . , ζn) = 0 gives a split
equation g(z1, . . . , xq) = f over group Mr that has a solution in Mr if and only if
D(ζ1, . . . , ζn) = 0 has a solution in integers. An element f can be chosen in subgroup
gp(x1, x2) of Mr.
Therefore, the equation problem for any free nilpotent group Nr,c, r > 2, c > 9, or free

metabelian group Mr, r > 2, is algorithmically undecidable.
The method of interpretation of Diophantine equations in free nilpotent and free

metabelian groups has been used in a row forthcoming papers. N.N. Repin applied this
method for studying the solvability of equations in nilpotent groups.

We record a number results by N.N. Repin on recognizing the solvability of equations
in nilpotent groups, see [213, 214]:
— For every finitely generated nilpotent group of class two the problem of recognizing the

solvability of one-variable equations is decidable.
— There is a finitely generated nilpotent group of class 3 in which the problem of

recognizing the solvability of one-variable equations is undecidable.
— For every free nilpotent group Nr,c of rank r > 600 and class c > 3 the problem of

recognizing the solvability of equations is udecidable.
— For every free nilpotent group Nr,c of rank r > 2 and class c > 5 · 1010 the problem of

recognizing the solvability of one-variable equations is undecidable.
In another setting, the interpretation of Diophantine equations was used by

Yu.G. Kleiman to prove that the identity problem is undecidable for some relatively free
solvable groups (see Theorem 7 above).

Theorem 9 (V.A. Roman’kov [236]). For every Diophantine polynomialD(ζ1, . . . , ζn)
there exists a finitely generated nilpotent group G of class 2 with the following property.
For every equation of the form D(ζ1, . . . , ζn) = c, c ∈ Z, there is an element u = u(c) ∈ G
such that u is a commutator in G (in other words, the equation [x, y] = u is solvable in G),
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if and only if the equation D(ζ1, . . . , ζn) = c is decidable over Z. The group G and each
element u(c) can be effectively constructed. By the famous Matijasevich’s theorem there is
a Diophantine polynomial D for which the equation problem is undecidable for the class of
equations of the form {D = c : c ∈ Z}. Therefore, the commutator problem is undecidable
for G.

Moreover, G is the first example of a finitely generated nilpotent group with undecidable
equation problem for the class of quadratic equations. In [236], a finitely generated nilpotent
group H of class 2 is also presented for which the endomorphism problem is undecidable.
It also has been proved that the retract problem (i.e., question whether the given finitely
generated subgroup is a retract of the whole group) is undecidable for the class of finitely
generated 2-step nilpotent groups. On the other hand, there is an algorithm which for a
given element u ∈ Nr,2 determines whether or not u is a commutator.

A.G. Makanin proved in [136] that every split equation w(x1, . . . , xk) = g, g ∈ G, over
a finitely generated torsion-free nilpotent group G, where w(x1, . . . , xk) does not belong
to the derived subgroup F (X)′, i.e., w(x1, . . . , xk) is a non-commutator word, is finitely
approximable.

In [49], M. Duchin et al. show that there exists an algorithm to decide any single equation
in the Heisenberg group. The method works for all nilpotent groups of class 2 with rank-one
derived subgroup, which includes the higher Heisenberg groups.

Equations in metabelian case
The metabelian Baumslag — Solitar groups are defined by one-relator presentations

BS(1, k) = 〈a, b|b−1ab = ak〉, where k ∈ N. If k = 1, then BS(1, 1) is free abelian of
rank 2, so the Diophantine problem in this group is decidable (it reduces to solving finite
systems of linear equations over the ring of integers Z).

O. Kharlampovich, L. Lopéz and A. Myasnikov proved in [100]) that the Diophantine
problem is decidable in G = AwrZ, where A is a finitely generated abelian group. Equations
in the Baumslag — Solitar group BS(1, k) are also decidable.

I. Lysenok and A. Ushakov [126] proved that the equation problem for spherical
quadratic equations in free metabelian groups is solvable and, moreover, NP-complete.
E. I. Timoshenko [258] proved the first (solvability) result by using the Magnus embedding.

By the spherical quadratic equation over group G with unknowns X = {x1, . . . , xt, . . .}
one means an equation of the form

n∏
i=1

x−1
i c1xi = 1, ci ∈ G.

V.N. Remeslennikov and N. S. Romanovskii [209] study into algebraic geometry over a
non-commutative u-group G, that is, a finitely generated metabelian group whose universal
theory is the same as is one for a free metabelian group of rank at least two. They present
the construction for a u-product G1,2 = G1 ◦G2 of two u-groups G1 and G2, and prove that
G1,2 is also a u-group and that every u-group, which contains G1 and G2 and is generated
by these, is a homomorphic image of G1,2. They prove that the coordinate group of an affine
space Gn is equal to G ◦Mn. In [209] irreducible algebraic sets in G are treated for the case
where G is a free metabelian group or wreath product of two free abelian groups of finite
ranks.

Interpretation of Diophantine equations
The author [225, 226] derived the undecidability of EqP and EndoP in the classes of free

nilpotent and free metabelian groups. He based on the famous results by Yu.V. Matijasevich
on undecidability of the Diophantine problem [148, 149].
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He proved that ifN = Nr,c is the free nilpotent group of sufficiently large rank r and class
c > 9, then for any Diophantine polynomial D(z1, . . . , zn) ∈ Z[z1, . . . , zn], we can effectively
construct two elements g, f ∈ N such, that there is an endomorphism ϕ ∈ End(N) that
ϕ(g) = f if and only if the equation D(z1, . . . , zn) = c, where c ∈ Z, has a solution
in Z. Moreover, if such ϕ exists, we can effectively find it if and only if we can effectively
solve the corresponding Diophantine equation. We can also fix the left side of equation
D(z1, . . . , zn) = c to obtain non-decidable class of Diophantine equations. Hence, we can
fix the element g above to obtain non-decidability of the EqP and EndoP in N. The second
element f we choose in a specific cyclic subgroup.

By definition, the relation matrixM(G) of the presentation G = 〈x1, . . . , xn : r1, . . . , rm〉
is an integral m× n matrix whose ij-th entry is the sum of the exponents of the xj’s that
occur in ri. Recall, that a matrix is said to have full rank if its rank equals the largest
possible for a matrix of the same dimensions, which is the lesser of the number of rows and
columns.

The authors of [64] study metabelian groups G given by a full rank finite presentations
〈x1, . . . , xn : r1, . . . , rm;A2〉 in the variety A2. They prove that G is a product of a free
metabelian subgroup of rank max(0, n−m) and a virtually abelian normal subgroup, and
that ifm 6 n−2, then the Diophantine problem for G is undecidable, while it is decidable if
m > n. They also prove that ifm 6 n−1, then, in any direct decomposition of G, all factors,
except one, are virtually abelian. Since finite presentations have full rank asymptotically
almost surely, metabelian groups finitely presented in the variety of metabelian groups
satisfy all the aforementioned properties asymptotically almost surely.

7. Post correspondence problem

Different versions of PCP
There are the bounded versions of PCP. We consider two sorts of a bound: the bound

on the solution length n (BPCPsl(n)) and the bound on the size s (BPCPs(s)).
The following statements are true:

— BPCPsl is NP-complete [62];
— BPCPs(2) is decidable [51] (but it remains unknown whether the PCP is solvable for

3–6 pairs of words);
— BPCPs(l) for l > 7 is undecidable [150, 151].

Let A be an algebraic system and let F (A) be a free algebraic system in the variety
Var(A) generated by A. For two arbitrary homomorphisms ϕ, ψ ∈ Hom(F (A), A) the subset

EqA(ϕ, ψ) = {a ∈ F (A) : ϕ(a) = ψ(a)}

of F (A) is said to be the equalizer of ϕ and ψ, that is obviously a subsystem of F (A).
The following problem arises: PCP(A): EqA(ϕ, ψ) 6= 0?
The Post correspondence and related problems for groups
Further we will talk only about groups.
Let Ḡ, G be a pair of groups, and let ϕ, ψ ∈ Hom(Ḡ, G) be a pair of homomorphisms.

We denote by
EqG(ϕ, ψ) = {g ∈ Ḡ : ϕ(g) = ψ(g)}

the equalizer of ϕ and ψ, that is obviously a subgroup of Ḡ.
Equalization presentation problem (EPP): Let C be a class of finitely generated groups.

We say that EPP is decidable in C if for any pair of groups Ḡ, G ∈ C and any pair of
homomorphisms ϕ, ψ ∈Hom(Ḡ, G) we can find effectively a presentation of EqG(ϕ, ψ).
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A form of presentation depends of C. It should be explicit for C. In particular case, when
Ḡ = G, ϕ, ψ ∈ End(G), we get EPP for G.

Equalization problem (EP): We say that EP is decidable in the class C if for any pair of
groups Ḡ, G ∈ C and any pair of homomorphisms ϕ, ψ ∈ Hom(Ḡ, G) there is an algorithm
that determines non-triviality of EqG(ϕ, ψ).

In particular case, when Ḡ = G, ϕ, ψ ∈ End(G), we consider EP for G.
Let we formulate the Post correspondence problem PCP(G) for a group G in the

corresponding variety. Namely, when Ḡ = F (Var(G)) be a relatively free group in the
variety Var(G), generated by G, we get PCP for G.

PCP(G): EqG(ϕ, ψ) 6= 1?

Generalized equalization problem (GEP). Also, we say that GEP is decidable in the
class C if for any pair of groups Ḡ, G ∈ C, any pair of homomorphisms ϕ, ψ ∈ Hom(Ḡ, G)
and given a nontrivial element v ∈ G we can decide effectively whether there is g ∈ Ḡ such
that

ϕ(g) = v · ψ(g).

We consider it as an equation with unknown element g ∈ Ḡ.
In particular case, when Ḡ = G, ϕ ∈ End(G), ψ = id, we get TCP for G. If ψ ∈ End(G),

then we get BTCP for G.
The generalized Post correspondence problem (GPCP)
When Ḡ = F (Var(G)) is a relatively free group in the variety Var(G), generated by G,

we get GPCP for G.

GPCP(G): Given a finite sequence of instances (g1, h1), . . . , (gs, hs) and element f in G,
determine if there is a word w = w(x1, . . . , xs) such that

w(g1, . . . , gs) = f · w(h1, . . . , hs).

This problem admits the following equivalent formulation. Let Fs(G) be a free group of
rank s in Var(G).

GPCP(G): Given a pair ϕ, ψ ∈ Hom(Fs(G), G), decide if the solution w ∈ Fs(G) exists
or not of the equation

ϕ(w) = f · ψ(w).

Now we formulate the hereditary word problem (HWP(G)) in a group G. The following
problem is the strongest form of the word problem in G:

HWP(G): Given a finite set R∪{f} of words in generators of G, decide whether or not
f is trivial in the quotient G/ncl(R).

GPCP can be decidable only in a group with decidable HWP.
The following results are proved in [162]. Let G be a finitely generated group. Then:

— HWP(G)) P -time reduces to GPCP(G).
— If G contains F2 then GPCP(G) is undecidable.
In [163] the classical knapsack and subset sum problems to arbitrary groups are introduced.
The computational complexity of these new problems were studied. It was shown that these
problems, as well as the bounded submonoid membership problem, are P -time decidable in
hyperbolic groups and give various examples of finitely presented groups where the subset
sum problem is NP-complete.

These problems for a group G are formulated as follows:
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— Knapsack problem (KP): Given g1, . . . , gk, g ∈ G, decide if

g =
k∏
i=1

(gi)
µi

for some non-negative integers µ1, . . . , µk.
— The subset sum problem (SSP): Given g1, . . . , gk, g ∈ G, decide if

g =
k∏
i=1

(gi)
εi

for some ε1, . . . , εk ∈ {±1}.
— Bounded submonoid membership problem (BSMP): Given g1, . . . , gk, g ∈ G and 1m ∈ N

(in unary), decide if g is equal in G to a product of the form g =
s∏
j=1

gj, where ij ∈

∈ {1, . . . , k} and s 6 m.

Let G be a finitely generated virtually nilpotent group. Then SSP(G) and BSMP(G),
as well as their search and optimization (with respect to number of factors) variations,
are in P [163]. Every polycyclic non-virtually-nilpotent group has NP-complete subset sum
problem [181].

In [164], a number of algorithmic problems in groups were introduced and studied,
modeled after the classical computational lattice problems. Polynomial time solutions for
a nilpotent group have been given to problems such as finding a subgroup element closest
to a given group element, or finding the shortest nontrivial subgroup element.

Twisted conjugacy problem
Originally the twisted conjugacy problem was posed as following:
Let G be a group, and u,w ∈ G. Given an endomorphism ξ ∈ End(G), one says that u

and w are ξ-twisted conjugated, denoted by u ∼ξ w, if and only if there exists g ∈ G such
that u = ξ(g)−1 · wg, or equivalently ξ(g)u = wg. So it is a question if following equation
have a solution g in G:

ξ(g)u = wg.

The question about ξ-twisted conjugacy of given elements u,w ∈ G can be reduced to
case where one of the elements is trivial. To do it we change ξ to ϕ = ξ ◦ σu, where
σu : g 7→ u−1gu, g ∈ G, is an inner automorphism. We get

ϕ(g) = vg

for v = u−1w.
We consider finitely generated metabelian and polycyclic groups. We have the following

two equations:

ϕ(g) = ψ(g)

and
ϕ(g) = uψ(g).

Following [11], call a subgroup H of a finitely generated metabelian group M nearly
normal if the intersection H ∩M ′ is a normal subgroup of M.

Then
H = gp(h1, . . . , hk, {v1, . . . , vl}Z[M/M ′]
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is a finite description of H.
The following results were presented in the talk of the author [234] (see also [233]).
The first assertion shows that the question of the decidability of GEP (ϕ(g) = fψ(g))

under certain assumptions can be transformed into a similar question about the subgroupH
of a finite index in G:
— Let G be any group and let H 6 G be any subgroup of a finite index in G. Let Ḡ be a

group and ϕ, ψ ∈ Hom(Ḡ, G). Suppose that the membership problem in H is decidable
for G. Then, if GEP is decidable for H, it is also decidable for G.
Let us present the main technical results for obtaining solutions of the problems under

consideration in the class of all finitely generated metabelian groups:
— Let G be a group and A be its abelian normal subgroup. Let Ḡ = gp(f1, . . . , fn) be a

finitely generated group and let ϕ, ψ : Ḡ → G be a pair of homomorphisms such that
G = gp(ϕ(Ḡ), ψ(Ḡ)). For every g ∈ Ḡ denote a(g) = ϕ(g)(ψ(g))−1. In particular, denote
ai = a(fi), i = 1, . . . , n.
Suppose that the following assumptions are true:
1) for every g ∈ Ḡ one has a(g) ∈ A;
2) the derived subgroup G′ acts identically on A, i.e., [G′, A] = 1;
3) Ḡ′ 6 EqG(ϕ, ψ), i.e., for every g ∈ Ḡ′ one has ϕ(g) = ψ(g).
Then

EqG(ϕ, ψ) 6 ψ−1(CG(a1, . . . , an)),

where CG(a1, . . . , an) is the centralizer of the elements a1, . . . , an in G.
Moreover, for every g ∈ ψ−1(CG(a1, . . . , an)) one has a(g) ∈ ζ1G;
4) hence, if the center ζ1(G) of G is trivial, then

EqG(ϕ, ψ) = ψ−1(CG(a1, . . . , an)).

In general case there is a homomorphism

ρ : ψ−1(CG(a1, . . . , an))→ ζ1G, g 7→ a(g),

and
EqG(ϕ, ψ) = ker(ρ).

Let G be a group and A be its abelian normal subgroup. Let Ḡ be a group and let
ϕ, ψ : Ḡ → G be a pair of homomorphisms such that G = gp(ϕ(Ḡ), ψ(Ḡ)). Let a(g) =
= ϕ(g)(ψ(g))−1. Suppose that the following assumptions are true:
1) for every g ∈ Ḡ one has a(g) ∈ A;
2) the derived subgroup G′ acts identically on A, i.e., [G′, A] = 1.
Then

a(Ḡ′) = {a(g) : g ∈ Ḡ′}

is a normal subgroup of G.
Moreover, if Ḡ′ is generated as a normal subgroup by a set of elements {ui : i ∈ I},
then a(Ḡ′) is generated as a normal subgroup by the set {a(ui) : i ∈ I}.
Let all the previous notation and assumptions be satisfied. Let G1 = G/a(Ḡ), and

G→ G1 be the standard homomorphism. For simplicity, we do not change the notation for
the compositions ϕ and ψ with this standard homomorphism. Also, we do not change the
designation of the images of elements of G in G1.
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Then
EqG1

(ϕ, ψ) 6 ψ−1(CG1(a1, . . . , an)).

Moreover, if ζ1G1 = 1, then

EqG1
(ϕ, ψ) = ψ−1(CG1(a1, . . . , an)).

Main results for metabelian and polycyclic groups
Theorem 10. LetM be a finitely generated metabelian group, and let M̄ be a finitely

generated metabelian group with generating set {f1, . . . , fn}. Let N be an abelian normal
subgroup of M, containing M ′.

Then EPP and EP are solvable for any pair of homomorphisms ϕ, ψ ∈ Hom(M̄,M)
satisfying the assumption that, for any g ∈ M̄ , gϕ(gψ)−1 ∈ N. Equalizer EqM(ϕ, ψ) is
described as a nearly normal subgroup of M, i.e.,

EqM(ϕ, ψ) = gp
(
h1, . . . , hk, {v1, . . . , vl}ZM/N

)
,

where h1, . . . , hk, v1, . . . , vl are given by the algorithm.
Corollary 2. Let M be a finitely generated metabelian group, and let M̄ =

= F (Var(M)) be a relatively free metabelian group in the variety Var(M) generated by M
with basis {f1, . . . , fn}, n > 2.

Then PCP is solvable for any pair of instances c̄ = (c1, . . . , cn) and d̄ = (d1, . . . , dn) such
that for the corresponding homomorphisms ϕ : fi → ci and ψ : fi → di, respectively, one
has ai = ϕ(fi)(ψ(fi))

−1 ∈ N, i = 1, . . . , n.

Theorem 11.
1. LetM be a metabelian polycyclic group, and let M̄ be a metabelian polycyclic group

with generating set {f1, . . . , fn}, n > 2. Then EPP and EP are decidable for any
pair of homomorphisms ϕ, ψ of M̄ to M .

2. LetM be a metabelian polycyclic group, and let M̄ = F (Var(M)) be a relatively free
group in the variety Var(M) generated by M with basis {f1, . . . , fn}, n > 2. Then
PCPn is decidable for any pair of instances c̄ = (c1, . . . , cn), d̄ = (d1, . . . , dn) ∈ M̄n.

3. Let M be a finitely generated metabelian group, and let M̄ be a finitely
generated metabelian group generated by f1, . . . , fn, n > 2. Let N be an abelian
normal subgroup of M, that contains M ′. Then GEP is solvable for any pair of
homomorphisms ϕ, ψ ∈ Hom(M̄,M) and any element a ∈ N such that for any
g ∈ M̄ one has ϕ(g)(ψ(g))−1 = a(g) ∈ N.

Corollary 3.
1. Let M be a finitely generated metabelian group and N a normal abelian subgroup

of M containing M ′. Let ϕ, ψ be a pair of endomorphisms in End(M) such that, for
each g ∈ M , ϕ(g)(ψ(g))−1 ∈ N. Then the bi-twisted conjugacy problem is solvable
for ϕ, ψ.
In particular, the bi-twisted conjugacy problem is solvable for any pair of
endomorphisms ϕ, ψ ∈ End(M), each of which induces an identical map ontoM/M ′.
This generalizes the main result of paper [264], where ϕ induces an identical map
onto M/M ′ and ψ = id.

2. Let M be a finitely generated metabelian group, and let M̄ = F (Var(M)) be a
relatively free metabelian group in the variety Var(M) with basis {f1, . . . , fn}, n > 2.
Let N be an abelian normal subgroup of M, that contains M ′.
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Then GPCPn is decidable for every pair of instances c̄ = (c1, . . . , cn), d̄ = (d1,
. . . , dn) ∈ Mn such that for the corresponding to these instances homomorphisms
ϕ, ψ ∈ Hom(M̄,M) and every element g ∈ M̄ we have ϕ(g)(ψ(g))−1 = a(g) ∈ N.

Theorem 12. Let M be a metabelian polycyclic group. Let N be an abelian normal
subgroup of M, that contains M ′. Let M̄ be a metabelian polycyclic group generated by
f1, . . . , fn, n > 2. Then GEP is decidable for every pair of homomorphisms ϕ and ψ of M̄
to M.

Corollary 4. Let M be a polycyclic metabelian group and N be a normal abelian
subgroup of M containing M ′. Then the bi-twisted conjugacy problem is solvable for any
pair of endomorphisms ϕ, ψ ofM. Thus, the bi-twisted conjugacy problem is solvable forM.
This generalize the result [264] where ϕ is arbitrary endomorphism and ψ = id.

Theorem 13. LetM be a metabelian polycyclic group, and let M̄ = F (Var(M)) be a
relatively free group in Var(M), n > 2. Then GPCPn is decidable for any pair of instances
c̄ = (c1, . . . , cn), d̄ = (d1, . . . , dn) ∈ M̄n.

Theorem 14. All the problems just considered are solvable in the class of polycyclic
groups.

8. Elementary and universal theories
The elementary theory Th(G) of a group G (or a ring, or an arbitrary structure) in a

language L is the set of all first-order sentences in L that are true in G.
We restrict ourselves to considering only the group-theoretical case. Usually L is the

standard group-theoretic language 〈·,−1 ,=, 1〉. Sometimes L includes predicates or other
than 1 constants. If the group A is elementarily equivalent to the group B, i.e., if Th(A) =
= Th(B), then we write A ≡ B.

One of the main results of W. Szmielew [249] is the determination of group theoretic
invariants I(A) which characterize abelian groups A up to elementary equivalence. The
decidability of the theory of abelian groups follows relatively easily from this result:
A ≡ B ↔ I(A) = I(B). More exactly, Th(A) is decidable if the sequence of Szmielew
invariants of A is computable. Finitely generated abelian groups have decidable elementary
theories. This assertion easily carries over to their finite extensions, i.e., almost abelian
finitely generated groups. Two finitely generated abelian groups are elementary equivalent
if and only if they are isomorphic, that is, A ≡ B ↔ A ' B.

A compretiensive survey of the first-order properties of abelian groups is given by
P.C. Eklof and E.R. Fisher in [54]. Their principal method is the investigation of saturated
abelian groups. They gave a new model-theoretic proof results of Szmielew and obtained
new results on the existence of saturated models of complete theories of abelian groups.
It turned out that elementarily equivalent saturated abelian groups of the same cardinality
are isomorphic.

There are several main results on elementary theories of nilpotent groups. Examples of
finitely generated nilpotent groups with undecidable elementary theories were first given
by A. I. Mal’cev. In his pioneering paper [146], A. I. Mal’cev showed that the ring R with
unity can be defined by first-order formulas in the group UT3(R) of unitriangular matrices
over R (considered as an abstract group). In particular, the ring of integers Z is definable
in the group UT3(Z), which is a free nilpotent of rank 2 and class 2. Yu. L. Ershov [57]
proved that the group UT3((Z)) (hence the ring Z) is definable in any finitely generated
nilpotent group G, which is not virtually abelian. Therefore, the elementary theory of G is
undecidable (see more general statement of theorem 15 below).
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In [143], A. I. Mal’cev proved that the elementary theory of any free solvable group Sr,d
of rank r > 2 and class d > 2 is undecidable. All members of the derived series are definable
in Sr,d. In [145], he established fundamental results on linear groups. In particular, he proved
the following theorem: Let G =GL (or PGL, SL, PSL), let n,m > 3, and let K and L be
commutative rings of characteristic zero, then GLm(K) ≡ GLn(L) if and only if m = n and
K ≡ L. In the case of GL and PGL the result holds for n,m > 2.

In [108], M. I. Kargapolov posed the following Question 1.26: Does elementary
equivalence of two finitely generated nilpotent groups imply that they are isomorphic?

In [268], B. I. Zil’ber constructed an example of two finitely

M. I. Kargapolov was the
initiator of many stu-
dies on solvable groups
and algorithms

generated nilpotent of class 2 groups that are elementary equivalent
but nonisomorphic.

A.G. Myasnikov in the series of papers [158, 160, 161] studied
the elementary theories of bilinear mappings. In particular, he gave a
description of abstract isomorphisms of bilinear mappings.

If G is torsion free finitely generated nilpotent group and R is
binomial domain, then GR means the P. Hall R-completion of G.

In the papers [164–166] A.G. Myasnikov and V.N. Remeslennikov
proved that the Kargapolov’s conjecture holds “essentially” true in
the class of nilpotent Q-groups (i.e., divisible torsion-free nilpotent
groups). Indeed, it turned out that two such groups G and H are
elementarily equivalent if their cores G̃ and H̃ are isomorphic and G
and H either simultaneously coincide with their cores or they do not. Here the core of G
is uniquely defined as a subgroup G̃ 6 G such that C(G̃) 6 G̃′ and G = G̃×G0, for some
abelian Q-group G0. Developing this approach, A.G. Myasnikov described in [157, 159] all
groups elementarily equivalent to a given finitely generated nilpotent K-group G over an
arbitrary field K of characteristic zero.

In a series of papers [22–24] O.V. Belegradek completely characterized groups which are
elementarily equivalent to a unitriangular matrix group UTn(Z) for n > 3. In particular, he
showed in [23, 24] that there are groups elementarily equivalent to UTn(Z) which are not
isomorphic to any group of the type UTn(R) as above (he called them quasi-unitriangular
groups).

The paper [174] gives a complete algebraic description

A.G. Myasnikov

of the groups G that are elementarily equivalent to the
P. Hall completion NR of a given free nilpotent group
N of finite rank over an arbitrary binomial domain R.
In particular, all groups elementarily equivalent to a
free nilpotent group N of finite rank are characterized.
F. Oger [189] studied special circumstances under which
elementary equivalence of two finitely generated finite-by-

nilpotent groups implies isomorphism. Finally, F. Oger showed in [190] that two finitely
generated nilpotent groups G and H are elementarily equivalent if and only if they are
essentially isomorphic, i.e., G × Z ' H × Z. However, the full classification problem for
finitely generated nilpotent groups is currently wide open.

A universal formula is a formula which can be written ∀x1 . . . ∀xnΦ(x1, . . . , xn) for some
quantifier free formula Φ(x1, . . . , xn). If it has no free variables, a universal formula is called
a universal sentence. The universal theory Th∀(G) of a group G is the set of universal
sentences satisfied by G. If the group G is universally equivalent to the group H, i.e., if
Th∀(G) = Th∀(H), then we write G ≡∀ H.
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Similarly, one can define existential formulae and sentences, and the existential theory
Th∃(G) of a group G. Note that two groups which have the same universal theory also have
the same existential theory since the negation of a universal sentence is equivalent to an
existential statement.

It is well known that two nontrivial free abelian groups are universally equivalent.
E. I. Timoshenko [252] established that any two free solvable groups Sr,d and Sq,d of the
same length d > 1 and r, q > 2 (in the case d = 1, r, q > 1) are universally equivalent
(Sr,d ≡∀ Sqd). This result has been independently proved in [61]. In [252], E. I. Timoshenko
also proved that any two free nilpotent groups Nr,c and Nq,c where r 6= q, of the same
class c > 2 are universally equivalent if and only if the following conditions are satisfied:
r, q > c− 1 for c > 3; and r, q > 2 for c = 2.

The first example of a finitely generated nilpotent group G,

E.I. Timoshenko

whose universal theory Th∀(G) is undecidable, was constructed by
the author in [227]. This group G is a torsion-free metabelian group
of the nilpotency class 4 with 6 generators.

In [251], E. I. Timoshenko considers the problem of preserving
elementary and universal equivalence under wreath products. His
result is as follows. If the group A is elementarily equivalent to the
group B, andK is a finite group, then the wreath product G = AwrK

is elementarily equivalent to H = BwrK. Universal equivalence is preserved under wreath
products, that is A1 ≡∀ A2, B1 ≡∀ B2 → A1wrB1 ≡∀ A2wrB2, but elementary equivalence
(in the general case) is not, that is A1 ≡ A2, B1 ≡ B2 6→ A1wrB1 ≡ A2wrB2 [251].

In [35], O. Chapuis proved his remarkable result: The elementary theory of any free
metabelian group is decidable. An explicit description of this theory is given by him in [36].
He also proved that a noncyclic free metabelian group is universally equivalent to the wreath
product of any two nontrivial torsion-free abelian groups.

V. Remeslennikov and R. Stöhr [212] characterizated the finitely generated groups in
the quasivariety generated by a noncyclic free metabelian group from three different points
of view: In terms of wreath products, in terms of module theoretic properties of their Fitting
subgroups, and in terms of quasi-identities.

In [37], O. Chapuis proved that the terms of the derived series of a free solvable group
are definable by existential formulae. He used this result to prove that if Hilbert’s 10th
problem has a negative answer for the field of the rationals, then the universal theory of
a noncyclic free solvable group of class > 3 is undecidable. N. S. Romanovskii [221] proved
that a free solvable group of derived length at least 4 has an algorithmically undecidable
universal theory.

E. I. Timoshenko [257] proved that the universal theory of a free polynilpotent group
Nc1 · · ·Ncs , s > 2, ci > 1, for i = 1, . . . , s− 1, cs > 2, is undecidable.

The following result has been proved in [254]. Let F (V) be a free group of a variety V,
approximable by finite p-groups for an infinite sequeuce of primes p. If the subgroup G
of F (V) generates the same variety as F (V), then G ≡∀ F (V).

In [112], an algebraic characterization of elementary equivalence for polycyclic-by-
finite groups was established. This characterization allowed to give the relations between
their elementary equivalence and the elementary equivalence of the factors in their
decompositions in direct products of indecomposable groups. In particular, it has been
proved that the elementary equivalence of two such groups G ≡ H is equivalent to each of
the following properties: (1) G×· · ·×G (k times G) for an integer k > 1; (2) A×G ≡ B×H
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for two polycyclic-by-finite groups A,B such that A ≡ B. It is not presently known if (1)
implies G ≡ H for any groups G,H.

N. S. Romanovskii and E. I. Timoshenko found in [223] conditions for the universal
equivalence of the metabelian group G with few relations to the free metabelian groupMr of
rank r. They also proved that if an n-generated solvable group G is elementarily equivalent
to a free solvable group Srd of rank r and derived length d, then for d = 2 or d > 2 and n = r,
the groups G and Sr,d are isomorphic. In [260], E. I. Timoshenko studies elementary and
universal theories of relatively free solvable groups in a group signature expanded by one
predicate distinguishing primitive or annihilating systems of elements. In [259], he proved
the following results. Let be the set of all primitive elements ofM2. Then there is a countable
set of existential formulas that determines P, however, no finite subset of these formulas
does. He also proved that two elements g, f ∈M ′

2 conjugate by some automorphism of M2

if and only if they satisfy the same existential formulas.
The concept of a rigid (solvable) group was introduced by N. S. Romanovskii about 10

years ago. The rigid group class turned out to be quite interesting and noteworthy. At
present, a number of results have been obtained for it, both group-theoretical and model-
theoretic. Most of these results were obtained by the discoverer of this class. For these
reasons, rigid groups can be called Romanovskii’ groups. A group G is said to be m-rigid,
where m is a natural number, if it has a normal series of the form G = G1 > . . . >
> Gm > Gm+1 = 1, whose quotients Gi/Gi+1 are abelian and are torsion free when treated
as Z[G/Gi]-modules. Examples of rigid groups are free soluble groups. A.G. Myasnikov
and N. S. Romanovskii [169] gave a recursive system of universal axioms distinguishing
m-rigid groups in the class of solvable groups of length m. They proved that if G is an
arbitrary m-rigid group, and W is an iterated wreath product of m infinite cyclic groups,
then the universal theories for these groups satisfy the inclusions Th∀(W ) ⊆ Th∀(G) ⊆
⊆ Th∀(Sr,m), where r > 2. An ∃-axiom is given that distinguish among m-rigid groups
those that are universally equivalent toW . An arbitrarym-rigid group embeds in a divisible
decomposed m-rigid group M , the semidirect product of m abelian groups. A recursive
system of axioms distinguishing among M -groups those that are universally equivalent
to M . As a consequence, it is stated that the universal theory of M with constants is
decidable. By contrast, the universal theory of W with constants is undecidable.

Let Γ = (X,E) be a finite simple graph. The right-angled Artin group (in other
terminology, a partially commutative group) G(Γ), corresponding to Γ, has the specification
〈X, xy = yx (x, y) ∈ E〉. If V is a variety of groups, then the partially commutative V-
group, corresponding to Γ, has the specification 〈X, xy = yx (x, y) ∈ E;V〉.

The paper [74] proves that two partially commutative metabelian groups have equal
elementary theories if and only if their defining graphs are isomorphic, and that every
partially commutative metabelian group is embeddable in a finitely generated metabelian
group with decidable universal theory. In [224], N. S. Romanovskii and E. I. Timoshenko
proved the following statement: Let the variety V contain the variety N2, and the finitely
generated group H is elementarily equivalent to the partially free group G = F (Γ,V), then
G ' H.

In [255], necessary and sufficient conditions are given for two partially commutative
metabelian groups defined by trees to be universally equivalent. In [75], further properties
of partially commutative metabelian groups and of their universal theories are described.
In particular, it is shown that two partially commutative metabelian groups defined by
cycles are universally equivalent if and only if the cycles are isomorphic. It is proved also
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that the metabelian product of two non-trivial free abelian groups is universally equivalent
to any free noncyclic metabelian group.

In [155] some necessary and sufficient conditions of the universal equivalence of the
nilpotent R-groups of class 2 defined by trees, with R a binomial Euclidean ring are
determined. Partially commutative nilpotent metabelian groups are considered in [76].
Universal theories for partially commutative nilpotent metabelian groups are compared:
conditions on defining graphs of two partially commutative nilpotent metabelian groups
are presented which are sufficient for the two groups to have equal universal theories;
conditions on defining graphs of two partially commutative metabelian groups are specified
which are sufficient for the two groups to be universally equivalent; a criterion is given that
decides whether two partially commutative nilpotent metabelian groups defined by trees
are universally equivalent.

A description of solvable groups with solvable elementary theory is known.
Theorem 15 (Yu. L. Ershov [57], N. S. Romanovskii [219], G.A. Noskov [185]).
The elementary theory of a finitely generated solvable group is decidable if and only if

the group is virtually abelian.
The corresponding problem has been posed in [95]. Yu. L. Ershov

G.A. Noskov

proved this statement [57] in the nilpotent case, N. S. Romanovskii
[219] generalized it to the polycyclic case, and finally, G.A. Noskov
[185] established the most general statement for the case of a finitely
generated solvable group.

9. Rational subsets
The class Rat(G) of rational subsets of a group G is the smallest class that contains all

finite subsets of G and that is closed with respect to the following rational operations:
— union = A,B ∈ Rat(G) → A ∪B ∈ Rat(G);
— product = A,B ∈ Rat(G) → A ·B ∈ Rat(G);
— taking the monoid generated by a set (Kleeny operation) = A ∈ Rat(G) → A∗ =

= {1} ∪
∞⋃
i=1

Ai.

This concept generalizes the classical notion of a regular subset of the free monoid Σ.
There is an analogue of Kleene’s theorem on the definition of regular subsets of a free

monoid by finite automata: a subset R of a group G is rational if and only if R is the output
set of a finite automaton over G.

Recall that a finite automaton A over an alphabet σ consists of:
— a finite directed graph with edges labeled by elements of Σ;
— a distinguished initial vertex v0;
— a set of final vertices v1, . . . , vt.
The language L(A) of the automaton consists of all words labeling a path from the initial
vertex to a final vertex. A language is called rational if it is accepted by some finite
automaton.

For definitions and basic properties of rational subsets in groups, see [66, 67, 235].
By well-known theorem of A. Anissimov and A.W. Seifert [5], a subgroupH ofG belongs

to Rat(G) if and only if H is finitely generated.
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Rational submonoids need not be finitely generated. Rational subsets are not in general
closed under complement and intersection.

Rational subset theory has many applications:
— V. Diekert, C. Gutierrez, and C. Hagenah [45] showed solving equations with rational

constraints over free groups is PSPACE-complete.
— V. Diekert and M. Lohrey [46] used this to solve equations and decide the positive theory

for right-angled Artin groups.
— F. Dahmani and V. Guirardel [40] solved equations over hyperbolic groups with special

rational constraints. They gave an algorithm for solving equations and inequations
with rational constraints in virtually free groups. This algorithm is based on E. Rip’s
classification of measured band complexes. Using canonical representatives, they
deduced an algorithm for solving equations and inequations in hyperbolic groups (maybe
with torsion).

— F. Dahmani and J. Groves [39] used rational subsets in their solution to the isomorphism
problem for toral relatively hyperbolic groups.

— The order of g is finite if and only if g−1 ∈ {g}∗, so decidability of submonoid membership
gives decidability of order.
The rational subset membership problem for a finitely generated group G is the decision

problem, where for a given rational subset A of G and a group element g it is asked whether
g ∈ A.

This section presents a survey on known decidability and undecidability results for
the rational subset membership problem for groups. The membership problems for finitely
generated submonoids and finitely generated subgroups will be discussed as well.

We list some of known results on the rational subset problem.

Positive results:
— (M. Benois [25]). Rational subset membership is decidable for free groups. (The proof

uses an automata theoretic analogue of Stallings folding.)
— (C. Eilenberg and M.P. Schutzenberger [53]). Rational subset membership is decidable

in abelian groups.
— (Z. Grunschlag [73]). Decidability of rational subset membership is a virtual property.

(A property is called virtual if its execution for a subgroup of the finite index entails its
execution on the entire group.)

— (M.Yu. Nedbai [177]). The decidability of rational subset membership passes through
free products.

— (M. Cadilhac, D. Chistikov, and G. Zetzsche [38]). Rational subset membership is
decidable for the Baumslag — Solitar groups BS(1, q) for q > 2.

— (M. Kambites, P.W. Silva, and B. Steinberg [91]). Decidability of rational subset
membership is preserved by free products with amalgamation and HNN-extensions with
finite edge groups. More generally, if G is a fundamental group of a graph of groups
with finite edge groups and for each vertex group the rational set membership problem
is solvable, then this problem is also solvable for G.
Let C be the smallest class of groups containing the trivial group and closed under:

— taking finitely generated subgroups;
— taking finite index overgroups;
— free products with amalgamation and HNN-extensions with finite edge groups;
— direct product with Z.
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Theorem 16 (M. Lohrey and B. Steinberg [118]). Every group in the class C has
decidable rational subset membership problem.

There is no need to talk about the solvability of the membership problem for finitely
generated submonoids of the group G if the classical problem of the membership for finitely
generated subgroups of the group G is unsolvable. Note that direct products do not preserve
the solvability of the occurrence problem. It was shown by K.A. Mikhailova [154], that the
direct product F2 × F2 of two copies of the free group of rank 2 contains a fixed finitely
generated subgroup with an undecidable membership problem. In particular, F2 × F2 has
an undecidable subgroup membership problem. Hence, also the submonoid membership
problem and the rational subset membership problem for F2 × F2 are undecidable. This
result is remarkable since F2 × F2 is a very natural group.

The above result of M. Benois cannot be generalized to hyperbolic groups. Indeed,
E. Rips [215] proved the existence of hyperbolic torsion-free groups, in particular, groups
with small cancellation, on which condition C ′1/6 is satisfied, and in which the membership
problem is unsolvable.

Let Γ = (X,E) be a finite simple graph. Recall, that the right-angled Artin group
(in other terminology, a partially commutative group) G(Γ), corresponding to Γ, has the
specification 〈X, xy = yx (x, y) ∈ E〉. It is said that the graph Γ1 = (X,E) contains a
induced graph Γ2 if there is a subset of vertices U ⊆ V such that the graph Γ2 is isomorphic
to the graph (U,E ∩ (U × U)).

The subgroup membership problem is solvable in any group G(Γ) when the graph
Γ does not contain an induced cycle C4 of length 4 [93]. On the other hand, the group
G(C4) contains the direct product F2 × F2, therefore, by the above-mentioned theorem of
K.A. Mikhailova, there is a finitely generated subgroup in it with unsolvable membership
problem.

M. Lohrey and B. Steinberg [118] show that the membership problem in a finitely
generated submonoid of a right-angled Artin group is decidable if and only if the
independence graph (commutation graph) is a transitive forest, i.e., it does not contain
induced subgraphs of type C4 or P4, where P4 denotes a straight line segment consisting
of four vertices and three edges. Moreover, in the unsolvable case, one can indicate a fixed
finitely generated submonoid of the group G(Γ), the membrtship problem for which is
unsolvable.

It is shown in [118] that membership in rational subsets of wreath products HwrV
with H a finite group and V a virtually free group is decidable. On the other hand, it is
shown that there exists a fixed finitely generated submonoid in the wreath product ZwrZ
with an undecidable membership problem.

The author proved in [237] that any verbal subset w[G] of a finitely generated nilpotent
group G with respect to a word w of positive exponent is rational. Examples of verbal
subsets of finitely generated metabelian groups that are not rational are given. Recall that
the verbal subset of a group G is the set of all values of the group word w in this group.

Negative results:
— (V.A. Roman’kov [229]). There exists a number r such that the free nilpotent group Nr,2

of class 2 generated by r elements has an undecidable rational subset membership
problem.

— M. Lohrey and B. Steinberg show in [119]that the free metabelian group M2 of rank 2
contains a fixed finitely generated submonoid with an undecidable membership problem.
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This result is shown via a reduction from the membership problem for finitely generated
subsemimodules of free (Z×Z)-modules of finite rank. This considered problem is shown
to be undecidable in by interpreting it as a particular tiling problem of the Euclidean
plane that in turn is shown to be undecidable via a direct encoding of a Turing machine.

— M. Lohrey, B. Steinberg, and G. Zetzsche [120] prove that the submonoid membership
problem is undecidable for ZwrZ.

— U.U. Umirbaev [261] show that the free solvable group S2,3 of derived length 3 and
rank 2 has an undecidable subgroup membership problem.

— M. Lohrey [117] prove that there are numbers n, l > 3 and a sequence of cyclic
subgroups C1, . . . , Cl of the unitriangular matrix group UTn(Z) over integers such that
the membership problem with respect to the product C1 · · ·Cl is unsolvable.
The submonoid membership problem is the most important fragment of the rational

subset problem. The well-known submonoid membership problem for nilpotent groups was
recently solved by the author.

Theorem 17 (V.A. Roman’kov [240]). There is a finitely generated submonoid M of
a free nilpotent group Nr,l of class l > 2 of sufficiently large rank r, the membership problem
for which is algorithmically unsolvable.

A.G. Myasnikov and the author [170] established that a verbal subset w[Fr] of a free
group Fr of finite rank r > 2 is rational in Fr if and only if w[Fr] = 1 or w[Fr] = Fr. The last
two cases are easily recognized by the form of the word w. This statement is generalized to
a wide class of free products of groups.

Rational subsets in nilpotent groups were also studied by G.A. Bazhenova [19]. She
proved that the rational subsets of a finitely generated nilpotent group G are a Boolean
algebra if and only if G is virtually abelian. Other results on the characterization of finitely
generated groups G in which the set of rational subsets Rat(G) is a Boolean algebra, that is,
a family of subsets closed under union, intersection, and complement operations are given
in [20, 235, 238].

See [147] for a connection between the submonoid membership problem for a group G
and the geometric properties of this group.

It is worth noting that the submonoid membership problem of entering for a free abelian
group Ar ' Zr of rank r is related to the following integer linear programming problem:
For a given matrix A ∈Mm×r and vector b ∈ Zr determine whether there exists a solution
x ∈ Nm of the equation xA = b.

In group-theoretic language, this is the submonoid membership problem for the
group Ar generated by the rows of the matrix A. It is well known that this version of
the integer linear programming problem belongs to the class of NP-complete problems.
The submonoid membership problem for an arbitrary group is currently considered as a
natural generalization of the problem of integer linear programming. An overview of the
related results can be found in [18].

10. Geodesic problems
The computational complexity of the WP in free solvable groups Sr,d, where r > 2 is

the rank and d > 2 is the solvability class of the group, was studied in [171]. Let n be a
length of a word (input) w ∈ Sr,d.

It is known that the Magnus embedding of Sr,d into matrices provides a polynomial time
decision algorithm for WP in a fixed group Sr,d. Unfortunately, the degree of the polynomial
grows together with d, so the uniform algorithm is not polynomial in d.
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Theorem 18 (A. Myasnikov, V. Roman’kov, A. Ushakov, and A. Vershik [171]).
— The Fox derivatives of elements from Sr,d with values in the group ring ZSr,d−1 can be

computed in time O(n3rd).
— The WP has time complexity O(rn log2 n) in Sr,2, and O(n3rd) in Sr,d for d > 3.

In [171], the following algorithmic and decision problems were considered:
— The Geodesic problem (GP): Given a word w ∈ F (X), find a word u ∈ F (X) which is

geodesic in G such that w =G u.
— The Geodesic length problem (GLP): Given a word w ∈ F (X), find |w|G.
— Bounded geodesic length problem (BGLP): Given a word w ∈ F (X) and an integer k,

decide if a geodesic representative has length 6 k.
It has been shown that for free metabelian groups (with standard generating sets) BGLP
is NP-complete.

Though GLP seems easier than GP, in practice, to solve GLP one usually solves GP
first, and only then computes the geodesic length. It is an interesting question if there exists
a group G and a finite set X of generators for G relative to which GP is strictly harder
than GLP.

Turing reducibility of the geodesic problems
It has been shown in [171] that a polynomial time solution to any of these problems

implies a polynomial time solution to the next, and each implies a polynomial time solution
to the word problem for the group.

The algorithmic “hardness” of the problemsWP, BGLP, GLP, and GP in a given groupG
is explained by the following implications: each one is Turing reducible in polynomial time
to the next one in the list:

WP �T,p BGLP �T,p GLP �T,p GP,

and GP is Turing reducible to WP in exponential time:

GP �T,exp WP.

M. Elder and A. Rechnitzer [56] established that GP, GLP and BGLP are polynomial
time and space reducible to each other.

Complexity of the geodesic problems
Recall the concept of time complexity. Let A be an algorithm with inputs from a set S,

|w| is the size of w ∈ S, TA(w) is the number of steps required for A to stop on the input
w ∈ S, A is in polynomial time if for some polynomial p(x) means TA(w) 6 p(|w|).

If G has polynomial growth, i.e., there is a polynomial p(n) such that for each n
cardinality of the ball Bn of radius n in the Cayley graph Γ(G,X) is at most p(n), then
one can easily construct this ball Bn in polynomial time with an oracle for the WP in G.
It follows that if a group with polynomial growth has WP decidable in polynomial time,
then all the problems above have polynomial time complexity. Observe now, that by famous
Gromov’s theorem finitely generated groups of polynomial growth are virtually nilpotent.
It is also known that the latter have WP decidable in polynomial time (nilpotent finitely
generated groups are linear). These two facts together imply that the GP is polynomial
time decidable in finitely generated virtually nilpotent groups.

On the other hand, there are many groups of exponential growth where GP is decidable
in polynomial time:
— hyperbolic groups —B.A. Epstein et al;
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— the Baumslag — Solitar group (metabelian, non polycyclic of exponential growth)

BS(1, p) = 〈a, t | t−1at = ap〉

(M. Elder [55]). An algorithm is presented to convert a word of length n in the standard
generators of the solvable Baumslag — Solitar group BS(1, p) into a geodesic word, which
runs in linear time and O(nlogn) space on a random access machine.
In general, if WP in G is polynomially decidable, then BGLP is in the class NP, i.e., it

is decidable in polynomial time by a non-deterministic Turing machine. In this case GLP is
Turing reducible in polynomial time to an NP problem, but we cannot claim the same for
GP. Observe, that BGLP is in NP for any finitely generated metabelian group, since they
have WP decidable in polynomial time.

It might happen though, that WP in a group G is polynomial time decidable, but BGLP
in G is NP-complete.

W. Parry [191] showed that BGLP is NP-complete in the metabelian group Z2wr(Z×Z),
the wreath product of Z2 and Z× Z.

It was claimed by C. Droms, J. Lewin, and H. Servatius [48] that in Sr,d GLP is decidable
in polynomial time. Unfortunately, in this particular case their argument is fallacious.
It turned out [171], that BGLP for Mr, r > 2, is NP-complete. Therefore, the search
problems SGP and SGLP are NP-hard in non-abelianMr. To see the NP-completeness, the
authors of [171] constructed a polynomial reduction of the rectilinear Steiner tree problem
to BGLP in Mr.

Free solvable groups of finite ranks
The conjugacy problem for Sr, d reduces via the Magnus embedding to a similar problem

for ArwrSr,d−1 in time O(n3rd).
The power problem (PP) in a group G:

∃?n ∈ Z : gn = f.

S. Vassileva [263] proved the following statements.
— The power problem in Sr,d is decidable in time O(n6rd).
— The conjugacy problem has time complexity O(n8rd) in Sr,d.

A. Ushakov [262] designed new deterministic and randomized algorithms for computa-
tional problems in free solvable groups. He improved the results of [171, 263], namely, he
proved that:
— There exists a quasi-quadratic time Õ(n2) deterministic algorithm solving the word

problem in Sr,d.
— There exists a quasi-quadratic time Õ(n2) deterministic algorithm solving the power

problem in Sr,d.
— There exists a quasi-quintic time Õ(n5) deterministic algorithm solving the conjugacy

problem in Sr,d.
These results can be improved further if we grant our machine an access to a random

number generator. But the result in this approach can be incorrect. Fortunately, the
probability of an error is under control: for any fixed polynomial p we can adjust some
internal parameter in the algorithm to guarantee that the probability of an error converges
to 0 as fast as O(1/p(n). In other words, there exists a quasi-linear time Õ(n) false-
biased randomized algorithm solving the word problem in Sr,d. There also exists a quasi-
linear time Õ(n) unbiased randomized algorithm solving the power problem in Sr,d.
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Moreover, there exists a quasi-quartic time Õ(n4) unbiased randomized algorithm solving
the conjugacy problem in Sr,d.

Thus, A. Ushakov [262] proved that the word problem and the power problem can be
solved in quasi-linear time and the conjugacy problem can be solved in quasi-quartic time
by Monte Carlo type algorithms.

The origins of computation group theory date back to the late nineteenth and early
twentieth centuries. Since then, the field has flourished, particularly during the past 30
to 40 years, and today it remains a lively and active branch of mathematics.

The Handbook of Computational Group Theory offers the first complete treatment of
all the fundamental methods and algorithms in CGT presented at a level accessible even
to advanced undergraduate students. It develops the theory of algorithms in full detail
and highlights the connections between the different aspects of CGT and other areas of
computer algebra. While acknowledging the importance of the complexity analysis of CGT
algorithms, the authors’ primary focus is on algorithms that perform well in practice rather
than on those with the best theoretical complexity.

Throughout the book, applications of all the key topics and algorithms to areas both
within and outside of mathematics demonstrate how CGT fits into the wider world
of mathematics and science. The authors include detailed pseudocode for all of the
fundamental algorithms, and provide detailed worked examples that bring the theorems
and algorithms to life.

We assume that practical algorithms work with random data. In numerous of cases
“random” exclude “the worst” case. The Simplex Method is a very good sample of such
algorithm.

Hence, the generic set of data when the algorithm works well became a very important
notion.

It is known [65] that the Dehn function D(G) of a finitely presented group G is recursive
if and only if G has decidable word problem. Moreover, for every finitely presented group G
with Dehn function D(G) there exists a nondeterministic Turing machine M(G) which solves
the word problem in G with time function equivalent to D(n). This machine solves the word
problem in every finitely generated subgroup of G as well. Therefore if a finitely generated
group G is a subgroup of a finitely presented group with polynomial isoperimetric function
then the word problem in G is in NP (i.e., it can be solved by a non-deterministic Turing
machine with polynomial time function

J.C. Birget, A.Y. Olshanskii, E. Rips, and M.V. Sapir [29] obtained a general result on
the connection between the complexity of the Dehn function of a group and the complexity
of the word problem. The word problem of a finitely generated group G is in NP if and only
if this group is a subgroup of a finitely presented group H with polynomial isoperimetric
function. The embedding can be chosen in such a way that G has bounded distortion in H.

There is a natural concept of the averaged Dehn function Dav(G), introduced by
M. Gromov [68]. In [110], E.G. Kukina and the author, answering to the question, posed
in [68], proved that D(Ar) is sub-quadratic (remind that D(Ar) is quadratic). In [230], the
author answered to the another question posed in [68] on the average Dehn function of a
free nilpotent group. He showed that this function is asymptotically negligible to the Dehn
function in this case.

In [92], I. Kapovich, A.G. Myasnikov, V. Shpilrain, and P. Schupp proposed a generic
approach to the theory of computability and computational complexity. Within the
framework of this approach, the algorithmic problem is considered not on the entire set
of inputs, but on a certain subset of almost all inputs. They showed that for a large class
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of finitely generated groups the generic time complexity of some classical decision problems
from combinatorial group theory, namely the word problem, conjugacy problem and
membership problem, are linear. It turns also out that some classical undecidable problems
are, in fact, strongly undecidable, i.e., they are undecidable on every strongly generic subset
of inputs. A.G. Myasnikov and A.N. Rybalov [172] proved an analog of the Rice theorem for
strongly undecidable problems, which provides plenty of examples of strongly undecidable
problems. To construct strongly undecidable problems, they introduced a method of generic
amplification (an analog of the amplification in complexity theory).

In recent years, interest in the analysis of algorithms from the point of view of complexity
theory and practical feasibility has significantly increased. Substitution groups form the
most developed part of the computational theory of groups. The basis for this was the
corresponding technique for their study, developed by C. Simps back in the 60s of the
twentieth century. M. L. Furst, D. Hopcroft, and E.M. Luks [60] showed that the method
proposed by Simps works in polynomial time. The time-polynomial theory of linear groups
began with a consideration of matrix groups over finite fields. The main problems were the
problems of determining the order of a subgroup given by a finite set of generators, and
the membership problem for a given group. Even in the case of abelian groups, it is not
known how to solve such problems without solving difficult number-theoretic problems, for
example, problems of the discrete logarithm and factorization of numbers. The approach
to finding a solution using a number-theoretic oracle became natural.

Computing in permutation and in matrix groups
Permutation groups is the most developed subdomain in the Computational Group

Theory. Fundamental is a technique first proposed by C. Sims in the 1960’s, see mono-
graph [248]. C. Sims introduced many algorithms for working with permutation groups.
These were among the first algorithms in CAYLEY and GAP. In 1990s nearly linear
algorithms for permutation groups emerged. These are now in GAP and MAGMA. In 2003,
Á. Seress published his monograph [245] described the theory behind permutation group
algorithms, including developments based on the classification of finite simple groups.
He gave rigorous complexity estimates, implementation hints, and advanced exercises.
The book fills a significant gap in the symbolic computation literature.

Let G 6 Sym(Ω), where Ω = {ω1, . . . , ωn}. The tower

G = G(1) > . . . > G(n+1) = 1,

where G(i) is a pointwise stabilizer of {ω1, . . . , ωi−1}, underlines almost all practical
algorithms. It was proved in [60] that a variant of Sims’ method runs in polynomial time.
Now there is the non-substancional polynomial-time library for permutation groups.

Polynomial-time theory of linear groups started with matrix groups over finite fields.
Such group is specified by finite list of generators. The two most basic questions are:
— membership in gp(U);
— the order of the group gp(U).

Even in the case of abelian groups it is not known how to answer these questions
without solving hard number-theoretic problems (factoring and discrete logarithm). So the
reasonable question is whether these problems are decidable in randomized polynomial time
using number theory oracles.

The first algorithms for computing with finite solvable matrix groups were designed by
E.M. Luks [121].

E.M. Luks, L. Babai, R. Beals, Á. Seress et al. study this area for last 25–30 years
(see [7]). Let G 6 GL(n,Fq) be a finitely generated matrix group over a finite field Fq.
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— One can test in polynomial time whether G is solvable and, if so, whether G is nilpotent.
— If G is solvable, one can also find, for each prime p, the p-part of G. In the nilpotent

case it is its (unique) Sylow p-subgroup.
— Also, given a solvable G 6 GL(n,Fq) the following problems can be solved: find |G|,

decide the MP with respect to G, find a presentation of G via generators and defining
relators, find a composition series of G, et cetera.
For polycyclic groups pc-presentation approach was introduced by B. Eick, D. Kahrobaei,

G. Ostheimer et al. See [52] for definition and basic properties of pc-presentations. Pc-pre-
sentation of a polycyclic group exhibits its polycyclic structure. Pc-presentations allows
efficient computations with the groups they define. In particular, the WP is efficiently
decidable in a group given by a pc-presentation. GAP package polycyclic is designed for
computations with polycyclic groups which are given by a pc-presentations.

Let G be a polycyclic group. Then

G ∈ NAF .

Hence, nilpotent-by-abelian-by finite presentation approach can be applied in this case.
In particular, Bieri — Strebel’s invariant is defined for for this type of groups [28].
The solution of BTCP in a finitely generated metabelian group looks more practical

than the Noskov’s solution in the classical case of the CP. Main feature is that we can
reduce the problem changing the group itself. In the polycyclic case we can start with the
metabelian image G/G′′ and then use induction relative the structure of a polycyclic group
as above.

A. Garetta et al. [63] introduce a model of random finitely generated, torsion-free
nilpotent groups G of class 2. They prove that for some values of parameters the following
holds asymptotically almost surely:
— The ring of integers Z is definable in G.
— Systems of equations over Z are reducible to systems over G (and hence they are

undecidable).
— The maximal ring of scalars of G is Z.
— G is indecomposable as a direct product of non-abelian factors.
The similar models of random polycyclic groups and random finitely generated nilpotent
groups of any nilpotency step, possibly with torsion, were also introduced

For matrix groups over infinite fields, we state the following theorem as the first result.
Theorem 19 (V.M. Kopytov [107]). Let G 6 GL(n,K) be a finitely generated

matrix group over an algebraic number field K. Then the following problems are decidable:
— determine finiteness of G;
— determine solvability of G;
— MPsol = the membership problem with respect to solvable G.

Most computational problems are known to be decidable for polycyclic matrix groups
over number fields.

The WP and MP can be solved [6], many further structural problems have a practical
solution.

D. F. Holt, B. Eick, and O’Brien published the monograph “The Handbook of
Computational Group Theory” [90] which offers the first complete treatment of all the
fundamental methods and algorithms in computational group theory. It develops the theory
of algorithms in full detail and highlights the connections between the different aspects of
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computational group theory and other areas of computer algebra. The monograph focused
on algorithms that perform well in practice rather than on those with the best theoretical
complexity.

Some methods are developed for computing with matrix groups defined over a range of
infinite domains.

A. Detinko, B. Eick, and D. L. Flannery [43] gave a practical nilpotent testing algorithm
for finitely generated matrix groups over an infinite field F.

The main algorithms have been implemented in GAP, for groups over Q.
Let F = Q̄ be an algebraic number field. By the celebrated Tits’s theorem a finitely

generated subgroup G 6 GL(n, Q̄) either contains a nonabelian free subgroup F or has a
solvable subgroup H of finite index (Tits Alternative).

R. Beals [21] established the following results:
— There is a polynomial time algorithm for deciding which of two conditions of the Tits’s

Alternative holds for a given G.
— Let G has a solvable subgroup H of finite index. Then one is able in polynomial time

to compute a homomorphism ϕ such that ϕ(G) is a finite matrix group, and ker(ϕ) is
solvable.
If, in addition, H is nilpotent, then there is efficient method to compute an encoding of
elements of G.
Nowadays, it is recognized that there are decision and search variations of algorithmic

problems:
— Search word problem (SWP) in G : given w ∈ F (X), such that w =G 1, find a

decomposition w =
n∏
i=1

g−1
i rijgi, where gi ∈ F (X), rij ∈ R±1.

— Search conjugacy problem (SCP) in G: given two words u, v ∈ F (X), which define
conjugated elements in G, find a conjugator.

— Search membership problem (SMP) in G for a fixed subgroup H 6 G: given w ∈ F (X)
which belongs to H, find its decomposition as a product of the generators of H.

— Search isomorphism problem (SIP) in a given class C of presentations: given two
presentations in C of isomorphic groups, find an isomorphism.
In [127], it is proved that the basic algorithmic problems (normal forms, conjugacy of

elements, subgroup membership, centralizers, presentation of subgroups, etc.) can be solved
by algorithms running in logarithmic space and quasilinear time. Further, if the problems are
considered in “compressed” form with each input word provided as a straight-line program,
we showed that the problems are solvable in polynomial time. See monograph [116] for
the necessary background and detailed exposition of known results on the compressed
word problem, emphasizing efficient algorithms for the compressed word problem in various
groups.

Basic information about circuit complexity is contained in monograph [265]. This
monograph presents a broad and up-to-date view of the computational complexity theory
of Boolean circuits. The theory of circuit complexity classes is thoroughly developed.

In [176], the authors pushed the complexity of these problems lower, showing that they
may be solved by TC0 circuits. In [175], it was shown that the conjugacy problem in a
wreath product AwrB is uniform-TC0-Turing-reducible to the conjugacy problem in the
factors A and B and the power problem in B. Under certain natural conditions, there is
a uniform TC0 Turing reduction from the power problem in AwrB to the power problems
of A and B.
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In [128], the authors expand the list of algorithmic problems for nilpotent groups which
may be solved in these low complexity conditions to include several fundamental problems
concerning subgroups. The following algorithmic problems are solved using TC0 circuits, or
in logspace and quasilinear time, uniformly in the class of nilpotent groups with bounded
nilpotency class and rank: subgroup conjugacy, computing the normalizer and isolator of a
subgroup, coset intersection, and computing the torsion subgroup. Additionally, if any input
words are provided in compressed form as straight-line programs or in Mal’cev coordinates,
the algorithms run in quartic time.

A.V. Menshov, A.G. Myasnikov, and A.V. Ushakov [153] study the computational
complexity of the fundamental algorithmic problems in finitely generated metabelian
groups. They rewrite and streamline some classical algorithms to fit them into the
framework of Groebner basis. In many cases this reduction can be done in polynomial
time. The algorithmic problems in metabelian groups are classified in terms of logspace and
circuit complexities.
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