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The existence of some structure in a code can lead to the decrease of security of the
whole system built on it. Often subcodes are used to “disguise” the code as a “general-
looking” one. However, the security of subcodes, whose Hadamard square is equal to
the square of the original code, can be reduced to the security of this code. The paper
finds the limiting conditions on the number of vectors of degree r whose removing
retains this weakness for Reed — Muller subcodes and, accordingly, conditions for
it to vanish. For r = 2 the exact structure of all resistant subcodes has been found.
For an arbitrary code RM(r,m), the desired number of vectors to remove for providing
the security has been estimated from both sides. Finally, the ratio of subcodes with
Hadamard square unequal to the square of the original code has been proved to tend
to zero if additional conditions on the codimension of the subcode and the parameter r
are imposed and m→∞. Thus, the implementation of checks proposed in the paper
helps to immediately filter out some insecure subcodes.
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1. Introduction
The security of most standardized cryptographic algorithms used all around the world

is based on the complexity of several number-theoretical problems. They usually are the
discrete logarithm or factorization problem. However, in 1994 P. Shor showed [1] that
quantum computers could break all schemes constructed in this way. And in 2001 the
Shor’s algorithm was implemented on a 7-qubit quantum computer. Since then various
companies have been actively developing more powerful quantum computers. Progress in
this area poses a real threat to modern public-key cryptography.

There are several approaches to build post-quantum cryptographic schemes. One
approach is to use error-correcting codes. No successful quantum-computer attacks on
“hard” problems from this area are known. Classical examples of code-based schemes are
the McEliece cryptosystem [2] and the Niederreiter cryptosystem [3], which are equivalent
in terms of security.

The interest in code-based schemes as post-quantum can be noticed while analyzing
the works submitted to the contest for prospective public-key post-quantum algorithms
which was announced in 2016 by the US National Institute of Standards and Technology
(NIST) [4]. The algorithms that win this contest will be accepted as US national standards.
21 of 69 applications filed (that is, almost a third of all works) were based on coding
theory. Despite the fact that some of them were attacked, it seems that this approach looks
quite promising and deserves further study and development. This interest is also traced
in Russian cryptography. Code-based schemes were chosen by the Technical Committee for
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Standardization “Cryptographic and Security Mechanisms” (TC 26) as one of directions in
developing draft Russian national standards of post-quantum cryptographic algorithms.

When one is facing the challenge to synthesize a new code-based scheme, the first thing
to think about is the choice of basic code. Some schemes do not specify the code, thus leaving
it to the discretion of the user. Such schemes are usually more reliable since their security is
often directly reduced to NP-complete problems. Most often, these problems are decoding
and syndrome decoding. However, choosing a special code also has some advantages. For
example, such codes provide asymmetric complexity in solving the decoding problem for
the legal user and adversary. In addition, due to the structure of the code, the sizes of the
public keys can be significantly reduced.

However, the structure can also cause a significant decrease in security of the code,
therefore one of the most important tasks is to “disguise” the code as a “general-looking”
one. One solution is to use subcodes. This approach allows to “destroy” the structure of
the code, retaining the ability to work with the result in mostly the same way as with the
original one. Nevertheless, it is worth considering that many of proposed systems based on
subcodes turned out to be vulnerable. So in [5, 6] C. Wieschebrink built efficient attacks on
some special cases of the Berger — Loidreau cryptosystem [7], which is based on subcodes
of the Reed — Solomon code. The McEliece cryptosystem based on subcodes of algebraic
geometry codes was attacked in [8]. First version of digital signature pqsigRM [9] based on
modified Reed —Muller codes, which was submitted at the NIST contest, was also attacked
during the peer review.

One of the mechanisms for analyzing codes with a hidden structure is the use of the
technique of Hadamard product of two codes. This method was used by M. Borodin and
I. Chizhov [10] to improve Minder — Shokrollahi attack [11] on the McEliece cryptosystem
based on Reed —Muller codes. In [12] this technique allowed Chizhov and Borodin to reduce
the security of the cryptosystem on subcodes of Reed —Muller codes of codimension one
to the security of the scheme on full codes. Recall that codimention means the number
of vectors missing in the code basis. In [13] the distinguisher between random codes and
Reed — Solomon codes using Hadamard product is described.

In this paper, the mentioned technique is used to analyze Reed —Muller subcodes in
standard basis without restriction on codimension. The main question is: which Reed —
Muller subcodes do not allow Chizhov —Borodin’s approach. Since the reduction can be
performed to a subcode whose Hadamard square coincides with the square of the original
code, we look for conditions under which this equality ceases to hold. Codes obtaining these
conditions will be called unstable codes, the others — stable codes. In addition, we compute
the probability that a randomly chosen Reed —Muller subcode is unstable.

In Section 2, the exact structure of all stable subcodes of RM(2,m) is found. Thus, to
provide the security, it is necessary to choose at least another subcode. To be sure that a
subcode of RM(2,m) is unstable, it is sufficient to excludem+1 monomials of degree 2 from
it’s standard basis. For an arbitrary Reed —Muller code RM(r,m), in Section 3 we estimate
(both from the above and below) the number of vectors of degree r that must be excluded
from the basis of the code in order to distort its square. Finally, in Section 4 we show that
the ratio of unstable subcodes tends to zero (as m→∞) given some additional conditions
on the codimension of the subcode and the parameter r. Thus, it is not enough to choose an
arbitrary Reed —Muller subcode when synthesizing a real scheme. It is necessary to check
the property formulated below as Proposition 4. At the same time subcodes satisfying this
property require additional consideration since they may have some special structure.
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2. The structure of stable RM(2,m) subcodes
Recall that Reed —Muller code RM(r,m) is the set of all Boolean functions f in m

variables such that deg(f) 6 r. Consider the code RM(1,m). We look for the minimum
number of monomials f1, . . . , fw(m,2) of degree 2 such that the code

span
(
RM(1,m) ∪ {f1, . . . , fw(m,2)}

)
(1)

is stable, i.e., (
span(RM(1,m) ∪ {f1, . . . , fw(m,2)})

)2
= RM(4,m). (2)

Here, the squaring operation refers to the squaring of Hadamard. Hadamard product of two
vectors is a vector obtained as a result of component-wise product of coordinates:

(a1, . . . , an) ◦ (b1, . . . , bn) = (a1b1, . . . , anbn),

and Hadamard product of two codes A and B is the span of all pairwise products of form
a ◦ b, where a ∈ A, b ∈ B. Codes that do not satisfy condition (2) we will denote unstable.

We consider Reed —Muller codes spanned by their standard basis. The standard basis
of the Reed —Muller code RM(r,m) includes all monomials of m variables of degree from 0
to r inclusively, i.e.,

1, x1, x2, . . . , xm, x1x2, . . . , xm−1xm, . . . , x1 . . . xr, . . . , xm−r−1 . . . xm.

Obviously, after finding the minimal number w(m, 2) of monomials fi, one can also
answer another question: what is the maximum number q(m, 2) of monomials of degree 2
that can be removed from the basis of the code RM(2,m) so that the code

span
(
{1, x1, x2, . . . , xm, x1x2, . . . , xm−1xm} \ {g1, . . . , gq(m,2)}

)
is still stable. The relation between these values is given by the following equality:

q(m, 2) =

(
m

2

)
− w(m, 2). (3)

And so, after removing q(m, 2)+1 =

(
m

2

)
−w(m, 2)+1 basis vectors, one gets an unstable

code. Therefore, we will not dwell on this issue separately.
Now let us proceed to the graph interpretation of this problem. We match a subcode

A ⊂ RM(2,m) with a graph G = (V,E) with vertex set V = {x1, . . . , xm} and edge set E;
{xi, xj} ∈ E ⇔ xixj ∈ A.

Let us denote by deg(v) the degree of vertex v in the graph. As vertices are monomials, it
can be a little embarrassing, but we never use deg(·) to refer to the degree of a polynomial.

We will say that a graph with m vertices has the property P if
1) the degree deg(v) of any vertex v is not less than m− 3;
2) if deg(v) = m− 3 and {v, u1} /∈ E, {v, u2} /∈ E, then {u1, u2} ∈ E.
The case deg(x1) = m− 3 is shown in Fig. 1, where lines denote graph edges.
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Fig. 1. Case deg(x1) = m− 3

u1 u2

u3 u4

Fig. 2. Graph H

Theorem 1. For any m > 4 a subcode of RM(2,m) of the form (1) is stable if and
only if the property P holds for the corresponding graph.

Proof. Denote G = (V,E) the graph corresponding to the subcode of form (1).
Note that the condition (2) is equivalent to the condition that any induced subgraph of G
with 4 vertices has a subgraph isomorphic to the graphH shown in Fig. 2. The edges {u1, u2}
and {u3, u4} correspond to degree-2 monomial used to produce the monomial u1u2u3u4.
Also, note that to show that the subcode (1) is stable it is enough to prove that any
monomial of degree 4 can be represented as a product of two monomials from this code.
Then the same is automatically true for all monomials of degree 3. Indeed, for any monomial
u1u2u3 at least one of monomials u1u2, u1u3 or u2u3 lie in the code. Otherwise, no monomial
of form u1u2u3v could be obtained after squaring. Degree-1 monomials are in the code by
the definition.

To prove the necessity, we fix any vertex v. If any three incident edges {v, uj} for
j = 1, 2, 3 are missing, then the induced subgraph on vertices v, u1, u2, u3 would not have
the required subgraph H. The contradiction proves that deg(v) > m − 3. If, however,
deg(v) = m− 3 and {v, u1} /∈ E, {v, u2} /∈ E, then {u1, u2} ∈ E, as otherwise none of the
induced 4-vertex subgraphs containing vertices v, u1 and u2 will have the required subgraph.
Thus, the property P holds.

The sufficiency: fix any induced subgraph with 4 vertices (let us denote them v, u1, u2

and u3). Note that it has the property P form = 4. If vertex v has degree 1, i.e., {v, u1} ∈ E,
but {v, u2} /∈ E, {v, u3} /∈ E, then by the property P it follows that {u2, u3} ∈ E. Thus,
we have edges {v, u1} and {u2, u3} necessary for the H-isomorphic subgraph.

If all 4 vertices in the subgraph have degree at least 2, then there is a simple cycle
of length 3 or 4. If it has length 4, the presence of H-isomorphic subgraph is obvious.
Otherwise, we have a triangle {u1, u2, u3} and, moreover, the fourth vertex v has degree
at least 2. Assume (without loss of generality) that {v, u1} ∈ E, then for H-isomorphic
subgraph we can take the edges {v, u1} and {u2, u3}.

From Theorem 1, the minimum number of edges is obtained if a graph has the property P
and the degree of each vertex is m− 3. It remains to describe such graphs.

Proposition 1. Assume m > 4. If the property P holds for some graph G
with m vertices such that the degree of each vertex is m − 3, then the complementary
graph G is a union of cycles of length at least 4.

Proof. Since the degree of each vertex of graph G is m− 3, the degree of each vertex
of G is 2. Moreover, from the second item of the property P follows that if G contains edges
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{v, u1} and {v, u2}, then it does not contain the edge {u1, u2}. So graph G is triangle-free.
Choose an arbitrary vertex u1. It is not isolated, therefore, one can select a vertex adjacent
to it. Let us call it u2. As deg(u2) = 2, there exists some adjacent vertex u3 6= u1. Continue
in this way until uj coincides with one of u1, . . . , uj−1. Note that uj cannot coincide with ui
for i > 1 as it would mean that deg(ui) > 3. Thus, u1, . . . , uj−1 form a simple cycle. Its
length is at least 4, as G is triangle-free.

Thus, we have described the structure of the graph corresponding to the minimal stable
subcode of form (1). Now let us describe the complete structure of such codes. Let us denote
a bamboo graph a tree without branching (having no vertices of degree greater than 2).

Proposition 2. Assume m > 4. If the property P holds for some graph G with
m vertices, then the complementary graph G is a union of cycles of length at least 4 and
bamboo graphs.

Proof. We proceed as in Proposition 1 and try to find a cycle in G. But we can stop in
a vertex of degree 1, thus obtaining a bamboo graph. Isolated vertices are bamboo graphs
by definition.

Corollary 1. For any m > 4, it holds that

w(m, 2) = m(m− 3)/2.

Proof. As it was already mentioned after Theorem 1, we need to consider the subcodes
corresponding to graphs with property P where degree of each vertex is m − 3. From

Proposition 1 it follows that G has exactly m edges. Thus, G has at least
(
m

2

)
− m =

= m(m− 3)/2 edges. Moreover, it means that after removing any m edges from a complete
graph (corresponding to the full Reed —Muller code) we still obtain a stable code.

Note that, according to (3), removing m + 1 or more monomials of degree 2 from the
basis of the code RM(2,m) leads to an unstable code.

3. Lower and upper bounds for minimal stable RM(r,m) subcode sizes
In this Section we carry out argument for r > 2. That is, we look for the minimum

number w(m, r), such that the code

span
(
RM(r − 1,m) ∪ {f1, . . . , fw(m,r)}

)
(4)

is stable. Here, fi is a monomial of degree r. We match a subcode A ⊂ RM(r,m) with
a hypergraph G = (V,E) with vertex set V = {x1, . . . , xm}; an r-edge {xi1 , . . . , xir} is
in E if and only if xi1 . . . xir ∈ A. In the general case, the condition similar to having an
H-isomorphic subgraph in each 4-vertex induced subgraph is equivalent to condition of
the code (4) being stable. Namely, each set of 2r vertices must be covered by two disjoint
r-edges. Let us denote a graph satisfying this condition by stable graph. Note about covering
monomials of lower degrees is the same as in the case of r = 2.

We can also extend relation (3) from Section 2 as:

q(m, r) =

(
m

r

)
− w(m, r).

And again we will not dwell on this issue separately.
We will use terms “graph” and “hypergraph” interchangeably. Denote w(r,m) the

minimal number of degree-r monomials needed to make subcode (4) stable, or, alternatively,
minimal number of edges in a stable r-hypergraph with m vertices.
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Proposition 3. For any natural r and m > 2r, it holds that

w(m, r) >

(
m

2r

)/(m− r
r

)
.

Proof. Note that any set of 2r vertices in a stable graph contains at least one edge.

Moreover, any edge is contained in exactly
(
m− r
r

)
such sets. Thus, total number of edges

multiplied by
(
m− r
r

)
is at least number of all sets of 2r vertices, which is

(
m

2r

)
. This

gives the necessary bound.

Corollary 2. Any stable graph contains at least 1
/(2r

r

)
edges of a complete graph.

Proof. The total possible number of r-edges in a graph with m vertices is Cr
m. Then(

m

2r

)
(
m− r
r

)(
m

r

) =
(r!)2

(2r)!
= 1
/(2r

r

)
.

Corollary 2 is proven.

This lower bound can be improved by the following theorem.
Theorem 2. For any natural r and m > 2r, it holds that

w(m, r) >
1

2

(√
(γ + 1)2 + 8

(
m

2r

)
+ γ + 1

)
, where γ =

√
r−1∑

u=max{1,3r−m}

(
r

u

)
.

Proof. Fix smallest set of edges E such that every 2r vertices are covered by two
disjoint edges from E. By definition, |E| = w(m, r).

Fix any edge e ∈ E. Denote Ee the set of edges from E that intersect e and Pe — the set
of unordered pairs {e′, e′′}, e′, e′′ ∈ Ee. Each pair {e′, e′′} corresponds to the subset B ⊂ e,
B = (e′∪e′′)∩e. In the similar manner, each edge in Ee corresponds to the subset B = e′∩e.
On the other hand, let us fix any subset B ⊂ e of size

max{1, 3r −m} 6 |B| 6 r − 1. (5)

As |B| > 3r−m, we have |V \e|+ |B| > 2r, and thus there exists a set S such that |S| = 2r
and S∩e = B. By the assumption on the edge set E, it contains a pair of edges covering S.
Let us denote these edges e′ and e′′. There are two possible cases: either both e′ and e′′

intersect e or only one of them does. Thus, we can match the subset B with an element of
Ee ∪ Pe. Note that despite that the subset B can match several elements of Ee ∪ Pe, the
inverse mapping is single-valued, as we explained earlier. Thus, we can write

|Pe|+ |Ee| >
r−1∑

u=max{1,3r−m}

(
r

u

)
= γ2,

where the right-hand side is the number of all subsets B ⊂ e satisfying (5).
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Obviously, |Pe| =
(
|Ee|

2

)
, and thus

(
|Ee|

2

)
+ |Ee| > γ ⇔ |Ee|2 + |Ee| > 2γ2.

From this inequality it follows that |Ee| > γ (technically, we use the fact that γ can not lie
in the interval (0, 1) following from its definition as a square root of 0 or a natural number).

Now we can estimate the cardinality of the set P of all unordered pairs {e′, e′′} of edges
from E. Denote P̂ the set of all disjoint unordered pairs of edges from E. It is clear that

P = P̂ ∪
⋃
e∈E

{
{e′, e} : e′ ∈ Ee

}
and, moreover,

|P | = |P̂ |+ 1

2

∑
e∈E
|Ee|,

as P̂ is disjoint with the other set and in the union over all e ∈ E we count each intersecting
unordered pair exactly twice.

From the property that edges from E cover each set of size 2r we conclude that

|P̂ | >
(
m

2r

)
. Thus,

|P | − 1

2

∑
e∈E
|Ee| >

(
m

2r

)
.

As |P | =
(
|E|
2

)
=

(
w(m, r)

2

)
, we can write

(
w(m, r)

2

)
− w(m, r)

2
γ >

(
m

2r

)
.

Solving the square inequality

w(m, r)2 − w(m, r)(γ + 1)− 2

(
m

2r

)
> 0,

we obtain the state of the theorem.

Now let us proceed to the proof of the upper bound. Let us fix the set of maximal size S
consisting of sets Si ⊂ V of size 2r such that

max
i,j
|Si ∩ Sj| 6 h.

Lemma 1. If h < r/3, then for any set Q /∈ S, |Q| = 2r, there are at most two sets
from S such that their intersection with Q have size at least r.

Proof. Assume that Q intersects with at least 3 sets such that intersection size is
at least r. Without loss of generality we assume that the sets are S1, S2 and S3. Let us
denote Q ∩ S1 = A1, Q ∩ S2 = A2, Q ∩ S3 = A3. Since |Q| = 2r, then it is obvious that
|A1 ∪ A2 ∪ A2| 6 2r. On the other hand, according to the inclusion-exclusion formula,

|A1 ∪ A2 ∪ A2| > |A1|+ |A2|+ |A3| − |A1 ∩ A2| − |A1 ∩ A3| − |A2 ∩ A3|.
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Then
3∑
i=1

|Ai| 6 2r + 3h.

By condition |Ai| > r for any i ∈ {1, 2, 3}, therefore
3∑
i=1

|Ai| > 3r.

Whence 3r 6 2r + 3h and h > r/3, which contradicts the condition of the lemma.

Let us find the maximum possible number of edges that can be removed from the
complete graph using the above arguments such that the graph remains stable.

Theorem 3. For any natural r > 2, m > 2r, and h < r/3,

w(m, r) 6

(
m

r

)
− T (r,m, h)

((
2r

r

)
− 2

)
,

where

T (r,m, h) = max
{
t : ∃S1, . . . , St

(
Si ⊂ {1, . . . ,m} &

& |Si| = 2r & (i 6= j ⇒ |Si ∩ Sj| 6 h), i, j ∈ {1, . . . , t}
)}
.

Proof. Note that two disjoint r-edges are sufficient to cover a set of 2r vertices. Thus, it

is possible to remove δ =

((
2r

r

)
− 2

)
r-edges from the complete graph on the 2r vertices

and preserve the stability of it. Obviously, no more edges can be removed.
Suppose that δ edges are removed from each set from S so that all of them are covered

by at least two r-edges. It remains to verify that there exists a similar cover for any set
of 2r vertices. Since by construction we can certainly cover any set Si, we will prove that
we can also cover any set Q /∈ S, |Q| = 2r.

Note that if the cardinality of the intersection with some Si does not exceed (r − 1),
then removing edges in it does not affect the number of edges in Q. At the same time,
according to Lemma 1, for h < r/3 any set of size 2r can have intersection of size at least r
with no more than two sets from S. If there is only one such set, say S1, then we have two
cases:

1) |Q ∩ S1| = 2r − 1. In this case there exists some edge e1 ∈ Q ∩ S1 not containing
vertex v, {v} = S1 \Q (as S1 must be covered by two disjoint edges). Thus, we can
take e2 = Q \ e1 (note that e2 ∈ E as we have removed only edges contained inside
sets Si), and {e1, e2} form the disjoint cover of Q.

2) |Q∪S1| < 2r−1. In this case there are at least two vertices v1 and v2 inside Q\S1 and
the cover can be formed using any two disjoint edges e1, e2 ⊂ Q such that v1 ∈ e1,
v2 ∈ e2.

Now consider the case when there are exactly two sets S1 and S2 intersecting with Q at
no less than r vertices. Assume that |A1| > r+h. Then, according to the inclusion-exclusion
formula, |A1 ∩ A2| = |A1| + |A2| − |A1 ∪ A2| > r + h + r − 2r = h, that contradicts with

|S1 ∩ S2| 6 h. Thus, r 6 |Ai| 6 r + h for i ∈ {1, 2}. So there are at most 2

(
r + h

r

)
edges

removed from Q. Note that(
2r

r

)/(
2

(
r + h

r

))
=

(2r)! r!h!

2r! r! (r + h)!
=

1

2
· 2r

r + h
· 2r − 1

r + h− 1
. . .

r + 1

h+ 1
.
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The last multiplier is greater than 2 for r > 3. For others holds

2r − i
r + h− i

>
2r

r + h
>

6

4
.

Thus, for r > 3, (
2r

r

)/(
2

(
r + h

r

))
>

1

2

(
3

2

)r−1

· 2 > 2.

For r = 2 and 3 the inequality can be verified directly.

There are
(

2r

r

)/
2 pairs of disjoint edges inside Q, so there remains at least one such

pair after removal of 2

(
r + h

r

)
<

(
2r

r

)/
2 edges from Q.

So we have obtained a stable graph removing δ edges from a complete graph for each set
from S. It remains to remember that |S| is the number of sets of size 2r whose intersections
are not larger than h and thus |S| = T (r,m, h).

Remark 1. In [14], P. Erdös and J. Spencer introduce the value m(n, k, t) (typeset
in bold to avoid confusion with m). It determines the size of the largest set of k-element
subsets of {1, . . . , n} such that any two members of this set intersect in less than t elements.
Later V. Rödl [15] proves that

lim
n→∞

m(n, k, t) =

(
n

t

)/(k
t

)
.

That is, in our case, lim
m→∞

T (r,m, h) = lim
m→∞

m(m, 2r, br/3c) =

(
m

br/3c

)/( 2r

br/3c

)
.

The upper bound can be also improved, but only empirically. We introduce an algorithm
that on input set of vertices V returns a set of edges E ⊂ V ×V such that in resulting graph
each set of 2r vertices is covered by two disjoint r-edges. Its simplified form is presented in
Algorithm 1. You can find the full version at https://github.com/VysotskayaVictory/
StableGraphGreedy/.

Algorithm 1. Greedy r-covering

Input: set of vertices V , edge cardinality r.
Output: set E of r-edges that covers V .
Function ChooseEdge:

e := ∅.
For i = 1, . . . , r:
V ′ := {v ∈ V : v can be added to e};
v := arg min

v∈V ′
deg v; e := e ∪ {v}.

Return e.
Function Main:

E := ∅.
While E does not cover all vertices of V :
e := ChooseEdge(); E := E ∪ {e}.

Return E.

To finalize Section 3, we can compare all obtained bounds. On Fig. 3 one can see two
lower and two upper bounds that are obtained in Proposition 3, Theorem 2, Theorem 3
and Algorithm 1. The Figure shows that improved bounds are rather tight.
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Fig. 3. Comparison of bounds

4. The ratio of unstable RM(r,m) subcodes
We consider subcodes of the standard basis of the Reed —Muller code in which ` vectors

are missing.
For the given parameter s and the set I = {ij : j = 1, . . . , s} we call unordered pairs

{A,B} critical partition if:

A ∩B = ∅,
A ∪B = I,

1 6 |A|, |B| 6 r.

Then it is impossible to obtain the monomial xi1 . . . xis after squaring a subcode if and
only if at least one element of each critical partition is removed. This follows from the
fact that if this monomial is present in the square of the code, it should be formed of a
pair {A,B} from the appropriate critical partition. But by the hypothesis either A or B is
absent. This argument proves the following proposition.

Proposition 4. A code is an unstable RM(r,m) subcode if and only if at least one
element from each critical partition for some monomial xi1 . . . xis is removed.

Proposition 5. For the given parameter s and any set I of size s the number of
critical partitions of I is

v(s) =
1

2

min{r,s−1}∑
p=max{s−r,1}

(
s

p

)
.

Proof. On the one hand, the sizes of the subsets must not exceed r. On the other
hand, the partition must be non-trivial, that is, partitioning into an empty set and a set,
coinciding with I, is unacceptable. Finally, when considering all partitions, each pair is
counted twice.
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Let us order in some way (say, lexicographically) the elements of each critical partition
and then the critical partitions themselves. Now we consider any set M consisting of
elements of critical partitions and having the property that for every critical partition
M contains at least one element of this partition. We can encode M with a string
α ∈ {1, 2, 3}v(s), where

αj =


1 ⇔ the 1st element of the j-th pair lies in M ,
2 ⇔ the 2nd element of the j-th pair lies in M ,
3 ⇔ both elements of the j-th pair lie in M .

We will also write M(α) to denote the set corresponding to a given α ∈ {1, 2, 3}v(s). It can
be seen that

|M(α)| = #1(α) + #2(α) + 2 ·#3(α),

where #c(α) is the number of symbols c in the string α.

Let us denote k =
r∑
p=0

(
m

p

)
the dimension of the original code (or the number of vectors

in its standard basis). There are exactly two kinds of unstable subcodes: those containing

monomial 1 and those not containing it. There are
(
k − 1

`− 1

)
subcodes of the second kind.

Now we fix s, an index set I of size s, and a string α ∈ {1, 2, 3}v(s). Among the subcodes
of the first kind there are (

k − 1− 2v(s)

`− |M(α)|

)
ones that has the property: among the monomials comprising critical partitions for I
exactly monomials from M(α) are absent. The reason is that we need to choose `− |M(α)|
monomials from all monomials of degree more than 0 that do not comprise any critical
partition (there are k − 1− 2v(s) of them).

For a given s there are
(
m

s

)
variants of choosing index set I. But some codes may be

counted several times. So we can consider the following theorem proved.
Theorem 4. The number of unstable RM(r,m) subcodes is

θ 6
2r∑
s=2

(
m

s

)
·

∑
α∈{1,2,3}v(s)

(
k − 1− 2v(s)

`− |M(α)|

)
+

(
k − 1

`− 1

)
.

Theorem 5. If ` = const and r > 2`+1, then the ratio of unstable RM(r,m) subcodes
tends to zero as m→∞.

Proof. Our goal is the asymptotic estimate of the probability of the event that after
removing ` vectors from the standard basis of the code RM(r,m), the square of the resulting

code will differ from RM(2r,m). The upper bound for it is θ
/(k

`

)
. We divide this bound

into two parts and show the tendency to zero for each of them independently. For one of
them it follows immediately from the fact that(

k − 1

`− 1

)/(k
`

)
=
`

k
−−−→
m→∞

0,

since k →∞ as m→∞.
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Now we consider the first part and denote it’s numerator by γ. Notice that

#α(1) + #α(2) + 2 ·#α(3) = |M(α)| > v(s) = #α(1) + #α(2) + #α(3).

Then the number of removed vectors that are elements of critical partitions for s is
|M(α)| > v(s) and the total number of removed vectors is `. That is, v(s) 6 ` and we
can consider only parameters s satisfying this condition. Then

2v(s) =
min{r,s−1}∑

p=max{s−r,1}

(
s

p

)
6 2`. (6)

We consider separately two cases. If s > r+1, we have min{r, s−1} = r and in the sum (6)

there is the element
(
s

r

)
. Thus,

2` > 2v(s) >

(
s

r

)
> s.

The last inequality follows from the fact that(
s

r

)
=

(r + 1)

2
· (r + 2)

3
· . . . (s− 1)

r
· s

1
.

If, on the other hand, s < r + 1, we have max{s− r, 1} = 1 and there is the element(
s

1

)
in the sum (6). Hence

2` > 2v(s) >

(
s

1

)
= s.

So either way the inequality s 6 2` is satisfied.
We simplify the upper bound for γ using this inequality and the monotonicity of the

binomial coefficient
(
n

k

)
with respect to the parameter k, which guarantees the increase of

the value
(
n

k

)
with the increase of k:

2r∑
s=2

(
m

s

) ∑
α∈{1,2,3}v(s)

(
k − 1− 2v(s)

`− |M(α)|

)
6

2∑̀
s=2

(
m

2`

) ∑
α∈{1,2,3}v(s)

(
k − 1− 2v(s)

`− |M(α)|

)
6

6 2`

(
m

2`

)
max
s∈[2,2`]

{(k − 1− 2v(s)

`− z

)
· 3v(s)

}
,

where z = min
α∈{1,2,3}v(s)

{
|M(α)|

}
.

Note that ` = const and 3w(s) 6 const, since s 6 2`, and v(s) < 2s. The last is true by
virtue of

2s = (1 + 1)s =
s∑

p=0

(
s

k

)
>

1

2

min{r,s−1}∑
p=max{s−r,1}

(
s

p

)
= v(s).

These considerations, as well as the monotonicity of the binomial coefficient
(
n

k

)
with

respect to n and the inequality |M(α)| > v(s), allow us to obtain the upper bound

const ·
(
m

2`

)(
k

`− v(s)

)
6 const ·

(
m

2`

)(
k

`− 1

)
:= ψ.
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We proceed to the ratio estimation:

γ
/(k

`

)
6 ψ

/(k
`

)
= const ·

(
m

2`

)(
k

`− 1

)/(k
`

)
= const ·

(
m

2`

)
· `
/

(k − `+ 1) =

= const ·
(
m

2`

)/
(k − `+ 1) 6 const ·m

2`

2k
.

After tending m to infinity we can claim that such p = 2` + 1 exists, that is, summand(
m

p

)
> mp is an element of the sum representation of k. Then

const ·m
2`

2k
6 const · m

2`

m2`+1
= const · 1

m
−−−→
m→∞

0.

Theorem 5 is proven.

Future research
More accurate estimates on the minimal stable code sizes for general case are still

required, as are better estimates of the ratio of stable subcodes. In addition, an idea for
future research could be to find an analogues of the obtained results for an arbitrary basis
of the Reed —Muller code.
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