УДК 539.172.3 DOI: 10.17223/00213411/64/10/11

ИЗМЕРЕНИЕ T_{20} -КОМПОНЕНТЫ ТЕНЗОРНОЙ АНАЛИЗИРУЮЩЕЙ СПОСОБНОСТИ РЕАКЦИИ $\gamma d \!\! \to \!\! pn\pi^0$ *

Б.И. Василишин 1 , В.В. Гаузштейн 1 , С.А. Зеваков 2 , М.Я. Кузин 1 , М.И. Левчук 3 , А.Ю. Логинов 4 , Д.М. Николенко 2 , И.А. Рачек 2 , Д.К. Топорков 2,5 , А.И. Фикс 1 , Ю.В. Шестаков 2,5 , Э. Дарвиш 6 , А.В. Юрченко 2

¹ Национальный исследовательский Томский политехнический университет, г. Томск, Россия
² Институт ядерной физики им. Г.И. Будкера, г. Новосибирск, Россия
³ Институт физики им. Б.И. Степанова Национальной академии наук Беларуси, г. Минск, Беларусь
⁴ Томский государственный университет систем управления и радиоэлектроники, г. Томск, Россия
⁵ Новосибирский государственный университет, г. Новосибирск, Россия
⁶ Университет Тайбы, г. Медина, Саудовская Аравия

Ключевые слова: T_{20} -компонента тензорной анализирующей способности, некогерентное фоторождение нейтрального пиона, фотон, тензорно-поляризованный дейтрон.

Введение

Поляризационные исследования играют значительную роль в физике элементарных частиц, поскольку часто именно такие исследования могут разрешить противоречия между различными теоретическими моделями. Помимо этого, многие из предсказанных резонансов, как, например, дибарионный резонанс D(2380), хорошо проявляются именно в поляризационных наблюдаемых. Исследования реакций фоторождения π -мезонов на поляризованном дейтроне в области больших внутренних импульсов нуклонов позволяют получить новую информацию о структуре дейтрона.

Экспериментальное изучение фоторождения π -мезона на тензорно-поляризованном дейтроне к настоящему времени проводится только на внутренней тензорно-поляризованной мишени ускорительно-накопительного комплекса ВЭПП-3 [1–9]. Первые результаты измерения T_{20} -, T_{21} - и T_{22} -компонент тензорной анализирующей способности когерентного [5, 6] и некогерентного [7–9] фоторождения нейтрального пиона были получены из экспериментальной статистики, накопленной в 2003 г., и имели невысокую статистическую точность, поскольку эксперимент планировался для изучения фоторасщепления дейтрона [10]. В 2013 г. на ускорительно-накопительном комплексе ВЭПП-3 был проведен эксперимент, основной целью которого было изучение когерентного фоторождения нейтрального пиона на дейтроне. Полученные результаты измерения T_{20} -компоненты тензорной анализирующей способности реакции $\gamma d \rightarrow d\pi^0$ опубликованы в работах [11–14].

Цель данной работы — представить новые результаты измерения T_{20} -компоненты тензорной анализирующей способности реакции $\gamma d \rightarrow pn\pi^0$, полученные с использованием тензорнополяризованной дейтериевой мишени и неполяризованного фотонного пучка. В отличие от эксперимента, проведенного на ВЭПП-3 в 2003 г., в котором на совпадении регистрировались два нуклона [7–9], в настоящей работе на совпадении регистрировались протон и два γ -кванта от распада нейтрального пиона. Использованная экспериментальная статистика была набрана в эксперименте, проведенном в 2013 г.

_

^{*} Работа выполнена при поддержке ГЗ «НАУКА» (проект № FSWW-2020-0008).

Уважаемые читатели!

Доступ к полнотекстовой версии журнала «Известия высших учебных заведений. Физика» осуществляется на платформе Научной электронной библиотеки eLIBRARY.RU на платной основе:

https://elibrary.ru/contents.asp?titleid=7725