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The palette of a vertex v of a graph G in a proper edge coloring is the set of colors
assigned to the edges which are incident to v. The palette index of G is the minimum
number of palettes occurring among all proper edge colorings of G. In this paper, we
consider the palette index of Sierpiński graphs Snp and Sierpiński triangle graphs Ŝn3 .
In particular, we determine the exact value of the palette index of Sierpiński triangle
graphs. We also determine the palette index of Sierpiński graphs Snp where p is even,
p = 3, or n = 2 and p = 4l + 3.
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ОБ ИНДЕКСЕ ПАЛИТРЫ ТРЕУГОЛЬНИКА СЕРПИНСКОГО
И ГРАФА СЕРПИНСКОГО

A. Газарян

Ереванский государственный университет, г. Ереван, Армения

Палитра вершины v графа G в правильной раскраске рёбер — это набор цветов,
присвоенных рёбрам, инцидентным v. Индекс палитры G — это минимальное ко-
личество палитр из всех правильных рёберных раскрасок G. Рассматриваются
индексы палитры графов Серпинского Snp и треугольников Серпинского Ŝn3 . До-
казано, что индекс палитры треугольника Серпинского Ŝn3 равен 3, если n чётное,
и 4 иначе; индекс палитры графа Snp равен 2 для чётного p и равен 3 для p = 3
или n = 2 и p = 4l + 3.

Ключевые слова: индекс палитры графа, треугольник Серпинского, граф Сер-
пинского.

1. Introduction
In this paper, we use the standard notations of graph theory [1]. Graph coloring problems

are even more challenging when there are some constraints on them, such as proper edge
or proper vertex colorings. Usually, such constraints are naturally motivated by different
applications in scheduling theory.

In [2], a new chromatic parameter is called the palette index of a graph and is defined
as follows: for a given proper edge coloring of a graph G, we define the palette of a vertex
v ∈ V (G) as the set of all colors appearing on edges incident to v. The palette index š(G)
of G is the minimum number of distinct palettes occurring in a proper edge coloring of G.

Mainly, the palette index was studied for regular graphs. In [2], it is shown that the
palette index of a regular graph is 1 if and only if the graph is of Class 1, and it is different
from 2. The palette index of complete graphs is also determined in [2].
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Theorem 1 [2]. For every positive integer n > 1, we have

š(Kn) =


1, if n is even,
3, if n = 4l + 3,

4, if n = 4l + 1.

In [2], the authors also studied the palette index of cubic graphs. More specifically,

š(G) =


1, if G is of Class 1,
3, if G is of Class 2 and has a perfect matching,
4, if G is of Class 2 and has no perfect matching.

As mentioned in [3], the palette index of a d-regular graph of Class 2 satisfies the
inequality 3 6 š(G) 6 d+ 1.

The paper [3] investigates 4-regular graphs and proves that š(G) ∈ {3, 4, 5} if G is
4-regular and of Class 2, and that all these values are, in fact, attained.

Since the computing of the chromatic index of cubic graphs is NP-complete [4],
determining the palette index of a given graph is also NP-complete, even for cubic graphs [2].
This means that even determining, if a given graph has a palette index 1, is an NP-complete
problem.

Vizing’s edge coloring theorem yields an upper bound for the palette index of a general
graph G with the maximum degree ∆, namely š(G) 6 2∆+1− 2. It is not hard to construct
graphs whose palette index is quite smaller than 2∆+1 − 2. In [5], an infinite family of
multigraphs is described, whose palette index grows asymptotically as ∆2; however, it is an
open question whether there are such examples without multiple edges. Furthermore, in [5]
it is conjectured that there is a polynomial p(∆) so that for any graph with the maximum
degree ∆, it holds the bound š(G) 6 p(∆).

There are few results about the palette index of non-regular graphs. In [6], M. Horňák
and J. Hudák have completely determined the palette index of the complete bipartite graphs
Ka,b with min{a, b} 6 5.

In [7], C. Casselgren and P. Petrosyan studied the palette index of bipartite graphs.
In particular, they have determined the exact value of the palette index of grids and
characterized the class of graphs whose palette index equals the number of vertices.

In [8], the palette index of trees is considered. In particular, the authors have proved

that š(T ) 6
∆∑
i=1

[
∆

i

]
. Moreover, they also have showed the sharpness of the bound by

constructing trees T∆ for which the palette index is is equal to this value.
One of the fascinating graph families is Sierpiński graphs Snp . It has been introduced

in [9] as a result of the study of the topological properties of the Lipscomb space, and it is
still being studied extensively. An interesting fact is that Sn3 is isomorphic to the graph of
the Tower of Hanoi with n disks [9].

Sierpiński triangle graphs Ŝn3 are quite similar to Sierpiński graphs Sn+1
3 and are obtained

from Sn+1
3 by a finite number of steps. These graphs are usually studied in conjunction

with Sierpiński graphs and have quite interesting properties. Sierpiński triangle graphs are
fractals of dimension d = log 3/ log 2 ≈ 1.585 and have been introduced in [10].

For Sierpiński graphs and other Sierpiński-type graphs, [11] is a good survey.
In [12], S. Klavžar has introduced an explicit labeling of the vertices of Ŝn3 . Also, he has

proved that Ŝn3 is uniquely 3-colorable and Sn3 is uniquely 3-edge-colorable.
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In [13], the authors have studied and summarized vertex, edge, and total colorings of
the Sierpiński triangle graphs Ŝn3 and Sierpiński graphs Snp .

In [14], some properties of graphs Ŝn3 are given, including their cycle structure, domina-
tion number, and pebbling number.

These graphs are beneficial to other theories such as probability theory [15], dynamical
systems theory [16], topology [17], etc.

Let us now give explicit definitions of Sierpiński graphs Snp and Sierpiński triangle
graphs Ŝn3 , where n > 0 and p > 0 are integers. The graphs are defined as follows. The vertex
set of Snp is the set of all n-tuples of integers 0, 1, . . . , p−1, namely, V (Snp ) = {0, 1, . . . , p−1}n.
Two different vertices u = (u1, . . . , un) and v = (v1, . . . , vn) are adjacent if and only if there
exists an h ∈ {1, . . . , n} such that:

1) ut = vt for t = 1, . . . , h− 1;
2) uh 6= vh;
3) ut = vh and vt = uh for t = h+ 1, . . . , n.
We will denote a vertex (u1, u2, . . . , un) by 〈u1u2 . . . un〉 or even u1u2 . . . un. The vertices

〈i . . . i〉, i ∈ {0, . . . , p − 1}, are called the extreme vertices of Snp . We will denote by iSnp =
= Snp [{v : v = 〈i . . . i〉}] the subgraph of Snp , where i = 0, 1, . . . , p − 1. Obviously, iSn+1

p is
isomorphic to Snp . Consequently, Snp contains pn−1 copies of the graph S1

p = Kp. We will call
link edges all the edges of Snp that do not belong to the above-mentioned Kp.

As a result of contracting all the link edges of Sn+1
3 , we will get the Sierpiński triangle

graph Ŝn3 where n > 0. We label the vertices of Ŝn3 as follows. Let 〈u1 . . . urij . . . j〉 and
〈u1 . . . urji . . . i〉 be the endvertices of a link edge of Sn+1

3 that is contracted to a vertex x
of Ŝn3 . Then we label x with 〈u1 . . . ur〉[i, j] or u1 . . . ur[i, j] where r 6 n− 2. Ŝn+1

3 contains
three isomorphic copies of Ŝn3 , and we denote these copies with iŜn+1

3 , where iŜn+1
3 is the

subgraph which contains 〈i . . . i〉, 0 6 i 6 2; see Fig. 1.

a b
Fig. 1. Labeling of S3

3 (a) and of Ŝ2
3 (b)

In this paper, the palette indices of Sierpiński triangle graphs Ŝn3 and Sierpiński
graphs Sn3 are determined. Next, the palette index of Snp is determined, where p is even, or
n = 2 and p = 4l + 3.

2. The palette index of Sierpiński triangle graphs
Let Ŝn3 be the Sierpiński triangle graph. When n = 0, then Ŝn3 is isomorphic to K3,

whose palette index is determined (Theorem 1). Below we consider the case n > 0. The
graph has two kinds of vertices in terms of vertex degree: three vertices with degree 2 and
the remaining vertices with degree 4. To color Ŝn3 , we need at least four colors as ∆ = 4.
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Let us define edge coloring functions φn for the graph Ŝ1
3 as follows:

φn(e) =


n, if e ∈ {[0, 1]00, [1, 2]11, [0, 2]22},
n mod 4 + 1, if e ∈ {[0, 1]11, [1, 2][0, 2]},
(n+ 1) mod 4 + 1, if e ∈ {[1, 2]22, [0, 1][0, 2]},
(n+ 2) mod 4 + 1, if e ∈ {[0, 2]00, [0, 1][1, 2]},

where n ∈ {1, 2, 3, 4}. Thus, for all colorings φn, we have 4 different sets of palettes and we
call this group A:

1) {{1, 2, 3, 4}, {1, 2}, {1, 3}, {1, 4}};
2) {{1, 2, 3, 4}, {2, 1}, {2, 3}, {2, 4}};
3) {{1, 2, 3, 4}, {3, 1}, {3, 2}, {3, 4}};
4) {{1, 2, 3, 4}, {1, 4}, {2, 4}, {3, 4}}.
We will identify two edge colorings if one is obtained by rotating or reflecting the other.

Clearly, if we color Ŝ1
3 in a manner that all vertices with cardinality 4 have the palette

{1, 2, 3, 4}, then we will get a coloring φn. After this, let us color the graph Ŝ2
3 so that all 4

degree vertices are colored with the palette {1, 2, 3, 4}. That means we must use φn colorings
to color iŜ2

3 , where i = 0, 1, 2. By considering all possible cases, we have four different sets
of palettes and we call that group B:

1) {{1, 2, 3, 4}, {1, 2}, {1, 3}, {2, 3}};
2) {{1, 2, 3, 4}, {1, 2}, {1, 4}, {2, 4}};
3) {{1, 2, 3, 4}, {1, 3}, {1, 4}, {3, 4}};
4) {{1, 2, 3, 4}, {2, 3}, {2, 4}, {3, 4}}.
Proposition 1. For every positive integer n, we have

š(Ŝn3 ) 6 4.

Proof. If n is 1 or 2, then we can color Ŝn3 using a set of palettes from group A
or B. If we try to color Ŝ3

3 so that each iŜ3
3 is colored the same as we colored Ŝ2

3 , where
i = 0, 1, 2, and the vertices [0, 1], [0, 2], [1, 2] have the palette {1, 2, 3, 4}, then we will have
all the possible sets of palettes of group A. We now prove the following stronger lemma:

Lemma 1. For every positive integer n, we can color Ŝn3 using every set of palettes
from group A, if n is odd, and every set of palettes from group B, if n is even.
As we have seen, the lemma is true for Ŝn3 , where n = 1, 2, 3. Assume the lemma holds
for n > 0. We wish to find a satisfying coloring of Ŝn+1

3 . By the induction assumption, we
can color Ŝn3 using every set of palettes from group A or B depending on whether n is odd
or not. In general, if we have colorings for iŜm3 , then the palettes of vertices of degree two
of iŜm3 are the only essentials for coloring Ŝm3 , where i = 0, 1, 2, m > 1. As we saw above
in the process of coloring Ŝ2

3 (Ŝ3
3), if we can color iŜ2

3 (iŜ3
3) using every set of palettes from

group A (B), then we can color Ŝ2
3(Ŝ3

3) using every set of palettes from group B (A). So we
can color Ŝn+1

3 by using Ŝn3 colorings as we did for Ŝ2
3 or Ŝ3

3 .

Proposition 2. For every positive integer n, we have

š(Ŝn3 ) > 3.

Proof. Clearly, š(Ŝn3 ) > 2, since there are vertices with only two different degrees.
If we try to color Ŝ1

3 with one palette with cardinality 4 ({1, 2, 3, 4}), then we will get a
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coloring φn. In Proposition 1 for coloring Ŝn3 , we used only colorings φn for any subgraph Ŝ1
3

and tried all possible cases. That means that if we want to have only one palette with
cardinality 4, we must use a set of palettes from group A or B, where each set of palettes
contains three palettes with cardinality 2. Hence, š(Ŝn3 ) > 3.

Proposition 2 means that if we are looking for a coloring with three palettes, then we
should have one palette with cardinality 2 and two palettes with cardinality 4.

Proposition 3. For every positive integer n, if š(Ŝn3 ) = 3, then the palettes for vertices
with degree 4 should differ in only one color.

Proof. All possible cases for two palettes with degree 4 are described below:
1) {1, 2, 3, 4} and {1, 2, 3, 5};
2) {1, 2, 3, 4} and {1, 2, 5, 6};
3) {1, 2, 3, 4} and {1, 5, 6, 7};
4) {1, 2, 3, 4} and {5, 6, 7, 8}.
In Fig. 2, we show an example of the coloring of Ŝ2

3 with three palettes, where the
palettes of cardinality 4 correspond to the first case.

Fig. 2. A coloring of Ŝ2
3 with three palettes

We now show that the last three cases are impossible. Suppose we have colored Ŝn3 with
three palettes. If š(Ŝn3 ) = 3, then we have only one palette with cardinality 2. Let’s denote
that palette by {a, b}, where 1 6 a < b 6 8. We will call the colors 5, 6, 7, 8 the extra colors.
Now, we change each extra color c with the color 9− c from the set {1, 2, 3, 4}. The proper
edge coloring of Ŝn3 might be broken only on edges adjacent to the vertices of degree 2 if b
is an extra color and 9 − b = a. But in cases 2–4, we can change the color b with another
color different from a. So for the cases 2–4, we can color Ŝn3 with two palettes, which is a
contradiction to Proposition 2.

By Proposition 3 and its proof, we may assume that if we have a coloring with three
palettes, then the palettes are {1, 2, 3, 4}, {1, 2, 3, 5}, and {4, 5}. Moreover, it is possible to
use the palette {1, 2, 3, 5} exactly three times.

Let us now expose all possible colorings of Ŝ1
3 , where the palettes {1, 2, 3, 4}, {1, 2, 3, 5},

and {4, 5} are used. After this, we will have this group of sets of palettes, and we will call
this group C:

1) {{1, 2, 3, 4}, {1, 2, 3, 5}, {4, 5}, {1, 2}, {3, 4}};
2) {{1, 2, 3, 4}, {1, 2, 3, 5}, {4, 5}, {1, 3}, {2, 4}};
3) {{1, 2, 3, 4}, {1, 2, 3, 5}, {4, 5}, {1, 4}, {2, 3}}.
To find colorings with three palettes of Ŝn3 , as a set of palettes of Ŝ1

3 , it is enough for us
to use only sets of palettes of groups A and C, as we can use the palette {1, 2, 3, 5} three
times.
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There is no coloring of Ŝ1
3 with three palettes; thus, š(Ŝ1

3) = 4. As shown in Fig. 2, we
can color Ŝ2

3 by coloring each iŜ2
3 using a set of palettes from group C, where i = 0, 1, 2.

Let us see what sets of palettes we can have for Ŝ2
3 by coloring each iŜ2

3 using a set of
palettes from group A and C, where i = 0, 1, 2. We have three cases shown in Fig. 3.

a b c
Fig. 3. Cases a, b, c

For the case a, the possible combination is the following: all iŜ2
3 have the same set of

palettes from group C, where i = 0, 1, 2, and that gives us a coloring with three palettes.
Let us notice that we can not use this coloring of Ŝ2

3 for coloring a subgraph of Ŝn3 , where
n > 2, because we do not have a palette with cardinality 4 that has colors 4 and 5. The
case b does not give a coloring with three palettes, and we can not use it for coloring Ŝn3 ,
where n > 2, because there are two vertices with the palette {4, 5}. The case c gives a new
group of sets of palettes, and we will call this group D:

1) {{1, 2, 3, 4}, {1, 2, 3, 5}, {4, 5}, {1, 2}};
2) {{1, 2, 3, 4}, {1, 2, 3, 5}, {4, 5}, {1, 3}};
3) {{1, 2, 3, 4}, {1, 2, 3, 5}, {4, 5}, {1, 4}};
4) {{1, 2, 3, 4}, {1, 2, 3, 5}, {4, 5}, {2, 3}};
5) {{1, 2, 3, 4}, {1, 2, 3, 5}, {4, 5}, {2, 4}};
6) {{1, 2, 3, 4}, {1, 2, 3, 5}, {4, 5}, {3, 4}}.
Let us now see what sets of palettes we can have for Ŝ3

3 by coloring each iŜ3
3 using a set

of palettes from group B and D, where i = 0, 1, 2. We have three cases (Fig. 4).

a b c
Fig. 4. Cases a, b, c

For the case a, there is no possibility to construct a proper edge coloring. The case b
does not give a coloring with three palettes, and we can not use it for coloring Ŝn3 , where
n > 3, because there are two vertices with the palette {4, 5}. And finally, the case c gives
the same sets of palettes of group C that close the chain. Thus, depending on whether the
number n > 0 is even or odd, we can color Ŝn3 with the palettes of any set of groups C or D,
respectively.

Theorem 2. For every non-negative integer n, the palette index of Ŝn3 is determined
by the formula

š(Ŝn3 ) =

{
3, if n is even,
4, if n is odd.
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Proof. Clearly, š(Ŝ0
3) = 3, so we will consider the cases when n > 0.

We have shown that we can color Ŝn3 using any set of palettes from groups A and C
if n is odd, and from groups B and D if n is even. Also, we have shown that we can color Ŝn3
with three palettes if each iŜn3 is colored with palettes of a set of group C, where i = 0, 1, 2.
Since we have considered all possible cases of coloring Ŝn3 with three palettes, and it is
possible only if iŜn3 is colored using a set of palettes from group C, then š(Ŝn3 ) > 3 for
odd n. Consequently, by Proposition 1, š(Ŝn3 ) = 4 if n is odd.

3. The palette index of Sierpiński graphs
In this section, we will examine the palette index of Sierpiński graphs Snp , where p > 1.
If n = 1, then Snp is isomorphic to Kp, whose palette index was determined (Theorem 1).

Now, let us consider the cases when n > 1. Here, we have two kinds of vertices in terms of
vertex degree: extreme vertices with degree n− 1 and the remaining vertices with degree n.
So š(Snp ) > 2.

Theorem 3. For every even integer p > 1 and every integer n > 1, we have

š(Snp ) = 2.

Proof. Since š(Snp ) > 2, we just need a coloring of Snp with two palettes. We color
all pn−1 copies of S1

p = Kp in Snp with the palette {1, . . . , p − 1}. Then we color all link
edges with the color p. In this way all extreme vertices have the palette {1, . . . , p− 1}, and
the other vertices have the palette {1, . . . , p}.

Now, consider the case when p is odd.
Proposition 4. For every odd integer p > 1 and every integer n > 1, we have

š(Snp ) > 3.

Proof. In [13, Claim in Theorem 4.1], it has been proved for any integer n > 1 and any
odd integer p > 1, that χ′(Snp ) = p and the palettes of extreme vertices of Snp are pairwise
different. If we try to color Snp with two palettes, then we must use a single palette for
coloring vertices with degree p, which means that we use only p colors. So we will have p
palettes for extreme vertices [13, Claim in Theorem 4.1]. Hence, š(Snp ) > 3.

Proposition 5. For every odd integer p > 1 and every integer n > 1, we have

š(Snp ) 6

{
š(Kp), if n = 2,
š(Kp) + 1, if n > 2.

Proof. As shown in [2], if p is odd, then we can always color Kp with three or four
palettes, and there is only one vertex s with a unique palette Ps. For a coloring S2

p , we color
each complete graph iS2

p , and we keep the vertex s as the extreme vertex (0 6 i 6 p− 1).
At this moment, we have these palettes: Ps and P1, . . . , Pm, where m is 2 or 3. Then
we color all link edges with a new color c. Thus, we have these š(Kp) palettes: Ps and
P1 ∪ {c}, . . . , Pm ∪ {c}. To color S3

p , we color each iS3
p as mentioned above, and again, we

color uncolored link edges with the same color c. Thus, we have š(Kp) + 1 palettes: Ps and
Ps∪{c}, P1∪{c}, . . . , Pm∪{c}. To color Snp , where n > 3, we can do the same steps. In that
case, we do not create a new palette.

Corollary 1. For every integer p, we have

š(S2
4p+3) = 3.
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Proof. This result follows from Proposition 4, Proposition 5, and Theorem 1.

Theorem 4. For every positive integer n, we have

š(Sn3 ) = 3.

Proof. By Proposition 4, we obtain š(Sn3 ) > 3. So we just need a coloring with three
palettes to prove the theorem. If n = 1, then we have K3, whose palette index is 3. If n = 2,
we can color S2

3 as shown in Fig. 5.

Fig. 5. A coloring of S2
3 with three palettes

Now, let us consider the two colorings of S2
3 from Fig. 6.

Fig. 6. Group A

Let us denote this group of sets of palettes by A:
1) {{1, 2, 3}, {1, 2, 4}, {1, 2}, {3, 4}};
2) {{1, 2, 3}, {1, 2, 4}, {2, 3}, {3, 4}}.
Next, let us consider the coloring of Sn3 in Fig. 7.

a b
Fig. 7. Group B

Figure 7, a gives a coloring of S2
3 . We denote this single element group of sets of palettes

by B:
1) {{1, 2, 3}, {1, 2}, {1, 3}, {2, 3}}.
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Figure 7, b shows how we can color Sn3 using palettes from group B, where n > 1.
In Fig. 8, we can see that, for any integer n > 2, we can color Sn3 using each set of

palettes from group A by coloring one of iSn3 using a set of palettes from group A, two
others using a set of palettes from group B, and link edges that connect these iSn3 with
colors 1, 2 or 3, where i = 0, 1, 2. We can also see that for Sn3 we can color it with three
palettes by coloring all iSn3 using a set of palettes from group A, and link edges that connect
these iSn3 with colors 1 or 3, where i = 0, 1, 2. The theorem is proved.

Fig. 8. The coloring of Sn3 with three palettes
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