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CHOOSING PARAMETERS FOR ONE IND-CCA2 SECURE McEliece
MODIFICATION IN THE STANDARD MODEL

Y.V. Kosolapov, O.Y. Turchenko

The paper is devoted to choosing parameters for one IND-CCA2-secure McEliece
modification in the standard model. In particular, the underlying code, plaintext length
and one-time strong signature scheme are suggested. The choice of parameters for the
scheme was based on efficiency, on the one hand, and security, on the other. Also,
experiments for the suggested parameters are provided using the NIST statistical test
suite.
Keywords: post-quantum cryptography, McEliece-type cryptosystem, IND-CCA2-
security, NIST statistical test suite.



Математические методы криптографии 111

1. Introduction
The development of post-quantum cryptosystems resistant to adaptive chosen ciphertext

attacks (IND-CCA2 secure cryptosystems) is currently relevant. In particular, NIST hold
competitions for the formation of post-quantum cryptography standards [1]. One of the
most successful candidates [2] is based on the idea of random oracle. However, since random
oracle is only theoretical function, then the construction of IND-CCA2 secure post-quantum
cryptosystems without random oracles (standard model) is also an interesting task. One of
the ways to construct such scheme is to modify McEliece cryptosystem [3]. For instance,
in [4–6] authors modified McEliece cryptosystem using correlated products method [7]. This
paper is devoted to choosing practical parameters for cryptosystem from [5].

2. Cryptosystem from [5]
Let n, t be natural, [n] = {1, . . . , n}, β ⊆ [n], 2[n] is the set of all subsets of [n],

F2 be a Galois field of cardinality 2. The support of the vector v = (v1, . . . , vn) ∈ Fn2
is the set supp(v) = {i : vi 6= 0} and the Hamming weight of this vector is a number
wt(v) = |supp(v)|. If S is a finite set, then s ∈R S denotes the operation of picking an
element at random and uniformly from S. Denote by En,t,β the subset of Fn2 such that any
vector e = (e1, . . . , en) ∈ En,t,β has Hamming weight t and ei = 0 for any i ∈ β. We will
write En,t when β = ∅. For the vector v ∈ Fk2 and the ordered set ω = {ω1, . . . , ωl} ⊆ [k],
where ω1 < . . . < ωl, we consider the projection operator Πω : Fk2 → F|ω|2 acting according
to the rule: Πω(v) = (vω1 , . . . , viωl ). For ω, consider a subset G(ω) of symmetric group Sk
acting on the elements of the set [k]:

G(ω) = {π ∈ Sk : π(1) = ω1, . . . , π(l) = ωl}.

With every permutation π from G(ω) we associate a permutation (k × k)-matrix Rπ.
Now we consider construction from [5]. Recall that a public key cryptosystem is a triplet

of algorithms, i.e., Σ = (K, E ,D), where K is a generation algorithm, E is an encryption
algorithm, D is a decryption algorithm. We will write {m}Σ

pk as encryption of the messagem
with the key pk and {c}Σ

sk as decryption of the ciphertext c on the secret key sk. For
McEliece cryptosystem, we denote such triplet Σ as McE.

In the cryptosystem Σ [5], key generation algorithm KΣ takes as input two security
parameters N, s ∈ N and outputs a public-key pk and a secret key sk of the form

pk = ((pk0
i , pk

1
i ))

s
i=1, sk = ((sk0

i , sk
1
i ))

s
i=1,

where pkbi , skbi are generated by KMcE, b ∈ {0, 1}, i ∈ [s]. The encryption algorithm EΣ

takes as input a message m = (m1 ‖ . . . ‖ ms), where mi ∈ Fl2, and a public-key pk. Then
EΣ generates two keys dsk,vk for one-time strong unforgeable signature scheme, where
vk = (vk1, . . . , vks), and outputs ciphertext

c̃ = c ‖ vk ‖ σ,

where c = c1 ‖ . . . ‖ cs and σ is a signature of vector c with the key dsk. Each ci has the
form

ci = c1
i ‖ c2

i = {(mi ‖ ri)Rπ}McE
pkvki ‖ {(mi ‖ ri ⊕ 1)Rπ}McE

pkvki , (1)

where mi ∈ Fl2, ω ⊂R [k], |ω| = l, ri ∈R Fk−l2 , π ∈R G(ω). The error vectors e1
i and e2

i

generated in McE-encryption in the left and right parts, respectively, are chosen such that
e1
i ∈R En,t, e2

i ∈R En,t,supp(e1i )
. Decryption algorithm DΣ takes as input a secret-key sk and
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a ciphertext c̃, and outputs either a message m ∈ Fsl2 or the error symbol ⊥. On the first
step, DΣ checks signature of the message. If check fails, then DΣ outputs ⊥, otherwise it
computes m = m1 ‖ . . . ‖ms, where

mi = Πηi({c1
i }McE
skvki ), ηi = [k] \ supp({c1

i }McE
skvki − {c

2
i }McE
skvki ).

If η1 = . . . = ηs, then DΣ outputs m else ⊥.
Let us introduce additional notions. Denote public key pkvki from (1) as matrix Gi,

1 as all-ones vector from {0, 1}k−l, and 0 as all-zeroes vector from {0, 1}l. Then for matrix
Gi and secret permutation (k × k)-matrix Rπ, π ∈ G(ω), define (l × n)-matrix G1

i and
(k − l × n)-matrix G2

i such that (
G1
i

G2
i

)
= RπGi.

Then we can write

ci = c1
i ‖ c2

i = {(mi ‖ ri)RπGi ⊕ e1
i } ‖ {(mi ‖ ri ⊕ 1)RπGi ⊕ e1

i } =

= {miG
1
i ⊕ riG

2
i ⊕ e1

i } ‖ {miG
1
i ⊕ (ri ⊕ 1)G2

i ⊕ e2
i }. (2)

Now one can suggest security parameters.

3. Security parameters and experiments
3.1. S e c u r i t y p a r a m e t e r s

Let us consider the general security parameters of the system: underlying linear [n, k, d]-
code C, plaintext length l and one-time strong signature scheme. Since (pkbi , sk

b
i ) =

= KMcE(N), b ∈ {0, 1}, i ∈ [s], then one can use known results of evaluating the code
parameters of the original McEliece cryptosystem. In general, in [8] it is recommended to
choose cryptosystem parameters with at least 86 security bits (for 2021 year). So, according
to table 1.1 from [9] it is suggested to use [4096, 3604, 83]-code with 129 security bits. Then
to prevent finding ω from c1

i ⊕ c2
i = (0 ‖ 1)RπGi ⊕ e1

i ⊕ e2
i = 1G2

i ⊕ e1
i ⊕ e2

i (see (2)) we
recommend to choose l with a restriction 14 6 k− l 6 k−14. Particularly, if l = 3604−14,

then the adversary has to enumerate
(

3590

3604

)
variants (about 129 bits) to find ω from 1G2

i .

It is proposed to use an one-time strong signature scheme, on the one hand, resistant
to quantum attacks, on the other hand, having a small public key size (since the number of
repetitions s is equal to the size of the verification key). In [10] authors compared different
signature schemes. So, according to table 2 from [10] we suggest to use Stern signature as
a one-time strong signature scheme with a small public key size (347 bits).

3.2. E x p e r i m e n t s
The theoretical proof of the security of the cryptosystem under consideration is based

on the randomness of vectors 1G2
i ⊕ e1

i ⊕ e2
i and riG

2
i ⊕ e1

i . Thus, the aim of experiments
is to find a dependence of randomness of these vectors on the parameter l. It is important
to note that in [11] authors consider similar vector to riG

2
i ⊕ e1

i . Based on time complexity
for the “low weight codeword” attack, the authors suggest to use specific l. In our case, to
implement such attack, an adversary has to find the set ω to determine the matrix G2

i . For l
proposed above, the time complexity will be at least 2129.

The experiments are carried out as follows. The NIST statistical test suite [12] is used to
test the randomness of vectors. The encryption algorithm of our construction is implemented
using C# language. To generate random vectors, we use a cryptographic generator from
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namespace System.Security.Cryptography of C#. Since the aim of experiments is to find the
dependence of randomness of cyphertexts on the parameter l, we generated several sets of
random vectors from {0, 1}k having special weight. In the case when we test randomness of
vector riG2

i ⊕e1
i , we generate random vectors from {0, 1}k having weight less or equal k− l.

In case when we test randomness of vector 1G2
i ⊕ e1

i ⊕ e2
i , we generate random vectors

from {0, 1}k having weight exactly k − l. In particular, we generate 10000 vectors for each
message type and parameter l. For the purity of the experiment, we also present the number
of test passes for random vectors v from {0, 1}k generated by cryptographic generator with
fixed weight. The results of experiments are presented in the Table. Symbol “∗” means that
ri have weight exactly 1 (otherwise wt(ri) = 0 and riG

2
i ⊕ e1

i = e1
i ).

Number of tests passed out of 10 000 conducted

k − l
v, wt(v) = k − l riG

2
i ⊕ e1i , wt(ri) 6 k − l 1G2

i ⊕ e1i ⊕ e2i

Average Minimum Average Minimum Average Minimum

1 714 0 9850* 9630* 9843 9610
14 1528 0 9852 9626 9852 9648
66 1859 0 9851 9636 9850 9611
112 2097 0 9852 9582 9860 9651
225 2103 0 9854 9625 9854 9650
450 2697 0 9851 9594 9847 9623
901 2756 0 9844 9606 9852 9602
1700 7302 598 9850 9601 9851 9620
1802 9881 9532 9849 9600 9844 9625
2703 2041 0 9848 9613 9853 9620
3604 714 0 9843 9576 9862 9406

Thus, the results obtained show that the considered ciphertexts pass similar number of
tests for all possible values of the parameter l.
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AN IMPROVEMENT OF CRYPTOGRAPHIC SCHEMES
BASED ON THE CONJUGACY SEARCH PROBLEM1

V.A. Roman’kov

The key exchange protocol is a method of securely sharing cryptographic keys over
a public channel. It is considered as important part of cryptographic mechanism to
protect secure communications between two parties. The Diffie — Hellman protocol,
based on the discrete logarithm problem, which is generally difficult to solve, is the most
well-known key exchange protocol. One of the possible generalizations of the discrete
logarithm problem to arbitrary noncommutative groups is the so-called conjugacy
search problem: given two elements g, h of a group G and the information that gx = h
for some x ∈ G, find at least one particular element x like that. Here gx stands for
x−1gx. This problem is in the core of several known public key exchange protocols,
most notably the one due to Anshel et al. and the other due to Ko et al. In recent
years, effective algebraic cryptanalysis methods have been developed that have shown
the vulnerability of protocols of this type. The main purpose of this short note is to
describe a new tool to improve protocols based on the conjugacy search problem. This
tool has been introduced by the author in some recent papers. It is based on a new
mathematical concept of a marginal set.
Keywords: cryptography, key exchange protocol, conjugacy search problem, marginal
set, algorithm.

1. Introduction
The first detailed proposal for a key exchange protocol, due to Diffie and Hellman [1],

was based on the discrete logarithm problem for a finite field. This protocol is one of
the earliest practical examples of public key exchange implemented within the field of
cryptography. It was followed by few alternative proposals for key exchange protocols, all
based on commutative algebraic structures.

Noncommutative cryptography is the area of cryptology where the cryptographic
primitives, methods, and systems are based on algebraic structures like semigroups, groups
and rings which are noncommutative. One of the earliest applications of a noncommutative
algebraic structure for cryptographic purposes was the use of braid groups to develop the
Commutator key exchange protocol by Anshel, Anshel and Goldfeld (AAG) [2] and the
noncommutative key exchange protocol on braids by Ko et al. [3]. Later, several other
noncommutative structures like nilpotent and polycyclic groups, and matrix groups have
been identified as potential candidates for cryptographic applications.

1The research was supported by a grant from the Russian Science Foundation (project no. 19-71-10017).


