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Given a list L(v) for each vertex v, we say that the graph G is L-colorable if there is a
proper vertex coloring of G, where each vertex v takes its color from L(v). The graph
is uniquely k-list colorable if there is a list assignment L such that |L(v)| = k for every
vertex v and the graph has exactly one L-coloring with these lists. If a graph G is not
uniquely k-list colorable, we also say that G has property M (k). The least integer k
such that G has the property M (k) is called the m-number of G, denoted by m(G).
In this paper, we characterize the unique list colorability of the graph G' = K3 + K.
In particular, we determine the number m(G) of the graph G = K3 + K,.
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OJTHO3HAYHASI CIIICOYHA I PACKPAIIINUBAEMOCTD
TPA®A K! + K,

JI. Xynr
Xanotickuti yrusepcumem npupoonsis pecypcos u okpyorcaroweti cpedv, 2. Xanotl, Bvemmnam

Umest crimcok L(v) 1yisi KaxK10i BEPIIUHBI ¥, MBI TOBOPUM, 4TO Tpad L-packparnnBaem,
€CJIM CYIIECTBYeT NPaBUJIbHAsA PACKPACKA €r0 BEPIIUH, B KOTOPOH KarK/asl BEPIIUHA U
okparena 1eerom u3 L(v). I'pad ssisiercss oHOo3HAYHO k-pacKpaninBaeMbIM, €CJIH
cymiecTByer ciucok L, takoit, uro |L(v)| = k miist Kaxk/10it BepuIMHbL v U rpad UMeoT
poBHo onny L-packpacky. Eciu rpad G He saBjseTcst 0JTHO3HAYHO k-PacKpPaInBaeMbIM,
To G obnanaer cpoiicreom M (k). Haumenbriiee menoe uucio k, takoe, uro G 06-
nanaer csoiicrBoMm M (k), masbiBaercss m-duciaoMm rpada G u obosnataerca m(G).
B pabore oxapakTepu3oBaHa OJHO3HAYHOCTH CIMCOYHON paCKpaImmBaeMocTu rpada
G = K3 + K,, B gactHOCTH Ompeierneno 3uatenne m(G) sroro rpada.

KiroueBble coBa: packpacka sepwun 2pada, packpacka cnuckom, 00HO3HAYHO PaC-
Kpawueaemuill epagd, noansvil T-004e6017 epad.

1. Introduction

All graphs considered in this paper are finite undirected graphs without loops or multiple
edges. If G is a graph, then V(G) and E(G) (or V and E in short) will denote its vertex-set
and its edge-set, respectively. The set of all neighbours of a subset S C V(G) is denoted
by Ng(S) (or N(S) in short). The subgraph of G induced by W C V(G) is denoted by
G[W]. The empty graphs (independent sets) and complete graphs of order n are denoted
by O, and K, respectively. Unless otherwise indicated, our graph-theoretic terminology
will follow [1].

A graph G = (V| E) is called r-partite graph if V' admits a partition V' = V;UV,U. ..UV,
such that the subgraphs of G induced by V;, i = 1,...,r, are empty. An r-partite graph
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in which every two vertices from different partition classes are adjacent is called complete
r-partite graph and is denoted by K|, vz),...,|v;| - The complete r-partite graph Ky, | vy|,...|v; |
with |Vi| = [Vo| = ... = |V,| = s is denoted by K.

Let G = (V4, Ey) and Gy = (Va, Es) be two graphs such that V3 N'Vy = &. Their union
G = G1 UGj has, as expected, V(G) =V, UV, and E(G) = Ey U Ey. Their join is denoted
by G + G5 and consists of G U GGy and all edges joining V; with V5.

The complement G = (V,E) of G = (V, E) is the graph with V = V and for every
u,v €V, uww € E if and only if uv ¢ E.

Let G = (V, E) be a graph and X is a positive integer.

A A-coloring of G is a mapping f : V(G) — {1,2,..., A} such that f(u) # f(v) for any
adjacent vertices u,v € V(G). The smallest positive integer A such that G has a A-coloring
is called the chromatic number of G and is denoted by x(G). We say that a graph G is
n-chromatic if n = x(G).

Let (L(v))yey be a family of sets. We call a coloring f of G with f(v) € L(v) for all
v € V a list coloring from the lists L(v). We will refer to such a coloring as an L-coloring,.
The graph G is called \-list-colorable, or A-choosable, if for every family (L(v)),ey with
|L(v)] = A for all v, there is a coloring of G from the lists L(v). The smallest positive
integer A such that G is A-choosable is called the list-chromatic number, or choice number
of G and is denoted by ch(G). The idea of list colorings of graphs was given independently
by V. G. Vizing |2|, P. Erdés, A. L. Rubin, and H. Taylor [3].

Let G be a graph with n vertices and suppose that for each vertex v in GG, there exists
a list of k colors L(v), such that there exists a unique L-coloring for G, then G is called
a uniquely k-list colorable graph or a UKLC graph in short. If a graph G is not uniquely
k-list colorable, we also say that G has property M (k). So G has the property M (k) if and
only if for any collection of lists assigned to its vertices, each of size k, either there is no list
coloring for GG or there exist at least two list colorings. The smallest positive integer k such
that G has the property M (k) is called the m-number of G, denoted by m(G). The idea of
uniquely colorable graph was introduced in [4, 5].

For example, one can easily see that the graph G = K2 is U2LC and it has the
property M(3), i.e., m(G) = 3. Indeed, let V(G) = {uy,us,v1,v2}, E(G) = {usvy, usve,
UgV1, Ug, V1V }. We assign the following lists for the vertices: L(ui) = {1,3}, L(ug) =
={2,3}, L(v1) = {1,3}, and L(vs) = {2,3}. Then, a unique coloring f of G exists from the
assigned lists: f(u1) = f(ug) =3, f(v1) =1, f(v2) = 2. Thus, G is U2LC. If G = K, 1 is
U3LC, then there exists lists for the vertices L(uy) = {ai1, @12, a13}, L(uz) = {aa1, ase, as3},
L(v1) = {b11,b12,b13}, and L(vy) = {ba1, bag, ba3} such that there exists a unique coloring
f of G, we may assume that f(u;) = ay1, f(uz) = as1, f(v1) = bi1, f(va) = bay. If there
exists x € {a12, aiz} such that = ¢ {by1, ba1 }, then there is a coloring g of G with g(u;) = x,
g(uz) = a1, g(vy) = by, and g(vg) = boy, it follows that g # f, a contradiction. So
{a1,a13} = {b11, ba1 }. Similarly, we can show that {ase, ass} = {b11,b21}. If ay1 € {b12, b13},
then there is a coloring g of G with g(u1) = b1y, g(us) = b11, g(v1) = aq1, and g(vq) = bay,
it follows that g # f, a contradiction. So ay; ¢ {b12,b13}. Similarly, we can show that
as1 & {bia, b13}. Let y € {b12,b13} \ {b21}. Then there is a coloring g of G with g(u;) = a1,
g(uz) = as1, g(v1) =y, and g(ve) = bey, it follows that g # f, a contradiction. Thus, G is
not U3LC.

The list coloring model can be used in the channel assignment. The fixed channel
allocation scheme leads to low channel utilization across the whole channel. It requires
a more effective channel assignment and management policy, which allows unused parts of
channel to become available temporarily for other usages so that the scarcity of the channel
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can be largely mitigated [6]. It is a discrete optimization problem. A model for channel
availability, observed by the secondary users, is introduced in [6]. The research of list coloring
consists of two parts: choosability and unique list colorability. In [7], we characterized list-
chromatic number of the graph G = KJ + O,, we have proved that ch(G) = n + 1 if
1 < r < 2. In [8], we characterized list-chromatic number and characterized unique list
colorability of the graph G = K§ + K,., we have proved that ch(G) =n +r, G is U3LC if
and only if 2n +r > 7 and n > 2.

In this paper, we continue to characterize the unique list colorability of the graph G =
= K} + K,. In particular, we determine the number m(G) of the graph G = KJ' + K.

2. Preliminaries
We need the following Lemmas 1-10 to prove our results.
Lemma 1 [5|. Each UKLC graph is also a U(k — 1)LC graph.
Lemma 2 [5|. The graph G is UKLC if and only if k£ < m(G).

Lemma 3 [5|]. A connected graph G has the property M (2) if and only if every block
of GG is either a cycle, a complete graph, or a complete bipartite graph.

Lemma 4 [9]. For every graph G we have m(G) < |E(G)| + 2.
Lemma 5 [9]. Every UKLC graph has at least 3k — 2 vertices.
Lemma 6. With G = K} + K,, we have m(G) < n+ 2.

Proof. 1t is clear that |E(G)| = n. By Lemma 4, m(G) <n+2.m

Lemma 7.

(i) fn=1and r =1, then G = K + K, has the property M (2).

(ii) If n =1 and r > 2, then m(K¥ + K,) = 3.

Proof.

(i) If n = 1 and r = 1, then G = K} + K, is a complete bipartite graph, then by
Lemma 3, G has the property M (2).

(ii) By Lemma 3, G = K7 + K, is U2LC. It is not difficult to see that |E(G)| = 1. By
Lemma 4, m(K} + K,) < 3. Thus, m(K} + K,) =3ifn=1andr > 2. m

Lemma 8. m(Kj3 + K,) = 3 for every 1 <7 < 2.

Proof. By Lemma 3, G = K3 + K, is U2LC. Suppose that G is U3LC. By Lemma 5,
|[V(G)| = 7, a contradiction. So m(G) = 3. m

Lemma 9 [§8]. G = K? + K, is U3LC for every r > 3.

Lemma 10. m(K? + K,) =4 if and only if r > 3.

Proof. Suppose that m(K3+K,) = 4. If 1 < r < 2, then by Lemma 8 m(K3+K,) = 3,
a contradiction.

Suppose that r > 3. By Lemma 9, G = K3 + K, is U3LC. So m(K3 + K,) > 4. By
Lemma 6, m(K3 + K,) < 4. Thus, m(K3 + K,) = 4. m

3. Main Results
Theorem 1. Let Ky '+ K,_, is UKLC for every n,r > 2. Then
(i) K3 + K,_; is UELC and
m(K;”—l + Kr—l) g m(Kg + Kr—l) < m(KQ"_l + K’r‘—l) + 27
(ii) K3~' + K, is UKLC and

m(Ky '+ Ko_)) <m(Ky '+ K) <m(K3 T+ K_y) + 1.
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Proof.

(i) We prove G = K + K,_; is UKLC by induction on n. If n = 2, then by Lemma 7
to Lemma 10, we deduce what to prove. So let n > 2 and assume the assertion for smaller
values of n.

Let V(G) = ViUV, UV U... UV, 4, is a partition of V(G) such that |V;] = |V| =
= ... = |Vl =2, [Vag1| = |Vasa| = ... = |Vagr—1| = 1 and for every i = 1,2,...,n the
subgraph of G induced by V; is an independent set. Set V; = {u;1, u;n} foreveryi =1,...,n
and G' = G —V,,. By the induction hypothesis, for each vertex v in G’, there exists a list
of k colors L'(v), such that there exists a unique f’ for G'. We assign the following lists for
the vertices of G:

Ltn1) = L(ung) = {f'(un), f'(ua1), -, f'(ug-1y1), 1},

with [ ¢ f'(G"), L(v) = L'(v) if v € V(G’). A unique coloring f of G exists from the
assigned lists: f(un1) = f(une) =1, f(v) = f'(v) if v € V(G).

Thus, G = K5 + K,_; is UKLC. It follows that m(Ky ' + K, 1) < m(K} + K,_1).

Put m(Ky ' + K,_;) = t. For suppose on the contrary that graph G = KI + K,_;
satisfies m(G) = h > t + 2. So there exists a list of h — 1 colors L(v) for each vertex
v € V(G), such that there exists a unique L-coloring f for G. We consider separately two
cases.

Case 1:|f(V,)| =1

In this case, f(un1) = f(un2) = a. We assign the following lists L'(v) for the vertices v
of G

(a) If a € L(v), then L'(v) = L(v) \ {a};

(b) If a ¢ L(v), then L'(v) = L(v) \ {b}, where b € L(v) and b # f(v).

It is clear that |L/(v)| = h—2 >t + 1 for every v € V(G’). Since G’ has the property M (t),
by Lemma 1, G’ has the property M (t+ 1), so G’ has the property M (h—2). It follows that
with lists L'(v), there exist at least two list colorings for the vertices v of G'. So it is not
difficult to see that with lists L(v), there exist at least two list colorings for the vertices v
of G, a contradiction.

Case 2:|f(Vo)|=2.

In this case, f(u11) = a, f(u2) = b,a # b. We assign the following lists L'(v) for the
vertices v of G”:

(a) If a,b € L(v), then L'(v) = L(v) \ {a,b};

(b) If a € L(v),b ¢ L(v), then L'(v) = L(v) \ {a, c}, where ¢ € L(v) and ¢ # f(v);

(c) Ifa ¢ L(v),b € L(v), then L'(v) = L(v) \ {b, ¢}, where ¢ € L(v) and ¢ # f(v);

(d) If a,b ¢ L(v), then L'(v) = L(v) \ {¢, d}, where ¢,d € L(v),c# d and ¢,d # f(v).
It is clear that |L'(v)| = h —3 >t for every v € V(G’). Since G’ has the property M(t), by
Lemma 1, G’ has the property M (h —3). It follows that with lists L'(v), there exist at least
two list colorings for the vertices v of G'. So it is not difficult to see that with lists L(v),
there exist at least two list colorings for the vertices v of GG, a contradiction.

Thus, m(Ky ™' + K1) < m(Ky + K1) <m(Ky '+ K, 1) + 2.

(ii) We prove G = Ky ' + K, is UKLC by induction on r. For 7 = 2, it is not difficult
we deduce what to prove. So let r > 2 and assume the assertion for smaller values of r. Let
V(G) = ViuWLUV3U. . .UV, 1,1 is a partition of V(G) such that |Vi| = |[Va| = ... = |V,,4| =
=2, Vo] = |Vas1] = ... = |Vagr—1] = 1 and for every i = 1,2,...,n — 1 the subgraph of G
induced by V; is an independent set. Set V; = {v;} for every i =n,n+1,...,n+r—1 and
G' = G — V,,. By the induction hypothesis, for each vertex v in G’, there exists a list of k
colors L'(v), such that there exists a unique f” for G'.
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We assign the following lists for the vertices of G:

L(Un) = {tlatZa s 7tk—17tk}

with t1,ta,...,tk1 € f/(G'), tx & f'(G"), L(v) = L'(v) if v € V(G'). A unique coloring f
of G exists from the assigned lists: f(v,) = tx, f(v) = f'(v) if v € V(G).

Thus, Ky~ ' + K, is UKLC. It follows that m(K} ™' + K,_1) < m(Ky ™' + K,.).

Put m(Ky ' + K,_1) = t. For suppose on the contrary that graph G = KJ' + K,
satisfies m(G) = h > t + 1. So there exists a list of h — 1 colors L(v) for each vertex
v € V(G), such that there exists a unique L-coloring f for G. Let f(v,) = a. We assign the
following lists L'(v) for the vertices v of G':

(a) If a € L(v), then L'(v) = L(v) \ {a};

(b) If a ¢ L(v), then L'(v) = L(v) \ {b}, where b € L(v) and b # f(v).

It is clear that |L'(v)| = h — 2 > ¢ for every v € V(G'). Since G’ has the property M (t), so
G’ has the property M (h — 2). It follows that with lists L'(v), there exist at least two list
colorings for the vertices v of G'. So it is not difficult to see that with lists L(v), there exist
at least two list colorings for the vertices v of G, a contradiction.

Thus, m(Ky '+ K, 1) <m(Ky '+ K,) <m(Ky '+ K, 1)+ 1. m

Lemma 11 [8]. G = K3 + K, is U3LC for every r > 1.

Theorem 2.

(i) m(K3 + K,) =5 if and only if r > 4;

(i) m(K3 + K,) =4 if and only if 1 < r < 3.

Proof.

(i) Suppose that m(Kj + K,) = 5. If 1 < r < 3, then by Lemma 11 and Lemma 5,
m(K3 + K,) = 4, a contradiction.

Now we suppose that r > 4. First, we prove G = K3 + K, is U4LC. Let V(G) =
= VUVWuVsU...UVs, is a partition of V(G) such that |Vi| = [Vo| = [V5] = 2,
Vil = |V5| = ... = |V34,| = 1 and for every i = 1,2,3 the subgraph of G induced by V;
is an independent set. Set V; = {u;, u;n} for every i = 1,2,3 and V3,; = {v;} for every
i=1,2,...,7. We assign the following lists for the vertices of G = Kj + K,

L(u;) = L(vy) ={1,2,3,4} for every i = 1,2, 3;

L(ue) =1{5,6,7,i+ 1} for every i = 1,2, 3;

L(v;) =42,3,4,3+ j} for every j =2,3,...,r.
A unique coloring f of G exists from the assigned lists:

f(uyr) =1+ 1 for every i = 1,2,3;

f(uin) =1+ 1 for every i = 1,2,3;

f(v1) =1, f(v;) =3+ forevery j =2,3,...,7.
It follows that G is U4LC. So m(G) > 5. By Lemma 6, m(G) < 5. Thus, m(G) = 5.

(i) Suppose that m(K3+K,) = 4. If r > 4, then by (i), m(K3+K,) = 5, a contradiction.

Suppose that 1 < r < 3. By Lemma 11 and Lemma 5, m(K3 + K,) = 4. m

Theorem 3. Let G = K} + K, be a graph with n > 4 and r > 1. Then
(i) G is UEKLC with k = |n/2] + 1;

(i) If 1 < r < n —2, then G has the property M (n);

(iii) If r > n — 1, then G is UnLC,;

(iv) If n — 1 < r < n, then m(G) =n + 1;

(v) If r > n+1, then m(G) =n+2.
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Proof. Let V(G) =V UV, UV3U...UV,, is a partition of V(G) such that |V;| =
=Vl =...=|Vo| =2, [Vis1| = [Vage| = ... = [Voyr| = 1 and for every i = 1,2,...,n the
subgraph of G induced by V; is an independent set. Set V; = {u;, u;n} foreveryi =1,....,n
and V,; = {v;} for every i = 1,2, ..., .

(i) Put t = |n/2]. We assign the following lists for the vertices of G:

L(uyn) ={1,2,...,t+ 1} for every i = 1,2,...,t + 1;

L(up) ={t+2,t+3,...,2t +1,i} forevery i = 1,2,...,t + 1;

L(uwgs1a;) ={2,3,.. ., t+ 1L, t+1+d} foreveryi=1,2,....n—t—1,j=1,2;

L(v;) ={2,3,...,t+ 1,n+ i} forevery i = 1,2,...,r.

A unique coloring f of G exists from the assigned lists:

f(ujr) =1 foreveryi=1,2,...,t+1;

f(up) =i foreveryi=1,2,....t+1;

f(uisrra;) =t +1+iforeveryi=1,2,...,n—t—1,75=1,2;

f(v;)) =n+iforeveryi=12...,r.

(i) If G = K} + K, is UnLC, then by Lemma 5, |[V(G)| > 3n — 2, a contradiction.

(iii) We assign the following lists for the vertices of G:

L(uy) =41,2,...,n} for every i = 1,2,...,m;

L(ug) ={n+1,n+2,....2n—1,i} forevery i = 1,2,...,n;

L(v;)={1,2,...,n—1,n+j} forevery j =1,2,...,7.

A unique coloring f of G exists from the assigned lists:

f(uj1) =1 for every i =1,2,...,n;

f(uin) =1 for every i =1,2,...,n;

f(v;) =n+jforevery j =1,2,... 7.

Thus, G is UnLC.

(iv) By (iii), G is UnLC. If G is U(n + 1)LC, then by Lemma 5, |V(G)| > 3n+ 1, a
contradiction. So m(G) =n+ 1.

(v) We assign the following lists for the vertices of G:

L(uy) = L(vy) ={1,2,...,n+ 1} for every i = 1,2,... ,n;

L(ug) ={n+2,n+3,....2n+ 1,i+ 1} for every : = 1,2,...,n;

L(v;) =42,3,...,n+1,n+j} forevery j =2,3,...,r.

A unique coloring f of G exists from the assigned lists:

fluyr) =1+ 1foreveryi=1,2,... ,n;

fluip) =1+ 1foreveryi=1,2,...,n;

f(v1) =1, f(v;) =n+jforevery j =2,3,...,r.

It follows that G is U(n + 1)LC. So m(G) > n + 2.
By Lemma 6, m(G) < n+ 2. Thus, m(G) =n+2. =
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