Т. 65, № 3 ФИЗИКА 2022

УДК 02.3;05.3;08.2 DOI: 10.17223/00213411/65/3/173

ИССЛЕДОВАНИЕ СТРУКТУРНОЙ НЕОДНОРОДНОСТИ РАСПЛАВА АЛЮМИНИЯ МЕТОДОМ АКУСТИЧЕСКОЙ ЭМИССИИ

В.Б. Воронцов, В.К. Першин

Уральский государственный университет путей сообщения, г. Екатеринбург, Россия

Экспериментально исследована акустическая эмиссия (АЭ) при изменении температуры расплава алюминия. Проведен фурье-анализ амплитудно-частотного спектра сигналов АЭ в температурном интервале 665–860° С. В исследуемом частотном диапазоне установлено периодическое повторение сигналов с максимальной интенсивностью. Предполагается, что акустический спектр сигналов связан со структурными перестройками в расплаве и отражает трансформацию локального порядка в жидком алюминии. Динамика изменения сигналов АЭ при повышении температуры расплава позволяет утверждать, что локальный порядок в расплаве наследует структуру кристаллического предшественника. Проанализирован процесс формирования кластеров при охлаждении расплава. На основании изложенного обсуждаются представления о структуре расплава как частично упорядоченной кластерной среде.

Ключевые слова: кристаллическая структура, модель кластера, градиент, расплав, металлы, акустическая эмиссия.

Введение

По сравнению с исследованием металлов и сплавов в твердом состоянии менее изучены строение и свойства жидких металлов. Это связано с ограниченностью методов, которые позволяют однозначно судить о структурных изменениях, происходящих в расплаве при его перегреве выше температуры ликвидуса. К нестоящему времени известны работы по исследованию жидкого металла рентгеновским методом [1] и по измерению вязкости, в том числе и алюминия [2, 3]. Необходимо отметить также работы [4–6], в которых дается теоретическое обоснование генерации волн в расплаве. Отсутствие систематического изучения структурной связи твердого и жидкого состояния является серьезным препятствием в разработке технологических основ получения металлов с заданными свойствами. Исследование жидкого состояния металла позволит ответить на вопросы о появлении структурной неоднородности в расплаве с температурой, которая ведет к изменению физических свойств металла. В этом плане предлагаемый метод получения информации о состоянии расплава на основании анализа сигналов акустической эмиссии (АЭ), возникающих в нем при изменении температуры, может способствовать ответу на интересующие металлургов вопросы.

Настоящая работа основана на трудах отечественных ученых: С.Я. Френкеля [7, 8], который ввел в науку представление о сходстве структур и атомов в жидкостях и кристаллическом состоянии, и экспериментальной работе В.И. Данилова [9]. Эта идея нашла свое подтверждение в работах [10–14] и сегодня, жидкость рассматривают как динамический аналог поликристалла с двумя структурными составляющими: кластерами и межкластерной средой неупорядоченных атомов. Расположение частиц в кластерах и их тепловое движение подобно таковым в твердых телах. Кластеры находятся в окружении неупорядоченных атомов, между ними, однако, нет строго выраженной границы раздела. В ядре кластера расположение атомов подобно кристаллу, а на периферии существует постоянный обмен с хаотической атомной средой.

Главная задача исследования состояла в обосновании на основании анализа сигналов АЭ кластерной структуры расплава, второй задачей было изучение амплитудно-частотного спектра сигналов АЭ АІ при нагревании и охлаждении расплава в непрерывном режиме в диапазоне температур 665–860 °C.

1. Экспериментальная часть

Для решения поставленной задачи на установке (рис. 1) была проведена серия экспериментов. На всех этапах эксперимента записывался акустический спектр $A\mathfrak{I}$ в частотном диапазоне 20– 200 к Γ ц. При нагревании или охлаждении температуры контрольные значения на температурной оси были взяты через 20 °C во всем температурном интервале 665–860 °C.

Уважаемые читатели!

Доступ к полнотекстовой версии журнала «Известия высших учебных заведений. Физика» осуществляется на платформе Научной электронной библиотеки eLIBRARY.RU на платной основе:

https://elibrary.ru/contents.asp?titleid=7725