Физика конденсированного состояния

УДК 539.37 DOI: 10.17223/00213411/65/8/115

ВЛИЯНИЕ СКОРОСТИ ДЕФОРМАЦИИ НА ФОРМИРОВАНИЕ ДИСЛОКАЦИОННОЙ СТРУКТУРЫ В ДИСПЕРСНО-УПРОЧНЕННОМ СПЛАВЕ С НЕКОГЕРЕНТНЫМИ НАНОРАЗМЕРНЫМИ ЧАСТИЦАМИ*

О.И. Данейко^{1,2}, Т.А. Ковалевская¹

¹ Томский государственный архитектурно-строительный университет, г. Томск, Россия ² Национальный исследовательский Томский государственный университет, г. Томск, Россия

Проведено исследование влияния скорости деформации на изменение плотностей составляющих дислокационной подсистемы в дисперсно-упрочненных материалах с разными масштабными характеристиками упрочняющей фазы в широком интервале температур. Исследование проводилось методами математического моделирования. Показано, что скорость пластического сдвига гетерофазных сплавов с некогерентными наноразмерными частицами влияет на образование дипольных дислокационных структур и, как следствие, на упрочнение материала. Выявлено, что в материале с самыми мелкими частицами при высоких температурах диполи не появляются в составе дислокационной структуры при любых скоростях деформации. Показано, что в процессе пластической деформации плотность сдвигообразующих дислокаций больше, чем плотность дислокаций в призматических петлях при всех температурах и скоростях деформации в материалах с упрочняющими частицами различных размеров.

Ключевые слова: математическое моделирование, скорость пластической деформации, дисперсно-упрочненные материалы, наноразмерные частицы, плотность дислокаций.

Введение

Пластическое поведение и эволюция элементов дефектной системы (дислокаций и точечных дефектов) дисперсно-упрочненного материала определяются целым рядом факторов [1–3]: материалом матрицы, объемной долей упрочняющей фазы и ее степенью дисперсности, характером внешнего воздействия, исходным состоянием материала, температурой, скоростью деформации и пр. Ранее было показано, что формирование в дислокационном ансамбле зоны сдвига дипольных дислокационных конфигураций при любых температурах и любых величинах размеров упрочняющих частиц приводит к заметному усилению прочностных свойств дисперсно-упрочненного материала. В первую очередь – к увеличению коэффициента деформационного упрочнения и, соответственно, к возрастанию напряжения течения [4].

В настоящей работе методами математического моделирования и вычислительного эксперимента анализируется влияние скорости деформации на изменение состава дислокационной структуры и поведение прочностных свойств (в частности, напряжения течения) дисперсноупрочненных алюмоматричных сплавов с некогерентными наноразмерными частицами.

Математическая модель пластической деформации

Математическая модель пластической деформации дисперсно-упрочненного материала с ГЦК-матрицей и некогерентными наноразмерными частицами базируется на концепции упрочнения и отдыха [5], учитывает наиболее значимые механизмы генерации и аннигиляции дефектов различного типа [6–14]. В модели учтено, что при достижении в материале некоторой критической плотности дислокаций ρ_c изменяется характер дислокационной структуры зоны сдвига [15]. При плотности дислокаций больше критической $\rho > \rho_c$ в дополнение к сдвигообразующим дислокациям и дислокационным призматическим петлям появляются новые элементы дислокационной структуры – дипольные и мультипольные дислокационные конфигурации, вытянутые от частицы к частице [16, 17]. Уравнения баланса элементов деформационной дефектной среды имеют следующий вид [17]:

Работа выполнена в рамках государственного задания Министерства науки и высшего образования Российской Федерации (тема № FEMN-2020-0004).

Уважаемые читатели!

Доступ к полнотекстовой версии журнала «Известия высших учебных заведений. Физика» осуществляется на платформе Научной электронной библиотеки eLIBRARY.RU на платной основе:

https://elibrary.ru/contents.asp?titleid=7725