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О РАЗЛОЖЕНИИ БЕНТ-ФУНКЦИЙ ОТ ВОСЬМИ ПЕРЕМЕННЫХ
В СУММУ ДВУХ БЕНТ-ФУНКЦИЙ1

А.С. Шапоренко

Максимально нелинейная булева функция от чётного числа переменных назы-
вается бент-функцией. Исследуется гипотеза о представлении произвольных бу-
левых функций от n переменных степени не больше n/2 как суммы двух бент-
функций. Доказано, что произвольная бент-функция от восьми переменных сте-
пени не больше 3 представляется как сумма двух бент-функций. Показано, что
каждая квадратичная булева функция от чётного числа переменных n > 4 рас-
кладывается в сумму двух бент-функций специального вида.

Ключевые слова: бент-функции, булевы функции, разложение в сумму бент-
функций.

Булева функция f : Zn2 → Z2 от чётного числа переменных n называется бент-
функцией, если она находится на максимальном расстоянии Хэмминга от множества
всех аффинных функций [1]. Обозначим через Bn множество бент-функций. Дальше
полагаем, что n является чётным целым числом.

Преобразованием Уолша—Адамара булевой функции f от n переменных называ-
ется целочисленная функция, заданная на множестве Zn2 равенством

Wf (y) =
∑
x∈Zn

2

(−1)f(x)⊕〈x,y〉 для любого y ∈ Zn2 .

Для любой бент-функции f от n переменных Wf (y) = ±2n/2 [2]. Определим дуальную
бент-функцию f̃ к f ∈ Bn равенством Wf (y) = 2n/2(−1)f̃(y) для любого y ∈ Zn2 .

Шифры, в которых используются бент-функции, более устойчивы к линейному
криптоанализу [3], потому что бент-функции крайне плохо аппроксимируются аффин-
ными функциями. Бент-функции используются в структуре блочного шифра CAST
как координатные функции S-блоков [4], а также для построения регистра сдвига
с нелинейной обратной связью в поточном шифре Grain [5]. Бент-функции связаны
также с некоторыми объектами теории кодирования, например с кодами Рида—Мал-
лера [2].

В работе исследуется известная открытая проблема о разложении произвольной
булевой функции в сумму двух бент-функций [6].

Гипотеза 1 (Н.Н. Токарева, [7]). Любая булева функция от n переменных сте-
пени не больше n/2 может быть представлена как сумма двух бент-функций от n
переменных.

В [7] показано, что гипотеза 1 верна для n 6 6. Известно, что если гипотеза 1 верна,
то справедлива следующая нижняя оценка числа бент-функций [7]:

|Bn| > 22n−2+( n
n/2)/4.

1Работа выполнена в рамках госзадания ИМ СО РАН (проект № FWNF-2022-0018).
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Утверждение 1 [7, 8]. Пусть f0, f1 и f2 — бент-функции от n переменных. Тогда
функция g, определенная следующим образом:

g(x, 0, 0) = f0(x), g(x, 0, 1) = f1(x),

g(x, 1, 0) = f2(x), g(x, 1, 1) = f3(x),

является бент-функцией от n + 2 переменных тогда и только тогда, когда f3 — бент-
функция от n переменных и f̃0 ⊕ f̃1 ⊕ f̃2 ⊕ f̃3 = 1.

Бент-функции, которые получаются с помощью утверждения 1, называются бент
итеративными функциями.

Следствие 1. Пусть g и ` являются бент-функцией и линейной функцией от n пе-
ременных соответственно. Тогда f(x, xn+1, xn+2) = xn+2(xn+1 ⊕ `(x)) ⊕ g(x) является
бент-функцией от n+ 2 переменных.

Известно, что бент-функции от восьми переменных степени не больше 3 разбива-
ются на 10 классов аффинной эквивалентности [9]. В таблице представлены разло-
жения каждого представителя класса аффинной эквивалентности в сумму двух бент
итеративных функций от восьми переменных, которые имеют форму из следствия 1.
Заметим, что в утверждении 1 и следствии 1 переменные xn+1, xn+2 используются для
разложения бент итеративных функций на подфункции. В таблице такие перемен-
ные для бент итеративных функций выделены жирным шрифтом. Для простоты мы
используем обозначение 12 вместо x1x2.

Неэквивалентные бент-функции степени 6 3 Разложение
12 + 34 + 56 + 78 13 + 25 + 48 + 67 + 12 + 56

13 + 25 + 48 + 67 + 34 + 78
123 + 14 + 25 + 36 + 78 1(6 + 23) + 24 + 58 + 37 + 14 + 78

16 + 24 + 58 + 3(7 + 6) + 25
123 + 245 + 34 + 26 + 17 + 58 2(7 + 45 + 13 + 6) + 14 + 38 +

56 + 34
7(2 + 1) + 14 + 38 + 56 + 58

123 + 245 + 13 + 15 + 26 + 34 + 78 2(7 + 45 + 13 + 6) + 14 + 38 +
+ 56 + 34 + 15
7(2 + 8) + 14 + 38 + 56 + 13

123 + 245 + 346 + 35 + 26 + 25 + 17 + 48 2(7 + 45 + 6 + 5) + 14 + 38 + 56 + 48
3(8 + 46 + 12 + 5) + 27 + 14 + 56 + 17

123 + 245 + 346 + 35 + 13 + 14 + 27 + 68 2(6 + 13 + 45 + 7) + 14 + 78 + 35 + 45
3(1 + 46) + 26 + 78 + 45 + 68

123 + 245 + 346 + 35 + 26 + 25 + 12 + 13 + 14 + 78 2(7 + 13 + 45 + 5 + 1 + 6) + 14 + 56 +
+ 38 + 45 + 68
3(1 + 46 + 8 + 5) + 27 + 45 + 68 +
+ 56 + 78

123 + 245 + 346 + 35 + 16 + 27 + 48 1(4 + 23 + 6) + 27 + 58 + 36 + 26 + 78
4(1 + 25 + 36 + 8) + 35 + 26 + 78 +
+ 36 + 58

127 + 347 + 567 + 14 + 36 + 25 + 45 + 78 7(1 + 34 + 56 + 8 + 6) + 36 +
+ 45 + 28 + 35 + 56
1(4 + 27 + 7) + 28 + 35 + 67 + 25 + 56

123 + 245 + 346 + 147 + 35 + 27 + 15 + 16 + 48 4(1 + 36 + 25) + 35 + 26 + 78 + 36
1(5 + 23 + 47 + 4 + 6) + 27 +
+ 48 + 36 + 78 + 26

Известно, что функции, аффинно эквивалентные бент-функции, также являют-
ся бент-функциями [2]. Следовательно, если функция f раскладывается в сумму двух
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бент-функций, то функция, аффинно эквивалентная f , также представляется как сум-
ма двух бент-функций.

Теорема 1. Произвольная бент-функция от восьми переменных степени не боль-
ше 3 раскладывается в сумму двух бент-функций от восьми переменных.

Известно, что каждая квадратичная функция от n > 4 переменных представляется
как сумма двух бент-функций от n переменных [10]. Справедливо следующее утвер-
ждение:

Утверждение 2. Любая квадратичная булева функция от n > 4 переменных
представляется как сумма двух бент итеративных функций.

Исследование разложения булевых функций в сумму двух бент итеративных функ-
ций может привести к интересным результатам, касающимся рассматриваемой гипо-
тезы. В настоящее время ведётся работа по разложению кубических булевых функций
от восьми переменных в сумму двух бент итеративных функций. Получены частичные
результаты, но необходимо продолжение исследования.

ЛИТЕРАТУРА
1. Rothaus O. S. On “bent” functions // J. Combinat. Theory. Ser. A. 1976. V. 20. No. 3.

P. 300–305.
2. Tokareva N. Bent Functions: Results and Applications to Cryptography. Acad. Press. Elsevier,

2015.
3. Matsui M. Linear cryptanalysis method for DES cipher // LNCS. 1994. V. 765. P. 386–397.
4. Adams C. Constructing symmetric ciphers using the CAST design procedure // Design,

Codes, Cryptogr. 1997. V. 12. No. 3. P. 283–316.
5. Hell M., Johansson T., Maximov A., and Meier W. A stream cipher proposal: Grain-128 //

IEEE Intern. Symp. Inform. Theory. 2006. P. 1614–1618.
6. Carlet C. Open questions on nonlinearity and on APN Functions // LNCS. 2015. V. 9061.

P. 83–107.
7. Tokareva N. On the number of bent functions from iterative constructions: lower bounds and

hypotheses // Adv. Math. Commun. 2011. V. 5. No. 4. P. 609–621.
8. Canteaut A. and Charpin P. Decomposing bent functions // IEEE Trans. Inform. Theory.

2003. V. 49. No. 8. P. 2004–2019.
9. Hou X.D. Cubic bent functions // Discr. Math. 1998. V. 189. Iss. 1–3. P. 149–161.
10. Qu L. and Li C. New results on the Boolean functions that can be expressed as the sum of

two bent functions // IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2016. V. 99-A.
No. 8. P. 1584–1590.




