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KEY SCHEDULE BASED ON A MODIFIED ADDITIVE GENERATOR!
V.M. Fomichev, D. A. Bobrovskiy, R.R. Sotov

A method of round key generation for iterated block ciphers based on a modified
additive generator (MAG), and, in addition, on MAG and a linear congruent generator
in a series circuit is proposed. The bijectivity of the generating transformation is
demonstrated. Using the matrix-graph approach the number of iterations necessary for
achieving enhanced cryptographic properties is experimentally evaluated. This number
depends on the generator characteristics.

Keywords: key scheduling algorithm, iterative block ciphers, matriz-graph approach,
modified additive generator, mizing properties, nonlinearity.

1. Introduction

The key schedule is an important component of any iterated block cipher. The first
versions of key schedules (DES, GOST 28147-89) involved bit sampling from the cipher
key which gives the cryptanalyst grounds for attacks such as differential analysis. In AES,
the generation of round keys is more complex and requires a non-stationary recurrence
relation over a set of binary vectors. The Kuznechik algorithm provides a complex key
dependency using the Feistel network. The goal of key schedule algorithms is to combine a
complex functional relationship between the bits of the cipher key and the round keys with
a relatively low computational complexity of key generation.

This paper proposes a round key generator (RKG) based on a modified additive
generator and, in addition, on MAG and a linear congruent generator (LCG) in a series
circuit.

2. Additive generator

The additive generator (AG) is a shift register of length n with feedback f(zo,...,2n-1)
over the space of binary r-dimensional vectors, i.e., a register transformation ¢ of the set
Vn?“ = {(207 s 7Zn71) D205---5%n-1 € ‘/r}

©(20y -y 2n-1) = (215 -y 201, [(205 - -y Zn-1)), (1)

where the function f: V,,, — V, is the shift register feedback function.
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The AG feedback has the following form: f(zg,...,2,-1) = 20 B 2o H 24 H 2, where H
is addition modulo 2", that is, f is bijective on the variable 2y, hence the transformation ¢
is also bijective [1]. It has insufficient mixing: the leading bits of all vectors depend
only on the least significant ones. Therefore, a transformation ¢? of the modified AG
is proposed, in which the vector value of the feedback is transformed by permutation g
of the set V,. The feedback of the MAG is denoted by f9. It is proved that the
transformation ¢9(zo,...,2,—1) is bijective if and only if the function ¢ is bijective and
g is a permutation [2].

The MAG is studied given r = 32, where the transformation g(k) is a cyclic shift
permutation of binary vectors by k bits towards the leading bits. Hence 9 is a bijection
of the set V,,,., and the feedback function has the form

fg(k)(Z(), e ,Zn_l) = Intgg(g(k)(veC32(Z() H Z9 H Z4 H ZG))), (2)

where Vecsy: Zos2 — V3o is a bijection that maps a number X € Zos2 to its binary
representation, Ints, = Vec§21 is the inverse function.
Given t =0,1,2, ..., we denote:

o g(k) — left cyclic shift by 1 bit (k = 1);

° X;t) — the state of the j-th MAG cell at ¢, j =0,1,...,6;
o X = (Xét),Xl(t), o ,Xﬁ(t)) — the state of the MAG at t;
e X© — the initial state of MAG.

The key of MAG is its initial state. From (1) and (2) we get:
XD = (x L xP gk (xP B xS B x B x)). (3)

A round key sequence is formed as an irregular sample from the sequence {Xét)}, t =
=0,1,2,...

3. Cyeclic structure of the MAG state digraph

To avoid repetitions in the sequence of round keys, short cycles of length less than
300 are undesirable in the cyclic transformation structure (this limit is determined by the
required number of round keys in a number of block ciphers). The structure of the MAG
state digraph was studied.

We denote by T'(¢9*) the @9 transformation digraph, i.e., I'(¢9*)) = (Vaq4, E), where
E is the set of arcs. The arc (27, /) exists if p9*)(2%) = 27,

The digraph I'(¢9%)) has one self-loop generated by the zero fill of MAG.

The cyclic structure of the digraph I'(¢9*)) was studied given k = 1, r = 4,5,6
(as r increases, the computational complexity increases rapidly). Using an algorithm that
generates a sequence of MAG states, 11 cycles at » = 4, more than 18 cycles at » = 5, and
more than two cycles at r = 6 are found in the corresponding digraphs. In Table 1, the
lengths of the found cycles are provided.

At r = 32, the lengths of the cycles are also experimentally evaluated. We assume 10%
generated pseudorandom numbers as initial values. For each of the numbers assumed 1000
clock cycles of the generator are implemented (which is enough to generate all the round
keys). It is obtained that the length of all cycles exceeds 1000, which excludes repetitions
in the sequence of round keys.

The results of the experiment given r = 32 suggest that a randomly chosen state of
MAG with a probability close to 1 belongs to a cycle of the length greater than 1000.
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Table 1
Cycles lengths
Cycle number | Length, r =4 | Length, r =5 Length, r =6
1 234 711 845 | 16 871 058 994 | 837 124 439 025
2 17 076 802 13 808 636 426 | 117 617 876 965
3 15 925 876 1 965 696 526
4 305 050 1122 723 601
5 208 004 233 097 005
6 91 195 151 954 479
7 67 889 65 351 609
8 28 603 43 458 018
9 11 552 41 627 677
10 7497 29 128 117
11 1142 14 671 598
12 10 296 293
13 1134 118
14 460 091
15 212 519
16 120 918
17 62 980
18 22 785

4. Round keys generator using LCG
In a RKG based on the MAG and LCG series circuit, the key is the initial state of LCG

and MAG. The recurrence of the LCG can be represented as

Xpt1 = (aX,+c)modm, n=>0,

where a is a multiplier, m is a modulus, c is a shift and X is an initial value.

Recommended LCG parameters: a = 1, m = 2%, ¢ is an odd number, guaranteeing the
full-cycle permutation of LCG [3].

The MAG+LCG automaton model’s transition function is injective regarding the input
variable, hence the period length of the sequence of GRK states is a multiple of the period
length of LCG, that is a multiple of 232 [4].

From (3) we get

X0 = (x{?, X g (k) (X B X B X B X)) B (K Bt + 1)),

where K is the lowest 32 bits of the initial key, ¢ € Zgs2 is an odd number, ¢t = 1,2,3, ...
is the sequence number of iteration of the RKG. Consequently, the period length of the
sequence {Xét)} is guaranteed to be at least 232

5. Mixing properties and nonlinearity

The RKG parameter k influences the key schedule properties of nonlinearity and mixing.
These properties are evaluated using the local exponent of the mixing digraph for RKG state
permutations (according to the matrix-graph approach [5]). After evaluation, the properties
are determined experimentally.

The experiment results are presented here given different k. The least number of the
RKG clock cycles is found after which each vector {Xét)} coordinate depends essentially
and nonlinearly on each initial state bit. In Table 2, the results for &k = 1, 3,5 are provided.
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Table 2
Experimental evaluation of total mixing
and nonlinearity characteristics

k | Round t of total mixing | Round ¢ of nonlinearity
1 30 33
3 18 20
5 16 18

6. Conclusion

Advanced characteristics of RKG based on MAG are shown both with and without the
use of LCG. In the first case, the structural properties of the permutation states of RKG are
guaranteed by the LCG parameters. In the second case, they are justified experimentally.
The computational complexity of the round key generation method is low, which can be
explained by uncomplicated implementation of MAG and LCG.

The presented method of key schedule generation can be used in many iterated block
ciphers, in particular, the method is recommended for wide-block algorithm KB-256.
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THE DIFFERENCE RELATIONS AND IMPOSSIBLE DIFFERENTIALS
CONSTRUCTION FOR THE KB-256 ALGORITHM

V.M. Fomichev, A.V. Kurochkin, A. B. Chukno

In this paper, new results of the analysis of the KB 256-3 block cipher algorithm are
outlined. We set up a difference relation with probability 1 for the six-round algorithm
under study and propose a key recovery method using this difference relation for the
nine-round KB 256-3 algorithm. We construct an impossible differential for the full-
round algorithm.

Keywords: differential cryptanalysis, impossible differentials.

1. Introduction

The existence of a difference relation for a block cipher algorithm may indicate the
possibility of developing efficient key recovering methods. We show that difference relations
discovered for a block cipher algorithm can be efficiently used for key recovery computation
(as compared to exhaustive key search) for the nine-round KB 256-3 algorithm. The





