Физика элементарных частиц и теория поля

УДК 536.75 DOI: 10.17223/00213411/65/10/90

ЭНТРОПИЯ КВАНТОВЫХ СИСТЕМ С ЛИНЕЙНОЙ ДИССИПАЦИЕЙ

В.С. Кирчанов

Пермский национальный исследовательский политехнический университет, г. Пермь, Россия

Предложено квазикинетическое уравнение Линблада для статистического оператора, зависимого от длины тепловой волны де Бройля, которое может описывать неизотермические процессы. С помощью уравнения Линблада вычислена зависимость энтропии от времени и температуры для модели квантового гармонического осциллятора с линейной диссипацией в квантовой и статистической механике.

Ключевые слова: уравнение Линблада, квантовый гармонический осциллятор, линейная диссипация, энтропия открытой квантовой системы, квантовая термодинамика, квантовая статистическая механика.

Введение

В настоящее время роль и значение энтропии и информации различных видов непрерывно повышаются при изучении физических процессов в открытых [1] неравновесных классических и особенно квантовых системах [2] (см. также обзор [3], посвященный принципу максимума производства энтропии в неравновесных системах). С другой стороны, развита математическая теория, где на основе композиции информационных энтропийных мер с квадратичной нелинейностью осуществляется теоретико-групповой подход к нахождению мер порядка и беспорядка, зависящих от нескольких параметров для неэкстенсивных систем [4]. Таким образом, готовы почти все компоненты для синтеза квантовой теории и неравновесной термодинамики.

Наша теоретическая работа принадлежит к направлению, называемому квантовой термодинамикой [5]. Целью работы является получение квазикинетических уравнений для волновой функции и статистического оператора, зависимых от длины тепловой волны де Бройля, которые описывают неизотермические процессы. Эти уравнения используются для вычисления зависимости энтропии от времени для открытой квантовой системы, в модели квантового гармонического осциллятора с линейной диссипацией [6], описываемой уравнением Линблада [7, 8]. Далее находится зависимость энтропии от температуры для такой же модели в квантовой статистической механике, которая описывается уравнением типа Линблада [9] для статистического оператора, полученного ранее из уравнения Блоха методом многомерного интеграла по траекториям.

Квазикинетические уравнения квантовой термодинамики

Как известно, длина тепловой волны де Бройля [1] для квантовых газов зависит от температуры *

$$\lambda_T = \frac{h}{p_T} = \frac{h}{\sqrt{2\pi m k_{\rm B} T}} \,. \tag{1.1}$$

Повторим путь Шредингера: от длины тепловой волны де Бройля к волновой функции и далее к волновому уравнению. Принимаем, что координата x(t) и температура T(t) зависят от времени t, тогда для свободной частицы в одномерном случае волновая функция следующая:

$$\psi(t,x(t),T(t)) = \psi_0 \exp\left\{-i\frac{E_T}{\hbar}t + i\frac{p_T}{\hbar}x\right\} = \psi_0 \exp\left\{-i\frac{3\alpha k_B T}{2\hbar}t + i\frac{\sqrt{2\pi m k_B T}}{\hbar}x\right\},$$
 (1.2)

где тепловая энергия примерно в 2 раза больше классической

$$E_T = \pi k_{\rm B} T = \frac{3}{2} k_{\rm B} T \alpha$$
, где $\alpha = \frac{2}{3} \pi \approx 2.1$. (1.3)

Уравнение Шредингера для свободной частицы имеет вид

_

^{*} Индекс T означает зависимость от температуры.

Уважаемые читатели!

Доступ к полнотекстовой версии журнала «Известия высших учебных заведений. Физика» осуществляется на платформе Научной электронной библиотеки eLIBRARY.RU на платной основе:

https://elibrary.ru/contents.asp?titleid=7725